1
|
Xia Y, Zhao J, Saeed M, Hussain N, Chen X, Guo Z, Yong Y, Chen H. Molecular Modification Strategies of Nitrilase for Its Potential Application in Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15106-15121. [PMID: 38949086 DOI: 10.1021/acs.jafc.4c03388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Some feed source plants will produce secondary metabolites such as cyanogenic glycosides during metabolism, which will produce some poisonous nitrile compounds after hydrolysis and remain in plant tissues. The consumption of feed-source plants without proper treatment affect the health of the animals' bodies. Nitrilases can convert nitriles and have been used in industry as green biocatalysts. However, due to their bottleneck problems, their application in agriculture is still facing challenges. Acid-resistant nitrilase preparations, high-temperature resistance, antiprotease activity, strong activity, and strict reaction specificity urgently need to be developed. In this paper, the application potential of nitrilase in agriculture, especially in feed processing industry was explored, the source properties and catalytic mechanism of nitrilase were reviewed, and modification strategies for nitrilase application in agriculture were proposed to provide references for future research and application of nitrilase in agricultural and especially in the biological feed scene.
Collapse
Affiliation(s)
- Yutong Xia
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Jia Zhao
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Muhammad Saeed
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
- Department of Poultry Science, Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Nazar Hussain
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Xihua Chen
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Zhongjian Guo
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Yangchun Yong
- Biofuels Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Huayou Chen
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| |
Collapse
|
2
|
Zhou SP, Xue YP, Zheng YG. Maximizing the potential of nitrilase: Unveiling their diversity, catalytic proficiency, and versatile applications. Biotechnol Adv 2024; 72:108352. [PMID: 38574900 DOI: 10.1016/j.biotechadv.2024.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/10/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Nitrilases represent a distinct class of enzymes that play a pivotal role in catalyzing the hydrolysis of nitrile compounds, leading to the formation of corresponding carboxylic acids. These enzymatic entities have garnered significant attention across a spectrum of industries, encompassing pharmaceuticals, agrochemicals, and fine chemicals. Moreover, their significance has been accentuated by mounting environmental pressures, propelling them into the forefront of biodegradation and bioremediation endeavors. Nevertheless, the natural nitrilases exhibit intrinsic limitations such as low thermal stability, narrow substrate selectivity, and inadaptability to varying environmental conditions. In the past decade, substantial efforts have been made in elucidating the structural underpinnings and catalytic mechanisms of nitrilase, providing basis for engineering of nitrilases. Significant breakthroughs have been made in the regulation of nitrilases with ideal catalytic properties and application of the enzymes for industrial productions. This review endeavors to provide a comprehensive discourse and summary of recent research advancements related to nitrilases, with a particular emphasis on the elucidation of the structural attributes, catalytic mechanisms, catalytic characteristics, and strategies for improving catalytic performance of nitrilases. Moreover, the exploration extends to the domain of process engineering and the multifarious applications of nitrilases. Furthermore, the future development trend of nitrilases is prospected, providing important guidance for research and application in the related fields.
Collapse
Affiliation(s)
- Shi-Peng Zhou
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Ping Xue
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu-Guo Zheng
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
3
|
Guo J, Gao W, Zhang X, Pan W, Zhang X, Man Z, Cai Z. Enhancing the thermostability and catalytic activity of Bacillus subtilis chitosanase by saturation mutagenesis of Lys242. Biotechnol J 2024; 19:e2300010. [PMID: 37705423 DOI: 10.1002/biot.202300010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Catalysis activity and thermostability are some of the fundamental characteristic of enzymes, which are of great significance to their industrial applications. Bacillus subtilis chitosanase BsCsn46A is a kind of enzyme with good catalytic activity and stability, which can hydrolyze chitosan to produce chitobiose and chitotriose. In order to further improve the catalytic activity and stability of BsCsn46A, saturation mutagenesis of the C-terminal K242 of BsCsn46A was performed. The results showed that the six mutants (K242A, K242D, K242E, K242F, K242P, and K242T) showed increased catalytic activity on chitosan. The catalytic activity of K242P increased from 12971 ± 597 U mg-1 of wild type to 17820 ± 344 U mg-1 , and the thermostability of K242P increased by 2.27%. In order to elucidate the reason for the change of enzymatic properties, hydrogen network, molecular docking, and molecular dynamics simulation were carried out. The hydrogen network results showed that all the mutants lose their interaction with Asp6 at 242 site, thereby increasing the flexibility of Glu19 at the junction sites of α1 and loop1. Molecular dynamics results showed that the RMSD of K242P was lower at both 313 and 323 K than that of other mutants, which supported that K242P had better thermostability. The catalytic activity of mutant K242P reached 17820.27 U mg-1 , the highest level reported so far, which could be a robust candidate for the industrial application of chitooligosaccharide (COS) production.
Collapse
Affiliation(s)
- Jing Guo
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, China
| | - Wenjun Gao
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
| | - Xuan Zhang
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
| | - Wenxin Pan
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
| | - Xin Zhang
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
| | - Zaiwei Man
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, China
| | - Zhiqiang Cai
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, China
| |
Collapse
|
4
|
Recent Progress in the Production of Cyanide-Converting Nitrilases—Comparison with Nitrile-Hydrolyzing Enzymes. Catalysts 2023. [DOI: 10.3390/catal13030500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Nitrilases have a high potential for application in organic chemistry, environmental technology, and analytics. However, their industrial uses require that they are produced in highly active and robust forms at a reasonable cost. Some organic syntheses catalyzed by nitrilases have already reached a high level of technological readiness. This has been enabled by the large-scale production of recombinant catalysts. Despite some promising small-scale methods being proposed, the production of cyanide-converting nitrilases (cyanide hydratase and cyanide dihydratase) is lagging in this regard. This review focuses on the prospects of cyanide(di)hydratase-based catalysts. The current knowledge of these enzymes is summarized and discussed in terms of the origin and distribution of their sequences, gene expression, structure, assays, purification, immobilization, and uses. Progresses in the production of other nitrilase catalysts are also tackled, as it may inspire the development of the preparation processes of cyanide(di)hydratases.
Collapse
|
5
|
Tang XL, Mao Y, Li YY, Zheng RC, Zheng YG. Improvement of multi-catalytic properties of nitrilase from Paraburkholderia graminis for efficient biosynthesis of 2-chloronicotinic acid. Biotechnol Bioeng 2022; 119:3421-3431. [PMID: 36042572 DOI: 10.1002/bit.28218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/16/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022]
Abstract
Nitrilase-catalyzed hydrolysis of nitriles is the promising approach for green and efficient biosynthesis of high value-added carboxylic acids. However, undesirable catalytic efficiency toward non-natural substrates restricts their wide-spread applications. Until now, very few robust nitrilases have been reported for 2-chloronicotinic acid (2-CA) production since the enzymes always show low activity and sometimes with poor reaction specificity. Herein, a nitrilase from Paraburkholderia graminis (PgNIT) was engineered to improve its catalytic properties. We identified the beneficial residues via computational analysis and constructed the mutant library. A series positive mutants were obtained and the "best" mutant F164G/I130L/N167Y/A55S exhibited 6000-folds higher catalytic efficiency to 2-chloronicotinonitrile (2-CN). Its reaction specificity was improved with elimination of hydration activity and meanwhile, the half-lives (t1/2 ) against different temperatures were increased. Molecular docking and molecular dynamics simulation revealed that the steric hindrance, conformational flexibility, as well as nucleophilic attack distance between the enzyme and substrate were the main reason alternating the catalytic properties of PgNIT. With the mutant as biocatalyst, a product yield of 130 g/L 2-CA was produced from 2-CN after 60 h, laying the foundation for constructing the nitrilase-catalyzed route of 2-CA. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiao-Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yue Mao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yu-Yi Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ren-Chao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
6
|
Nezhad NG, Rahman RNZRA, Normi YM, Oslan SN, Shariff FM, Leow TC. Thermostability engineering of industrial enzymes through structure modification. Appl Microbiol Biotechnol 2022; 106:4845-4866. [PMID: 35804158 DOI: 10.1007/s00253-022-12067-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 01/14/2023]
Abstract
Thermostability is an essential requirement of enzymes in the industrial processes to catalyze the reactions at high temperatures; thus, enzyme engineering through directed evolution, semi-rational design and rational design are commonly employed to construct desired thermostable mutants. Several strategies are implemented to fulfill enzymes' thermostability demand including decreasing the entropy of the unfolded state through substitutions Gly → Xxx or Xxx → Pro, hydrogen bond, salt bridge, introducing two different simultaneous interactions through single mutant, hydrophobic interaction, filling the hydrophobic cavity core, decreasing surface hydrophobicity, truncating loop, aromatic-aromatic interaction and introducing positively charged residues to enzyme surface. In the current review, horizons about compatibility between secondary structures and substitutions at preferable structural positions to generate the most desirable thermostability in industrial enzymes are broadened. KEY POINTS: • Protein engineering is a powerful tool for generating thermostable industrial enzymes. • Directed evolution and rational design are practical approaches in enzyme engineering. • Substitutions in preferable structural positions can increase thermostability.
Collapse
Affiliation(s)
- Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
7
|
Lu XF, Diao HJ, Wu ZM, Zhang ZL, Zheng RC, Zheng YG. Engineering of reaction specificity, enantioselectivity and catalytic activity of nitrilase for highly efficient synthesis of pregabalin precursor. Biotechnol Bioeng 2022; 119:2399-2412. [PMID: 35750945 DOI: 10.1002/bit.28165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/29/2022] [Accepted: 06/19/2022] [Indexed: 11/11/2022]
Abstract
Simultaneous evolution of multiple enzyme properties remains challenging in protein engineering. A chimeric nitrilase (BaNITM0 ) with high activity towards isobutylsuccinonitrile (IBSN) was previously constructed for biosynthesis of pregabalin precursor (S)-3-cyano-5-methylhexanoic acid ((S)-CMHA). However, BaNITM0 also catalyzed the hydration of IBSN to produce by-product (S)-3-cyano-5-methylhexanoic amide. In order to obtain industrial nitrilase with vintage performance, we carried out engineering of BaNITM0 for simultaneous evolution of reaction specificity, enantioselectivity and catalytic activity. The best variant V82L/M127I/C237S (BaNITM2 ) displayed higher enantioselectivity (E=515), increased enzyme activity (5.4-fold) and reduced amide formation (from 15.8% to 1.9 %) compared with BaNITM0 . Structure analysis and molecular dynamics simulations indicated that mutation M127I and C237S restricted the movement of E66 in the catalytic triad, resulting in decreased amide formation. Mutation V82L was incorporated to induce the reconstruction of the substrate binding region in the enzyme catalytic pocket, engendering the improvement of stereoselectivity. Enantio- and regio-selective hydrolysis of 150 g/L IBSN using 1.5 g/L E. coli cells harboring BaNITM2 as biocatalyst afforded (S)-CMHA with >99.0% ee and 45.9% conversion, which highlighted the robustness of BaNITM2 for efficient manufacturing of pregabalin. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xia-Feng Lu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hong-Juan Diao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhe-Ming Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zi-Long Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ren-Chao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
8
|
Xiong N, Lv PJ, Song JW, Shen Q, Xue YP, Zheng YG. Engineering of a nitrilase through consensus sequence analysis and conserved site substitution to improve its thermostability and activity. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Potential of the Signal Peptide Derived from the PAS_chr3_0030 Gene Product for Secretory Expression of Valuable Enzymes in Pichia pastoris. Appl Environ Microbiol 2022; 88:e0029622. [PMID: 35435711 DOI: 10.1128/aem.00296-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pichia pastoris is widely used for the production of valuable recombinant proteins. An advantage of P. pastoris over other expression systems is that it secretes low levels of endogenous proteins, which facilitates the purification processes if the desired recombinant proteins are efficiently secreted into the culture medium. However, not all recombinant proteins can be successfully secreted by P. pastoris, especially enzymes that are located in intracellular compartments in their native hosts. Few studies have reported strategies for releasing recombinant proteins which cannot be secreted by standard protocols. Here, we investigated whether this challenge can be addressed using novel secretion leaders. Analysis of the secretome and transcriptome of P. pastoris indicated that the four genes with the highest protein-to-transcript ratios were EPX1, PAS_chr3_0030, SCW10, and UTH1, suggesting that their gene products contain efficient secretion leaders. Our data revealed that the signal peptide derived from the PAS_chr3_0030 gene product conferred secretion competence to certain industrial enzymes, e.g., a nitrilase of Alcaligenes faecalis ZJUTB10, a ribosylnicotinamide kinase of P. pastoris, and a glucose dehydrogenase of Exiguobacterium sibiricum. Therefore, the signal peptide derived from the PAS_chr3_0030 gene product represents a novel secretion sequence for the secretory expression of recombinant enzymes in P. pastoris. IMPORTANCE Although P. pastoris is widely used for the secretory production of pharmaceutical proteins, its successful applications in the secretory production of industrial enzymes are limited. The α-mating factor pre-pro leader is the most widely used secretion signal in P. pastoris, but numerous industrial enzymes cannot be secreted using it. The importance of this study is that we identified a signal peptide derived from the PAS_chr3_0030 gene product which conferred secretion competence to three-quarters of the enzymes tested. This signal peptide derived from the PAS_chr3_0030 gene product may facilitate the application of P. pastoris in industrial biocatalysis.
Collapse
|
10
|
Zhang H, Zhang H, Qin X, Wang X, Wang Y, Tu T, Wang Y, Yao B, Huang H, Luo H. Biodegradation of nitriles derived from glucosinolates in rapeseed meal by BnNIT2: a nitrilase from Brassica napus with wide substrate specificity. Appl Microbiol Biotechnol 2022; 106:2445-2454. [PMID: 35262786 DOI: 10.1007/s00253-022-11844-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 11/02/2022]
Abstract
Nitriles derived from glucosinolates (GSLs) in rapeseed meal (RSM) can cause lesions on animal liver and kidneys. Nitrilase converts nitriles to carboxylic acids and NH3, eliminating their toxicity. Here we describe a nitrilase, BnNIT2, from Brassica napus (optimal temperature, 45 °C; pH, 7.0) that is stable at 40 °C and has a wide substrate specificity. Recombinant BnNIT2 converted the three main nitriles from GSLs (3-hydroxy-4-pentenenitrile, 3-butenenitrile, and 4-pentenenitrile), with the highest specific activity (58.6 U/mg) for 4-pentenenitrile. We used mutagenesis to improve the thermostability of BnNIT2; the resulting mutant BnNIT2-H90M had an ~ 14.5% increase in residual activity at 50 °C for 1 h. To verify the functionality of BnNIT2, GSLs were extracted from RSM and converted into nitriles at pH 5.0 in the presence of Fe2+. Then, BnNIT2 was used to degrade the nitriles from GSLs; ultimately, ~ 80% of nitriles were removed. Thus BnNIT2 is a potential enzyme for detoxification of RSM. KEY POINTS: • Functional identification of the plant nitrilase BnNIT2. • Identified a mutant, H90M, with improved thermostability. • BnNIT2 was capable of degrading nitriles from transformed GSLs.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Honghai Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
11
|
Xiong N, Xie D, Dong Y, Xue YP, Zheng YG. Efficient biosynthesis of 1-cyanocyclohexaneacetic acid using a highly soluble nitrilase by N-terminus modification of novel peptide tags. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Wu H, Chen Q, Zhang W, Mu W. Overview of strategies for developing high thermostability industrial enzymes: Discovery, mechanism, modification and challenges. Crit Rev Food Sci Nutr 2021; 63:2057-2073. [PMID: 34445912 DOI: 10.1080/10408398.2021.1970508] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biocatalysts such as enzymes are environmentally friendly and have substrate specificity, which are preferred in the production of various industrial products. However, the strict reaction conditions in industry including high temperature, organic solvents, strong acids and bases and other harsh environments often destabilize enzymes, and thus substantially compromise their catalytic functions, and greatly restrict their applications in food, pharmaceutical, textile, bio-refining and feed industries. Therefore, developing industrial enzymes with high thermostability becomes very important in industry as thermozymes have more advantages under high temperature. Discovering new thermostable enzymes using genome sequencing, metagenomics and sample isolation from extreme environments, or performing molecular modification of the existing enzymes with poor thermostability using emerging protein engineering technology have become an effective means of obtaining thermozymes. Based on the thermozymes as biocatalytic chips in industry, this review systematically analyzes the ways to discover thermostable enzymes from extreme environment, clarifies various interaction forces that will affect thermal stability of enzymes, and proposes different strategies to improve enzymes' thermostability. Furthermore, latest development in the thermal stability modification of industrial enzymes through rational design strategies is comprehensively introduced from structure-activity relationship point of view. Challenges and future research perspectives are put forward as well.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
13
|
Bessonnet T, Mariage A, Petit JL, Pellouin V, Debard A, Zaparucha A, Vergne-Vaxelaire C, de Berardinis V. Purification and Characterization of Nit phym , a Robust Thermostable Nitrilase From Paraburkholderia phymatum. Front Bioeng Biotechnol 2021; 9:686362. [PMID: 34277586 PMCID: PMC8280356 DOI: 10.3389/fbioe.2021.686362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Despite the success of some nitrilases in industrial applications, there is a constant demand to broaden the catalog of these hydrolases, especially robust ones with high operational stability. By using the criteria of thermoresistance to screen a collection of candidate enzymes heterologously expressed in Escherichia coli, the enzyme Nit phym from the mesophilic organism Paraburkholderia phymatum was selected and further characterized. Its quick and efficient purification by heat treatment is of major interest for large-scale applications. The purified nitrilase displayed a high thermostability with 90% of remaining activity after 2 days at 30°C and a half-life of 18 h at 60°C, together with a broad pH range of 5.5-8.5. Its high resistance to various miscible cosolvents and tolerance to high substrate loadings enabled the quantitative conversion of 65.5 g⋅L-1 of 3-phenylpropionitrile into 3-phenylpropionic acid at 50°C in 8 h at low enzyme loadings of 0.5 g⋅L-1, with an isolated yield of 90%. This study highlights that thermophilic organisms are not the only source of industrially relevant thermostable enzymes and extends the scope of efficient nitrilases for the hydrolysis of a wide range of nitriles, especially trans-cinnamonitrile, terephthalonitrile, cyanopyridines, and 3-phenylpropionitrile.
Collapse
Affiliation(s)
- Thomas Bessonnet
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Aline Mariage
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean-Louis Petit
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Virginie Pellouin
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Adrien Debard
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Anne Zaparucha
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Carine Vergne-Vaxelaire
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Véronique de Berardinis
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| |
Collapse
|
14
|
Wang S, Meng K, Su X, Hakulinen N, Wang Y, Zhang J, Luo H, Yao B, Huang H, Tu T. Cysteine Engineering of an Endo-polygalacturonase from Talaromyces leycettanus JCM 12802 to Improve Its Thermostability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6351-6359. [PMID: 34043362 DOI: 10.1021/acs.jafc.1c01618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thermostable enzymes have many advantages for industrial applications. Therefore, in this study, computer-aided design technology was used to improve the thermostability of a highly active endo-polygalacturonase from Talaromyces leycettanus JCM12802 at an optimal temperature of 70 °C. The melting temperature and specific activity of the obtained mutant T316C/G344C were increased by 10 °C and 36.5%, respectively, compared with the wild-type enzyme. The crystal structure of the T316C/G344C mutant showed no formation of a disulfide bond between the introduced cysteines, indicating a different mechanism than the conventional mechanism underlying improved enzyme thermostability. The cysteine substitutions directly formed a new alkyl hydrophobic interaction and caused conformational changes in the side chains of the adjacent residues Asn315 and Thr343, which in turn caused a local reconstruction of hydrogen bonds. This method greatly improved the thermostability of the enzyme without affecting its activity; thus, our findings are of great significance for both theoretical research and practical applications.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kun Meng
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nina Hakulinen
- Department of Chemistry, University of Eastern Finland, Joensuu 80130, Finland
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
15
|
Shen JD, Cai X, Liu ZQ, Zheng YG. Nitrilase: a promising biocatalyst in industrial applications for green chemistry. Crit Rev Biotechnol 2020; 41:72-93. [PMID: 33045860 DOI: 10.1080/07388551.2020.1827367] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nitrilases are widely distributed in nature and are able to hydrolyze nitriles into their corresponding carboxylic acids and ammonia. In industry, nitrilases have been used as green biocatalysts for the production of high value-added products. To date, biocatalysts are considered to be important alternatives to chemical catalysts due to increasing environmental problems and resource scarcity. This review provides an overview of recent advances of nitrilases in aspects of distribution, enzyme screening, molecular structure and catalytic mechanism, protein engineering, and their potential applications in industry.
Collapse
Affiliation(s)
- Ji-Dong Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Xue Cai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| |
Collapse
|
16
|
Identification of novel inhibitory candidates against two major Flavivirus pathogens via CADD protocols: in silico analysis of phytochemical binding, reactivity, and pharmacokinetics against NS5 from ZIKV and DENV. Struct Chem 2020. [DOI: 10.1007/s11224-020-01577-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
Xu C, Tang L, Liang Y, Jiao S, Yu H, Luo H. Novel Chaperones RrGroEL and RrGroES for Activity and Stability Enhancement of Nitrilase in Escherichia coli and Rhodococcus ruber. Molecules 2020; 25:E1002. [PMID: 32102340 PMCID: PMC7070999 DOI: 10.3390/molecules25041002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/15/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022] Open
Abstract
For large-scale bioproduction, thermal stability is a crucial property for most industrial enzymes. A new method to improve both the thermal stability and activity of enzymes is of great significance. In this work, the novel chaperones RrGroEL and RrGroES from Rhodococcus ruber, a nontypical actinomycete with high organic solvent tolerance, were evaluated and applied for thermal stability and activity enhancement of a model enzyme, nitrilase. Two expression strategies, namely, fusion expression and co-expression, were compared in two different hosts, E. coli and R. ruber. In the E. coli host, fusion expression of nitrilase with either RrGroES or RrGroEL significantly enhanced nitrilase thermal stability (4.8-fold and 10.6-fold, respectively) but at the expense of enzyme activity (32-47% reduction). The co-expression strategy was applied in R. ruber via either a plasmid-only or genome-plus-plasmid method. Through integration of the nitrilase gene into the R. ruber genome at the site of nitrile hydratase (NHase) gene via CRISPR/Cas9 technology and overexpression of RrGroES or RrGroEL with a plasmid, the engineered strains R. ruber TH3 dNHase::RrNit (pNV18.1-Pami-RrNit-Pami-RrGroES) and TH3 dNHase::RrNit (pNV18.1-Pami-RrNit-Pami-RrGroEL) were constructed and showed remarkably enhanced nitrilase activity and thermal stability. In particular, the RrGroEL and nitrilase co-expressing mutant showed the best performance, with nitrilase activity and thermal stability 1.3- and 8.4-fold greater than that of the control TH3 (pNV18.1-Pami-RrNit), respectively. These findings are of great value for production of diverse chemicals using free bacterial cells as biocatalysts.
Collapse
Affiliation(s)
- Chunmeng Xu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing 100084, China; (C.X.); (L.T.); (Y.L.); (S.J.)
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Lingjun Tang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing 100084, China; (C.X.); (L.T.); (Y.L.); (S.J.)
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Youxiang Liang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing 100084, China; (C.X.); (L.T.); (Y.L.); (S.J.)
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Song Jiao
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing 100084, China; (C.X.); (L.T.); (Y.L.); (S.J.)
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Huimin Yu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing 100084, China; (C.X.); (L.T.); (Y.L.); (S.J.)
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Hui Luo
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| |
Collapse
|
18
|
Engineering a Pichia pastoris nitrilase whole cell catalyst through the increased nitrilase gene copy number and co-expressing of ER oxidoreductin 1. Appl Microbiol Biotechnol 2020; 104:2489-2500. [DOI: 10.1007/s00253-020-10422-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/18/2020] [Accepted: 01/26/2020] [Indexed: 12/14/2022]
|
19
|
Zhang Q, Lu X, Zhang Y, Tang X, Zheng R, Zheng Y. Development of a robust nitrilase by fragment swapping and semi‐rational design for efficient biosynthesis of pregabalin precursor. Biotechnol Bioeng 2019; 117:318-329. [DOI: 10.1002/bit.27203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/06/2019] [Accepted: 10/13/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Qin Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of TechnologyHangzhou China
| | - Xia‐Feng Lu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of TechnologyHangzhou China
| | - Yan Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of TechnologyHangzhou China
| | - Xiao‐Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of TechnologyHangzhou China
| | - Ren‐Chao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of TechnologyHangzhou China
| | - Yu‐Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of TechnologyHangzhou China
| |
Collapse
|
20
|
Xu Z, Cen YK, Zou SP, Xue YP, Zheng YG. Recent advances in the improvement of enzyme thermostability by structure modification. Crit Rev Biotechnol 2019; 40:83-98. [DOI: 10.1080/07388551.2019.1682963] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Zhe Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Ke Cen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Shu-Ping Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
21
|
Shukla P. Synthetic Biology Perspectives of Microbial Enzymes and Their Innovative Applications. Indian J Microbiol 2019; 59:401-409. [PMID: 31762501 DOI: 10.1007/s12088-019-00819-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 11/29/2022] Open
Abstract
Microbial enzymes are high in demand and there is focus on their efficient, cost effective and eco-friendly production. The relevant microbial enzymes for respective industries needs to be identified but the conventional technologies don't have much edge over it. So, there is more attention towards high throughput methods for production of efficient enzymes. The enzymes produced by microbes need to be modified to bear the extreme conditions of the industries in order to get prolific outcomes and here the synthetic biology tools may be augmented to modify such microbes and enzymes. These tools are applied to synthesize novel and efficient enzymes. Use of computational tools for enzyme modification has provided new avenues for faster and specific modification of enzymes in a shorter time period. This review focuses on few important enzymes and their modification through synthetic biology tools including genetic modification, nanotechnology, post translational modification.
Collapse
Affiliation(s)
- Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
22
|
Sheldon RA, Brady D. Broadening the Scope of Biocatalysis in Sustainable Organic Synthesis. CHEMSUSCHEM 2019; 12:2859-2881. [PMID: 30938093 DOI: 10.1002/cssc.201900351] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 05/21/2023]
Abstract
This Review is aimed at synthetic organic chemists who may be familiar with organometallic catalysis but have no experience with biocatalysis, and seeks to provide an answer to the perennial question: if it is so attractive, why wasn't it extensively used in the past? The development of biocatalysis in industrial organic synthesis is traced from the middle of the last century. Advances in molecular biology in the last two decades, in particular genome sequencing, gene synthesis and directed evolution of proteins, have enabled remarkable improvements in scope and substantially reduced biocatalyst development times and cost contributions. Additionally, improvements in biocatalyst recovery and reuse have been facilitated by developments in enzyme immobilization technologies. Biocatalysis has become eminently competitive with chemocatalysis and the biocatalytic production of important pharmaceutical intermediates, such as enantiopure alcohols and amines, has become mainstream organic synthesis. The synthetic space of biocatalysis has significantly expanded and is currently being extended even further to include new-to-nature biocatalytic reactions.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
- Department of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| |
Collapse
|
23
|
Xu Z, Huang JW, Xia CJ, Zou SP, Xue YP, Zheng YG. Enhanced catalytic stability and reusability of nitrilase encapsulated in ethyleneamine-mediated biosilica for regioselective hydrolysis of 1-cyanocycloalkaneacetonitrile. Int J Biol Macromol 2019; 130:117-124. [DOI: 10.1016/j.ijbiomac.2019.02.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 01/08/2023]
|
24
|
Highly regio- and enantioselective synthesis of chiral intermediate for pregabalin using one-pot bienzymatic cascade of nitrilase and amidase. Appl Microbiol Biotechnol 2019; 103:5617-5626. [DOI: 10.1007/s00253-019-09857-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 10/26/2022]
|
25
|
Lv SZ, Guo YX, Xue YP, Xu JM, Zheng YG. Efficient separation of l-phosphinothricin from enzymatic reaction solution using cation-exchange resin. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1574824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sheng-Zhi Lv
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Xing Guo
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Jian-Miao Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
26
|
Hu HF, Zhou HY, Wang MX, Wang YS, Xue YP, Zheng YG. A rapid throughput assay for screening (R)-2-(4-hydroxyphenoxy)propionic acid producing microbes. J Microbiol Methods 2019; 158:44-51. [PMID: 30703447 DOI: 10.1016/j.mimet.2019.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
Abstract
(R)-2-(4-hydroxyphenoxy)propionic acid ((R)-HPOPA) is an important intermediate for the synthesis of optically pure aryloxyphenoxypropionic acid herbicides. Regioselective hydroxylation of (R)-2-phenoxypropionic acid ((R)-POPA) by microbes is one of the most useful methods for the industrial production of (R)-HPOPA. In this study, we designed and optimized a rapid throughput assay for screening (R)-HPOPA producing bacterial/fungal strains which can regioselectively hydroxylate (R)-POPA. (R)-HPOPA could react with 4-aminoantipyrine (4-AAP) in the presence of potassium hexacyanoferrate (K3[Fe(CN)6]) to form indoxyl antipyrine, an orange-red chromophore, that can easily spectrophotometrically be determined at 550 nm. During the verification of the assay we observed an average recovery rate of between 97.3% and 104.5%. Apart from the rapid throughput, no obvious differences in detection (R)-HPOPA in the culture broth samples were found between our rapid throughput multiplate assay and a high-performance liquid chromatography method. Our optimized assay method is simple, rapid and accurate with high repeatability. It has the potential for high throughput screening (about 3000-5000 samples/day) of the (R)-HPOPA producing strains.
Collapse
Affiliation(s)
- Hai-Feng Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion, Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hai-Yan Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion, Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mei-Xin Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion, Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuan-Shan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion, Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion, Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion, Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
27
|
Wang DC, Li H, Xia SN, Xue YP, Zheng YG. Engineering of a keto acid reductase through reconstructing the substrate binding pocket to improve its activity. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02586j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzyme–substrate docking-guided point mutation of the substrate-binding pocket to generate mutant L244G/A250G/L245R with superior activity in the synthesis of (R)-2-hydroxy-4-phenylbutyric acid.
Collapse
Affiliation(s)
- Di-Chen Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Heng Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Shu-Ning Xia
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| |
Collapse
|
28
|
Xu Z, Xiong N, Zou SP, Liu YX, liu ZQ, Xue YP, Zheng YG. Highly efficient conversion of 1-cyanocycloalkaneacetonitrile using a “super nitrilase mutant”. Bioprocess Biosyst Eng 2018; 42:455-463. [DOI: 10.1007/s00449-018-2049-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/21/2018] [Indexed: 10/27/2022]
|
29
|
Highly Efficient Deracemization of Racemic 2-Hydroxy Acids in a Three-Enzyme Co-Expression System Using a Novel Ketoacid Reductase. Appl Biochem Biotechnol 2018; 186:563-575. [PMID: 29675666 DOI: 10.1007/s12010-018-2760-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022]
Abstract
Enantiopure 2-hydroxy acids (2-HAs) are important intermediates for the synthesis of pharmaceuticals and fine chemicals. Deracemization of racemic 2-HAs into the corresponding single enantiomers represents an economical and highly efficient approach for synthesizing chiral 2-HAs in industry. In this work, a novel ketoacid reductase from Leuconostoc lactis (LlKAR) with higher activity and substrate tolerance towards aromatic α-ketoacids was discovered by genome mining, and then its enzymatic properties were characterized. Accordingly, an engineered Escherichia coli (HADH-LlKAR-GDH) co-expressing 2-hydroxyacid dehydrogenase, LlKAR, and glucose dehydrogenase was constructed for efficient deracemization of racemic 2-HAs. Most of the racemic 2-HAs were deracemized to their (R)-isomers at high yields and enantiomeric purity. In the case of racemic 2-chloromandelic acid, as much as 300 mM of substrate was completely transformed into the optically pure (R)-2-chloromandelic acid (> 99% enantiomeric excess) with a high productivity of 83.8 g L-1 day-1 without addition of exogenous cofactor, which make this novel whole-cell biocatalyst more promising and competitive in practical application.
Collapse
|