1
|
Zhang H, Ni T, Liu X, Ma B, Huang T, Zhao D, Li H, Chen K, Liu T. Ignored microbial-induced taste and odor in drinking water reservoirs: Novel insight into actinobacterial community structure, assembly, and odor-producing potential. WATER RESEARCH 2024; 264:122219. [PMID: 39121820 DOI: 10.1016/j.watres.2024.122219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/13/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
The presence of actinobacteria in reservoirs can lead to taste and odor issues, posing potential risks to the safety of drinking water supply. However, the response of actinobacterial communities to environmental factors in drinking water reservoirs remains largely unexplored. To address this gap, this study investigated the community structure and metabolic characteristics of odor-producing actinobacteria in water reservoirs across northern and southern China. The findings revealed differences in the actinobacterial composition across the reservoirs, with Mycobacterium sp. and Candidatus Nanopelagicus being the most prevalent genera. Notably, water temperature, nutrient levels, and metal concentrations were associated with differences in actinobacterial communities, with stochastic processes playing a major role in shaping the community assembly. In addition, three strains of odor-producing actinobacteria were cultured in raw reservoir water, namely Streptomyces antibioticus LJH21, Streptomyces sp. ZEU13, and Streptomyces sp. PQK19, with peak ATP concentrations of 51 nmol/L, 66 nmol/L, and 70 nmol/L, respectively, indicating that odor-producing actinobacteria could remain metabolically active under poor nutrient pressure. Additionally, Streptomyces antibioticus LJH21 produced the highest concentration of geosmin at 24.4 ng/L. These findings enhance our understanding of regional variances and reproductive metabolic mechanisms of actinobacteria in drinking water reservoirs, providing a solid foundation for improving drinking water quality control, especially for taste and odor.
Collapse
Affiliation(s)
- Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tongchao Ni
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Daijuan Zhao
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaige Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tao Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
2
|
Topalian J, Navas L, Ontañon O, Valacco MP, Noseda DG, Blasco M, Peña MJ, Urbanowicz BR, Campos E. Production of a bacterial secretome highly efficient for the deconstruction of xylans. World J Microbiol Biotechnol 2024; 40:266. [PMID: 38997527 DOI: 10.1007/s11274-024-04075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Bacteria within the Paenibacillus genus are known to secrete a diverse array of enzymes capable of breaking down plant cell wall polysaccharides. We studied the extracellular xylanolytic activity of Paenibacillus xylanivorans and examined the complete range of secreted proteins when grown on carbohydrate-based carbon sources of increasing complexity, including wheat bran, sugar cane straw, beechwood xylan and sucrose, as control. Our data showed that the relative abundances of secreted proteins varied depending on the carbon source used. Extracellular enzymatic extracts from wheat bran (WB) or sugar cane straw (SCR) cultures had the highest xylanolytic activity, coincidently with the largest representation of carbohydrate active enzymes (CAZymes). Scaling-up to a benchtop bioreactor using WB resulted in a significant enhancement in productivity and in the overall volumetric extracellular xylanase activity, that was further concentrated by freeze-drying. The enzymatic extract was efficient in the deconstruction of xylans from different sources as well as sugar cane straw pretreated by alkali extrusion (SCRe), resulting in xylobiose and xylose, as primary products. The overall yield of xylose released from SCRe was improved by supplementing the enzymatic extract with a recombinant GH43 β-xylosidase (EcXyl43) and a GH62 α-L-arabinofuranosidase (CsAbf62A), two activities that were under-represented. Overall, we showed that the extracellular enzymatic extract from P. xylanivorans, supplemented with specific enzymatic activities, is an effective approach for targeting xylan within lignocellulosic biomass.
Collapse
Affiliation(s)
- Juliana Topalian
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Laura Navas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina
| | - Ornella Ontañon
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina
| | - Maria Pia Valacco
- Centro de Estudios Químicos y Biológicos por Espectrometría de Masa (CEQUIBIEM-FCEN), Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires (UBA-IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Gabriel Noseda
- Instituto de Investigaciones Biotecnológicas (IIBio), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Martín Blasco
- Departamento de Bioprocesos, Instituto Nacional de Tecnología Industrial (INTI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Maria Jesus Peña
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Breeanna R Urbanowicz
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Eleonora Campos
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina.
| |
Collapse
|
3
|
Fang M, Sun Y, Zhu Y, Chen Q, Chen Q, Liu Y, Zhang B, Chen T, Jin J, Yang T, Zhuang L. The potential of ferrihydrite-synthetic humic-like acid composite as a soil amendment for metal-contaminated agricultural soil: Immobilization mechanisms by combining abiotic and biotic perspectives. ENVIRONMENTAL RESEARCH 2024; 250:118470. [PMID: 38373548 DOI: 10.1016/j.envres.2024.118470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/21/2024]
Abstract
In-situ passivation technique has attracted increasing attention for metal-contaminated agricultural soil remediation. However, metal immobilization mechanisms are mostly illustrated based on metal speciation changes and alterations in soil physicochemical properties from a macroscopic and abiotic perspective. In this study, a ferrihydrite-synthetic humic-like acid composite (FH-SHLA) was fabricated and applied as a passivator for a 90-day soil incubation. The heavy metals immobilization mechanisms of FH-SHLA were investigated by combining both abiotic and biotic perspectives. Effects of FH-SHLA application on soil micro-ecology were also evaluated. The results showed that the 5%FH-SHLA treatment significantly decreased the DTPA-extractable Pb, Cd and Zn by 80.75%, 46.82% and 63.63% after 90 days of incubation (P < 0.05), respectively. Besides, 5% FH-SHLA addition significantly increased soil pH, soil organic matter content and cation exchange capacity (P < 0.05). The SEM, FTIR, and XPS characterizations revealed that the abiotic metal immobilization mechanisms by FH-SHLA included surface complexation, precipitation, electrostatic attraction, and cation-π interactions. For biotic perspective, in-situ microorganisms synergistically participated in the immobilization process via sulfide precipitation and Fe mineral production. FH-SHLA significantly altered the diversity and composition of the soil microbial community, and enhanced the intensity and complexity of the microbial co-occurrence network. Both metal bioavailability and soil physiochemical parameters played a vital role in shaping microbial communities, while the former contributed more. Overall, this study provides new insight into the heavy metal passivation mechanism and demonstrates that FH-SHLA is a promising and environmentally friendly amendment for metal-contaminated soil remediation.
Collapse
Affiliation(s)
- Mingzhi Fang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yucan Sun
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yi Zhu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qi Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qianhui Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yifei Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Bing Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Tan Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Ting Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Linlan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
4
|
Cao L, Lin M, Ning J, Meng X, Pu X, Zhang R, Wu Q, Huang Z, Zhou J. Critical Roles of Acidic Residues in Loop Regions of the Structural Surface for the Salt Tolerance of a GH39 β-d-Xylosidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5805-5815. [PMID: 38451212 DOI: 10.1021/acs.jafc.3c07957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Xylan is the main component of hemicellulose. Complete hydrolysis of xylan requires synergistically acting xylanases, such as β-d-xylosidases. Salt-tolerant β-d-xylosidases have significant application benefits, but few reports have explored the critical amino acids affecting the salt tolerance of xylosidases. Herein, the site-directed mutation was used to demonstrate that negative electrostatic potentials generated by 19 acidic residues in the loop regions of the structural surface positively correlated with the improved salt tolerance of GH39 β-d-xylosidase JB13GH39P28. These mutants showed reduced negative potentials on structural surfaces as well as a 13-43% decrease in stability in 3.0-30.0% (w/v) NaCl. Six key residue sites, D201, D259, D297, D377, D395, and D474, were confirmed to influence both the stability and activity of GH39 β-d-xylosidase. The activity of the GH39 β-d-xylosidase was found promoting by SO42- and inhibiting by NO3-. Values of Km and Kcat/Km decreased aggravatedly in 30.0% (w/v) NaCl when mutation operated on residues E179 and D182 in the loop regions of the catalytic domain. Taken together, mutation on acidic residues in loop regions from catalytic and noncatalytic domains may cause the deformation of catalytic pocket and aggregation of protein particles then decrease the stability, binding affinity, and catalytic efficiency of the β-d-xylosidase.
Collapse
Affiliation(s)
- Lijuan Cao
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Mingyue Lin
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Juan Ning
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Xin Meng
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Xiong Pu
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Rui Zhang
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Qian Wu
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Zunxi Huang
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Junpei Zhou
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, People's Republic of China
| |
Collapse
|
5
|
Li N, Zhang R, Zhou J, Huang Z. Structures, Biochemical Characteristics, and Functions of β-Xylosidases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7961-7976. [PMID: 37192316 DOI: 10.1021/acs.jafc.3c01425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The complete degradation of abundant xylan derived from plants requires the participation of β-xylosidases to produce the xylose which can be converted to xylitol, ethanol, and other valuable chemicals. Some phytochemicals can also be hydrolyzed by β-xylosidases into bioactive substances, such as ginsenosides, 10-deacetyltaxol, cycloastragenol, and anthocyanidins. On the contrary, some hydroxyl-containing substances such as alcohols, sugars, and phenols can be xylosylated by β-xylosidases into new chemicals such as alkyl xylosides, oligosaccharides, and xylosylated phenols. Thus, β-xylosidases shows great application prospects in food, brewing, and pharmaceutical industries. This review focuses on the molecular structures, biochemical properties, and bioactive substance transformation function of β-xylosidases derived from bacteria, fungi, actinomycetes, and metagenomes. The molecular mechanisms of β-xylosidases related to the properties and functions are also discussed. This review will serve as a reference for the engineering and application of β-xylosidases in food, brewing, and pharmaceutical industries.
Collapse
Affiliation(s)
- Na Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| |
Collapse
|
6
|
Shang Z, Liu S, Duan Y, Bao C, Wang J, Dong B, Cao Y. Complete genome sequencing and investigation on the fiber-degrading potential of Bacillus amyloliquefaciens strain TL106 from the tibetan pig. BMC Microbiol 2022; 22:186. [PMID: 35906551 PMCID: PMC9336001 DOI: 10.1186/s12866-022-02599-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/19/2022] [Indexed: 12/05/2022] Open
Abstract
Background Cellulolytic microorganisms are considered a key player in the degradation of feed fiber. These microorganisms can be isolated from various resources, such as animal gut, plant surfaces, soil and oceans. A new strain of Bacillus amyloliquefaciens, TL106, was isolated from faeces of a healthy Tibetan pigs. This strain can produce cellulase and shows strong antimicrobial activity in mice. Thus, in this study, to better understand the strain of B. amyloliquefaciens TL106 on degradation of cellulose, the genome of the strain TL106 was completely sequenced and analyzed. In addition, we also explored the cellulose degradation ability of strain TL106 in vitro. Results TL106 was completely sequenced with the third generation high-throughput DNA sequencing. In vitro analysis with enzymatic hydrolysis identified the activity of cellulose degradation. TL106 consisted of one circular chromosome with 3,980,960 bp and one plasmid with 16,916 bp, the genome total length was 3.99 Mb and total of 4,130 genes were predicted. Several genes of cellulases and hemicellulase were blasted in Genbank, including β-glucosidase, endoglucanase, ß-glucanase and xylanase genes. Additionally, the activities of amylase (20.25 U/mL), cellulase (20.86 U/mL), xylanase (39.71 U/mL) and β-glucanase (36.13 U/mL) in the fermentation supernatant of strain TL106 were higher. In the study of degradation characteristics, we found that strain TL106 had a better degradation effect on crude fiber, neutral detergent fiber, acid detergent fiber, starch, arabinoxylan and β-glucan of wheat and highland barley . Conclusions The genome of B. amyloliquefaciens TL106 contained several genes of cellulases and hemicellulases, can produce carbohydrate-active enzymes, amylase, cellulase, xylanase and β-glucanase. The supernatant of fermented had activities of strain TL106. It could degrade the fiber fraction and non-starch polysaccharides (arabinoxylans and β-glucan) of wheat and highland barley. The present study demonstrated that the degradation activity of TL106 to crude fiber which can potentially be applied as a feed additive to potentiate the digestion of plant feed by monogastric animals. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02599-7.
Collapse
Affiliation(s)
- Zhenda Shang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China.,College of Animal Science, Tibet Agricultural and Animal Husbandry University, 860000, Nyingchi, People's Republic of China
| | - Suozhu Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, 860000, Nyingchi, People's Republic of China
| | - Yanzhen Duan
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, 860000, Nyingchi, People's Republic of China
| | - Chengling Bao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Jian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Garrido MM, Piccinni FE, Landoni M, Peña MJ, Topalian J, Couto A, Wirth SA, Urbanowicz BR, Campos E. Insights into the xylan degradation system of Cellulomonas sp. B6: biochemical characterization of rCsXyn10A and rCsAbf62A. Appl Microbiol Biotechnol 2022; 106:5035-5049. [PMID: 35799069 DOI: 10.1007/s00253-022-12061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
Abstract
Valorization of the hemicellulose fraction of plant biomass is crucial for the sustainability of lignocellulosic biorefineries. The Cellulomonas genus comprises Gram-positive Actinobacteria that degrade cellulose and other polysaccharides by secreting a complex array of enzymes. In this work, we studied the specificity and synergy of two enzymes, CsXyn10A and CsAbf62A, which were identified as highly abundant in the extracellular proteome of Cellulomonas sp. B6 when grown on wheat bran. To explore their potential for bioprocessing, the recombinant enzymes were expressed and their activities were thoroughly characterized. rCsXyn10A is a GH10 endo-xylanase (EC 3.2.1.8), active across a broad pH range (5 to 9), at temperatures up to 55 °C. rCsAbf62A is an α-L-arabinofuranosidase (ABF) (EC 3.2.1.55) that specifically removes α-1,2 and α-1,3-L-arabinosyl substituents from arabino-xylo-oligosaccharides (AXOS), xylan, and arabinan backbones, but it cannot act on double-substituted residues. It also has activity on pNPA. No differences were observed regarding activity when CsAbf62A was expressed with its appended CBM13 module or only the catalytic domain. The amount of xylobiose released from either wheat arabinoxylan or arabino-xylo-oligosaccharides increased significantly when rCsXyn10A was supplemented with rCsAbf62A, indicating that the removal of arabinosyl residues by rCsAbf62A improved rCsXyn10A accessibility to β-1,4-xylose linkages, but no synergism was observed in the deconstruction of wheat bran. These results contribute to designing tailor-made, substrate-specific, enzymatic cocktails for xylan valorization. KEY POINTS: • rCsAbf62A removes α-1,2 and α-1,3-L-arabinosyl substituents from arabino-xylo-oligosaccharides, xylan, and arabinan backbones. • The appended CBM13 of rCsAbf62A did not affect the specific activity of the enzyme. • Supplementation of rCsXyn10A with rCsAbf62A improves the degradation of AXOS and xylan.
Collapse
Affiliation(s)
- Mercedes María Garrido
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA)- CONICET, Los Reseros y Nicolás Repetto S/N (1686), Hurlingham, Buenos Aires, Argentina.,Laboratorio de Agrobiotecnología, DFBMC- FCEN and Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) CONICET- Universidad de Buenos Aires (UBA), Pab. II, Ciudad Universitaria, C1428EG, Buenos Aires, Argentina
| | - Florencia Elizabeth Piccinni
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA)- CONICET, Los Reseros y Nicolás Repetto S/N (1686), Hurlingham, Buenos Aires, Argentina.,Laboratorio de Agrobiotecnología, DFBMC- FCEN and Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) CONICET- Universidad de Buenos Aires (UBA), Pab. II, Ciudad Universitaria, C1428EG, Buenos Aires, Argentina
| | - Malena Landoni
- Centro de Investigación en Hidratos de Carbono (CIHIDECAR)- CONICET, Departamento de Química Orgánica, FCEN- Universidad de Buenos Aires (UBA), Pab. II, Ciudad Universitaria, C1428EG, Buenos Aires, Argentina
| | - María Jesús Peña
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Juliana Topalian
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA)- CONICET, Los Reseros y Nicolás Repetto S/N (1686), Hurlingham, Buenos Aires, Argentina
| | - Alicia Couto
- Centro de Investigación en Hidratos de Carbono (CIHIDECAR)- CONICET, Departamento de Química Orgánica, FCEN- Universidad de Buenos Aires (UBA), Pab. II, Ciudad Universitaria, C1428EG, Buenos Aires, Argentina
| | - Sonia Alejandra Wirth
- Laboratorio de Agrobiotecnología, DFBMC- FCEN and Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) CONICET- Universidad de Buenos Aires (UBA), Pab. II, Ciudad Universitaria, C1428EG, Buenos Aires, Argentina
| | - Breeanna Rae Urbanowicz
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Eleonora Campos
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA)- CONICET, Los Reseros y Nicolás Repetto S/N (1686), Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Zafar A, Hamid A, Peng L, Wang Y, Aftab MN. Enzymatic hydrolysis of lignocellulosic biomass using a novel, thermotolerant recombinant xylosidase enzyme from Clostridium clariflavum: a potential addition for biofuel industry. RSC Adv 2022; 12:14917-14931. [PMID: 35702232 PMCID: PMC9115876 DOI: 10.1039/d2ra00304j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022] Open
Abstract
The present study describes the cloning, expression, purification and characterization of the xylosidase gene (1650 bp) from a thermophilic bacterium Clostridium clariflavum into E. coli BL21 (DE3) using the expression vector pET-21a(+) for utilization in biofuel production. The recombinant xylosidase enzyme was purified to homogeneity by heat treatment and immobilized metal ion affinity chromatography. SDS-PAGE determined that the molecular weight of purified xylosidase was 60 kDa. This purified recombinant xylosidase showed its maximum activity at a temperature of 37 °C and pH 6.0. The purified recombinant xylosidase enzyme remains stable up to 90 °C for 4 h and retained 54.6% relative activity as compared to the control. The presence of metal ions such as Ca2+ and Mg2+ showed a positive impact on xylosidase enzyme activity whereas Cu2+ and Hg2+ inhibit its activity. Organic solvents did not considerably affect the stability of the purified xylosidase enzyme while DMSO and SDS cause the inhibition of enzyme activity. Pretreatment experiments were run in triplicate for 72 h at 30 °C using 10% NaOH. Saccharification experiment was performed by using 1% substrate (pretreated plant biomass) in citrate phosphate buffer of pH 6.5 loaded with 150 U mL−1 of purified recombinant xylosidase enzyme along with ampicillin (10 μg mL−1). Subsequent incubation was carried out at 50 °C and 100 rpm in a shaking incubator for 24 h. Saccharification potential of the recombinant xylosidase enzyme was calculated against both pretreated and untreated sugarcane bagasse and wheat straw as 9.63% and 8.91% respectively. All these characteristics of the recombinant thermotolerant xylosidase enzyme recommended it as a potential candidate for biofuel industry. The present study describes the cloning, expression, purification and characterization of a xylosidase gene from Clostridium clariflavum into E. coli BL21 (DE3) using the expression vector pET-21a(+) for utilization in biofuel production.![]()
Collapse
Affiliation(s)
- Asma Zafar
- Faculty of Life Sciences, University of Central Punjab Lahore Pakistan
| | - Attia Hamid
- Institute of Industrial Biotechnology, Government College University Lahore 54000 Pakistan +92 99213341 +92 3444704190
| | - Liangcai Peng
- Biomass and Bioenergy Research Center, Huazhong Agriculture University Wuhan China
| | - Yanting Wang
- Biomass and Bioenergy Research Center, Huazhong Agriculture University Wuhan China
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Government College University Lahore 54000 Pakistan +92 99213341 +92 3444704190
| |
Collapse
|
9
|
Pham VHT, Kim J, Shim J, Chang S, Chung W. Coconut Mesocarp-Based Lignocellulosic Waste as a Substrate for Cellulase Production from High Promising Multienzyme-Producing Bacillus amyloliquefaciens FW2 without Pretreatments. Microorganisms 2022; 10:microorganisms10020327. [PMID: 35208782 PMCID: PMC8877135 DOI: 10.3390/microorganisms10020327] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 02/05/2023] Open
Abstract
Facing the crucial issue of high cost in cellulase production from commercial celluloses, inexpensive lignocellulosic materials from agricultural wastes have been attractive. Therefore, several studies have focused on increasing the efficiency of cellulase production by potential microorganisms capable of secreting a high and diversified amount of enzymes using agricultural waste as valuable substrates. Especially, extremophilic bacteria play an important role in biorefinery due to their high value catalytic enzymes that are active even under harsh environmental conditions. Therefore, in this study, we aim to investigate the ability to produce cellulase from coconut-mesocarp of the potential bacterial strain FW2 that was isolated from kitchen food waste in South Korea. This strain was tolerant in a wide range of temperature (−6–75 °C, pH range (4.5–12)) and at high salt concentration up to 35% NaCl. The molecular weight of the purified cellulase produced from strain FW2 was estimated to be 55 kDa. Optimal conditions for the enzyme activity using commercial substrates were found to be 40–50 °C, pH 7.0–7.5, and 0–10% NaCl observed in 920 U/mL of CMCase, 1300 U/mL of Avicelase, and 150 U/mL of FPase. It was achieved in 650 U/mL, 720 U/mL, and 140 U/mL of CMCase, Avicelase, and FPase using coconut-mesocarp, respectively. The results revealed that enzyme production by strain FW2 may have significant commercial values for industry, argo-waste treatment, and other potential applications.
Collapse
Affiliation(s)
- Van Hong Thi Pham
- Department of Environmental Energy Engineering, Graduate School of Kyonggi University, Suwon 16227, Korea;
| | - Jaisoo Kim
- Department of Life Science, College of Natural Science of Kyonggi University, Suwon 16227, Korea;
| | - Jeahong Shim
- Soil and Fertilizer Management Division, Rural Development Administration, National Institute of Agricultural Science, Wanju 54875, Korea;
| | - Soonwoong Chang
- Department of Environmental Energy Engineering, College of Creative Engineering of Kyonggi University, Suwon 16227, Korea
- Correspondence: (S.C.); (W.C.); Tel.: +82-31-249-9755 (W.C.)
| | - Woojin Chung
- Department of Environmental Energy Engineering, College of Creative Engineering of Kyonggi University, Suwon 16227, Korea
- Correspondence: (S.C.); (W.C.); Tel.: +82-31-249-9755 (W.C.)
| |
Collapse
|
10
|
Georgiadou DN, Avramidis P, Ioannou E, Hatzinikolaou DG. Microbial bioprospecting for lignocellulose degradation at a unique Greek environment. Heliyon 2021; 7:e07122. [PMID: 34141913 PMCID: PMC8187967 DOI: 10.1016/j.heliyon.2021.e07122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/24/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022] Open
Abstract
Bacterial systems have gained wide attention for depolymerization of lignocellulosic biomass, due to their high functional diversity and adaptability. To achieve the full microbial exploitation of lignocellulosic residues and the cost-effective production of bioproducts within a biorefinery, multiple metabolic pathways and enzymes of various specificities are required. In this work, highly diverse aerobic, mesophilic bacteria enriched from Keri Lake, a pristine marsh of increased biomass degradation and natural underground oil leaks, were explored for their metabolic versatility and enzymatic potential towards lignocellulosic substrates. A high number of Pseudomonas species, obtained from enrichment cultures where organosolv lignin served as the sole carbon and energy source, were able to assimilate a range of lignin-associated aromatic compounds. Comparatively more complex bacterial consortia, including members of Actinobacteria, Proteobacteria, Bacilli, Sphingobacteria, and Flavobacteria, were also enriched from cultures with xylan or carboxymethyl cellulose as sole carbon sources. Numerous individual isolates could target diverse structural lignocellulose polysaccharides by expressing hydrolytic activities on crystalline or amorphous cellulose and xylan. Specific isolates showed increased potential for growth in lignin hydrolysates prepared from alkali pretreated agricultural wastes. The results suggest that Keri isolates represent a pool of effective lignocellulose degraders with significant potential for industrial applications in a lignocellulose biorefinery.
Collapse
Affiliation(s)
- Daphne N. Georgiadou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784, Athens, Greece
| | - Pavlos Avramidis
- Laboratory of Sedimentology, Department of Geology, University of Patras, 26504, Rio-Patra, Greece
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784, Athens, Greece
- Corresponding author.
| |
Collapse
|
11
|
Optimisation of xylanases production by two Cellulomonas strains and their use for biomass deconstruction. Appl Microbiol Biotechnol 2021; 105:4577-4588. [PMID: 34019113 PMCID: PMC8195749 DOI: 10.1007/s00253-021-11305-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/19/2021] [Accepted: 04/18/2021] [Indexed: 11/12/2022]
Abstract
Abstract One of the main distinguishing features of bacteria belonging to the Cellulomonas genus is their ability to secrete multiple polysaccharide degrading enzymes. However, their application in biomass deconstruction still constitutes a challenge. We addressed the optimisation of the xylanolytic activities in extracellular enzymatic extracts of Cellulomonas sp. B6 and Cellulomonas fimi B-402 for their subsequent application in lignocellulosic biomass hydrolysis by culture in several substrates. As demonstrated by secretomic profiling, wheat bran and waste paper resulted to be suitable inducers for the secretion of xylanases of Cellulomonas sp. B6 and C. fimi B-402, respectively. Both strains showed high xylanolytic activity in culture supernatant although Cellulomonas sp. B6 was the most efficient xylanolytic strain. Upscaling from flasks to fermentation in a bench scale bioreactor resulted in equivalent production of extracellular xylanolytic enzymatic extracts and freeze drying was a successful method for concentration and conservation of the extracellular enzymes, retaining 80% activity. Moreover, enzymatic cocktails composed of combined extra and intracellular extracts effectively hydrolysed the hemicellulose fraction of extruded barley straw into xylose and xylooligosaccharides. Key points • Secreted xylanase activity of Cellulomonas sp. B6 and C. fimi was maximised. • Biomass-induced extracellular enzymes were identified by proteomic profiling. • Combinations of extra and intracellular extracts were used for barley straw hydrolysis. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11305-y.
Collapse
|
12
|
Bioconversion of rice straw by synergistic effect of in-house produced ligno-hemicellulolytic enzymes for enhanced bioethanol production. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2019.100352] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Khawdas W, Aso Y, Tanaka T, Okahisa Y, Kazama I, Ohara H. Electrical Performance of Palm Kernel Shell Utilized as Fuel for <i>Cellulomonas fimi</i> in Microbial Fuel Cells. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2020. [DOI: 10.1252/jcej.19we125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wichean Khawdas
- Department of Biobased Materials Science, Kyoto Institute of Technology
| | - Yuji Aso
- Department of Biobased Materials Science, Kyoto Institute of Technology
| | - Tomonari Tanaka
- Department of Biobased Materials Science, Kyoto Institute of Technology
| | - Yoko Okahisa
- Department of Biobased Materials Science, Kyoto Institute of Technology
| | - Iori Kazama
- Department of Biobased Materials Science, Kyoto Institute of Technology
| | - Hitomi Ohara
- Department of Biobased Materials Science, Kyoto Institute of Technology
| |
Collapse
|
14
|
Wang ZY, Wang RX, Zhou JS, Cheng JF, Li YH. An assessment of the genomics, comparative genomics and cellulose degradation potential of Mucilaginibacter polytrichastri strain RG4-7. BIORESOURCE TECHNOLOGY 2020; 297:122389. [PMID: 31757614 DOI: 10.1016/j.biortech.2019.122389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
In this study, whole genome sequencing and comparative genomic analyses were performed for Mucilaginibacter polytrichastri RG4-7 and its carboxymethyl cellulose degradation potential was assessed. The results showed that the genome of strain RG4-7 was 5.84 Mb and contained 5019 predicted genes, in which a high proportion of strain-specific genes were related to carbohydrate metabolism. The carboxymethyl cellulose (CMC) degradation and cellulase activity tests revealed the strong cellulose degradation ability, CMCase and β-glucosidase activity in strain RG4-7. Real-time RT-PCR testing of most cellulose degradation related glycoside hydrolase (GH) families showed that GH9 (OKS85969), GH1 (OKS85832), GH3 (OKS89331 and OKS85615) were significantly up-regulated when strain RG4-7 was inoculated with CMC-Na, which suggested that GH9, GH1 and GH3 might determine its cellulose degradation ability. Certainly, further research need to be done to elucidate cellulose degradation mechanisms in strain RG4-7 in order to develop its industrial application value in lignocellulosic biomass degradation and waste management.
Collapse
Affiliation(s)
- Zi Yue Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Rui Xue Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jun Shi Zhou
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jian Fei Cheng
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yan Hong Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
15
|
López-Mondéjar R, Algora C, Baldrian P. Lignocellulolytic systems of soil bacteria: A vast and diverse toolbox for biotechnological conversion processes. Biotechnol Adv 2019; 37:107374. [DOI: 10.1016/j.biotechadv.2019.03.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/06/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
|
16
|
Kumar J, Sharma N, Kaushal G, Samurailatpam S, Sahoo D, Rai AK, Singh SP. Metagenomic Insights Into the Taxonomic and Functional Features of Kinema, a Traditional Fermented Soybean Product of Sikkim Himalaya. Front Microbiol 2019; 10:1744. [PMID: 31428064 PMCID: PMC6688588 DOI: 10.3389/fmicb.2019.01744] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
Kinema is an ethnic, naturally fermented soybean product consumed in the Sikkim Himalayan region of India. In the present study, the whole metagenome sequencing approach was adopted to examine the microbial diversity and related functional potential of Kinema, consumed in different seasons. Firmicutes was the abundant phylum in Kinema, ranging from 82.31 to 93.99% in different seasons, followed by Actinobacteria and Proteobacteria. At the species level, the prevalent microorganisms were Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus licheniformis, Corynebacterium glutamicum, Bacillus pumilus, and Lactococcus lactis. The abundance of microbial species varied significantly in different seasons. Further, the genomic presence of some undesirable microbes like Bacillus cereus, Proteus mirabilis, Staphylococcus aureus, Proteus penneri, Enterococcus faecalis, and Staphylococcus saprophyticus, were also detected in the specific season. The metagenomic analysis also revealed the existence of bacteriophages belonging to the family Siphoviridae, Myoviridae, and Podoviridae. Examination of the metabolic potential of the Kinema metagenome depicted information about the biocatalysts, presumably involved in the transformation of protein and carbohydrate polymers into bioactive molecules of health-beneficial effects. The genomic resource of several desirable enzymes was identified, such as β-galactosidase, β-glucosidase, β-xylosidase, and glutamate decarboxylase, etc. The catalytic function of a novel glutamate decarboxylase gene was validated for the biosynthesis of γ-aminobutyric acid (GABA). The results of the present study highlight the microbial and genomic resources associated with Kinema, and its importance in functional food industry.
Collapse
Affiliation(s)
- Jitesh Kumar
- Center of Innovative and Applied Bioprocessing, Mohali, India
| | - Nitish Sharma
- Center of Innovative and Applied Bioprocessing, Mohali, India
| | - Girija Kaushal
- Center of Innovative and Applied Bioprocessing, Mohali, India
| | | | - Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development, Sikkim Centre, Tadong, India
- Institute of Bioresources and Sustainable Development, Imphal, India
| | - Amit K. Rai
- Institute of Bioresources and Sustainable Development, Sikkim Centre, Tadong, India
| | - Sudhir P. Singh
- Center of Innovative and Applied Bioprocessing, Mohali, India
| |
Collapse
|
17
|
Zhang R, Li N, Xu S, Han X, Li C, Wei X, Liu Y, Tu T, Tang X, Zhou J, Huang Z. Glycoside Hydrolase Family 39 β-Xylosidases Exhibit β-1,2-Xylosidase Activity for Transformation of Notoginsenosides: A New EC Subsubclass. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3220-3228. [PMID: 30834749 DOI: 10.1021/acs.jafc.9b00027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
β-1,2-Xylosidase activity has not been recorded as an EC subsubclass. In this study, phylogenetic analysis and multiple sequence alignments revealed that characterized β-xylosidases of glycoside hydrolase family (GH) 39 were classified into the same subgroup with conserved amino acid residue positions participating in substrate recognition. Protein-ligand docking revealed that seven of these positions were probably essential to bind xylose-glucose, which is linked by a β-1,2-glycosidic bond. Amino acid residues in five of the seven positions are invariant, while those in two of the seven positions are variable with low frequency. Both the wild-type β-xylosidase rJB13GH39 and its mutants with mutation at the two positions exhibited β-1,2-xylosidase activity, as they hydrolyzed o-nitrophenyl-β-d-xylopyranoside and transformed notoginsenosides R1 and R2 to ginsenosides Rg1 and Rh1, respectively. The results suggest that all of these characterized GH 39 β-xylosidases probably show β-1,2-xylosidase activity, which should be assigned an EC number with these β-xylosidases as representatives.
Collapse
Affiliation(s)
- Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , No. 768 Juxian Street , Kunming 650500 , People's Republic of China
| | - Na Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , No. 768 Juxian Street , Kunming 650500 , People's Republic of China
| | - Shujing Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , No. 768 Juxian Street , Kunming 650500 , People's Republic of China
| | - Xiaowei Han
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , No. 768 Juxian Street , Kunming 650500 , People's Republic of China
| | - Chunyan Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , No. 768 Juxian Street , Kunming 650500 , People's Republic of China
| | - Xin Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
| | - Yu Liu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , No. 768 Juxian Street , Kunming 650500 , People's Republic of China
| | - Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , No. 768 Juxian Street , Kunming 650500 , People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , No. 768 Juxian Street , Kunming 650500 , People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , No. 768 Juxian Street , Kunming 650500 , People's Republic of China
| |
Collapse
|