1
|
Park JY, Lee MG, Charalampopoulos D, Park KM, Chang PS. Geometric isomerization of dietary monounsaturated fatty acids by a cis/trans fatty acid isomerase from Pseudomonas putida KT2440. Int J Biol Macromol 2024; 281:136075. [PMID: 39370082 DOI: 10.1016/j.ijbiomac.2024.136075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Pseudomonas putida KT2440 encodes a defense system that rigidifies membranes by a cytochrome c-type cis/trans fatty acid isomerase (CTI). Despite its potential as an industrial biocatalyst for directly regulating the geometric isomerism of monounsaturated fatty acids, its original catalytic and structural properties have remained elusive. In this study, the catalytic nature of wild-type CTI purified P. putida KT2440 against dietary monounsaturated fatty acids was investigated. It showed substrate preference for palmitoleic acid (C16:1, cis-Δ9), along with substrate promiscuity with chain length and double bond position (palmitoleic acid>cis-vaccenic acid>oleic acid). Under determined optimum reaction conditions, its catalytic efficiency (kcat/Km) was evaluated as 5.13 × 102 M-1·sec-1 against palmitoleic acid. Furthermore, computational predictions of the protein structure revealed its monoheme cytochrome c-type domain and a parasol-like transmembrane domain, suggesting its catalytic mode of action. For effective cis/trans isomerization, the ethylene double bond of monounsaturated fatty acids should be precisely positioned at the heme center of CTI, indicating that its substrate specificity can be determined by the alkyl chain length and the double bond position of the fatty acid substrates. These findings shed light on the potential of CTI as a promising biocatalyst for the food and lipid industry.
Collapse
Affiliation(s)
- Jun-Young Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Gyeong Lee
- Department of Food Science and Biotechnology, Wonkwang University, Iksan 54538, Republic of Korea
| | | | - Kyung-Min Park
- Department of Food Science and Biotechnology, Wonkwang University, Iksan 54538, Republic of Korea.
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Parakkunnel R, K BN, Vanishree G, George A, Kv S, Yr A, K UB, Anandan A, Kumar S. Exploring selection signatures in the divergence and evolution of lipid droplet (LD) associated genes in major oilseed crops. BMC Genomics 2024; 25:653. [PMID: 38956471 PMCID: PMC11218257 DOI: 10.1186/s12864-024-10527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Oil bodies or lipid droplets (LDs) in the cytosol are the subcellular storage compartments of seeds and the sites of lipid metabolism providing energy to the germinating seeds. Major LD-associated proteins are lipoxygenases, phospholipaseD, oleosins, TAG-lipases, steroleosins, caleosins and SEIPINs; involved in facilitating germination and enhancing peroxidation resulting in off-flavours. However, how natural selection is balancing contradictory processes in lipid-rich seeds remains evasive. The present study was aimed at the prediction of selection signatures among orthologous clades in major oilseeds and the correlation of selection effect with gene expression. RESULTS The LD-associated genes from the major oil-bearing crops were analyzed to predict natural selection signatures in phylogenetically close-knit ortholog clusters to understand adaptive evolution. Positive selection was the major force driving the evolution and diversification of orthologs in a lineage-specific manner. Significant positive selection effects were found in 94 genes particularly in oleosin and TAG-lipases, purifying with excess of non-synonymous substitution in 44 genes while 35 genes were neutral to selection effects. No significant selection impact was noticed in Brassicaceae as against LOX genes of oil palm. A heavy load of deleterious mutations affecting selection signatures was detected in T-lineage oleosins and LOX genes of Arachis hypogaea. The T-lineage oleosin genes were involved in mainly anther, tapetum and anther wall morphogenesis. In Ricinus communis and Sesamum indicum > 85% of PLD genes were under selection whereas selection pressures were low in Brassica juncea and Helianthus annuus. Steroleosin, caleosin and SEIPINs with large roles in lipid droplet organization expressed mostly in seeds and were under considerable positive selection pressures. Expression divergence was evident among paralogs and homeologs with one gene attaining functional superiority compared to the other. The LOX gene Glyma.13g347500 associated with off-flavor was not expressed during germination, rather its paralog Glyma.13g347600 showed expression in Glycine max. PLD-α genes were expressed on all the tissues except the seed,δ genes in seed and meristem while β and γ genes expressed in the leaf. CONCLUSIONS The genes involved in seed germination and lipid metabolism were under strong positive selection, although species differences were discernable. The present study identifies suitable candidate genes enhancing seed oil content and germination wherein directional selection can become more fruitful.
Collapse
Affiliation(s)
- Ramya Parakkunnel
- ICAR- Indian Institute of Seed Science, Regional Station, GKVK Campus, Bengaluru, 560065, Karnataka, India.
| | - Bhojaraja Naik K
- ICAR- Indian Institute of Seed Science, Regional Station, GKVK Campus, Bengaluru, 560065, Karnataka, India
| | - Girimalla Vanishree
- ICAR- Indian Institute of Seed Science, Regional Station, GKVK Campus, Bengaluru, 560065, Karnataka, India
| | - Anjitha George
- ICAR- Indian Institute of Seed Science, Regional Station, GKVK Campus, Bengaluru, 560065, Karnataka, India
| | - Sripathy Kv
- ICAR- Indian Institute of Seed Science, Regional Station, GKVK Campus, Bengaluru, 560065, Karnataka, India
| | - Aruna Yr
- ICAR- Indian Institute of Seed Science, Regional Station, GKVK Campus, Bengaluru, 560065, Karnataka, India
| | - Udaya Bhaskar K
- ICAR- Indian Institute of Seed Science, Regional Station, GKVK Campus, Bengaluru, 560065, Karnataka, India
| | - A Anandan
- ICAR- Indian Institute of Seed Science, Regional Station, GKVK Campus, Bengaluru, 560065, Karnataka, India
| | - Sanjay Kumar
- ICAR- Indian Institute of Seed Science, Mau, 275103, Uttar Pradesh, India
| |
Collapse
|
3
|
Li P, Wang Z, Wang X, Liu F, Wang H. Changes in Phytohormones and Transcriptomic Reprogramming in Strawberry Leaves under Different Light Qualities. Int J Mol Sci 2024; 25:2765. [PMID: 38474012 DOI: 10.3390/ijms25052765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Strawberry plants require light for growth, but the frequent occurrence of low-light weather in winter can lead to a decrease in the photosynthetic rate (Pn) of strawberry plants. Light-emitting diode (LED) systems could be used to increase Pn. However, the changes in the phytohormones and transcriptomic reprogramming in strawberry leaves under different light qualities are still unclear. In this study, we treated strawberry plants with sunlight, sunlight covered with a 50% sunshade net, no light, blue light (460 nm), red light (660 nm), and a 50% red/50% blue LED light combination for 3 days and 7 days. Our results revealed that the light quality has an effect on the contents of Chl a and Chl b, the minimal fluorescence (F0), and the Pn of strawberry plants. The light quality also affected the contents of abscisic acid (ABA), auxin (IAA), trans-zeatin-riboside (tZ), jasmonic acid (JA), and salicylic acid (SA). RNA sequencing (RNA-seq) revealed that differentially expressed genes (DEGs) are significantly enriched in photosynthesis antenna proteins, photosynthesis, carbon fixation in photosynthetic organisms, porphyrin and chlorophyll metabolisms, carotenoid biosynthesis, tryptophan metabolism, phenylalanine metabolism, zeatin biosynthesis, and linolenic acid metabolism. We then selected the key DEGs based on the results of a weighted gene co-expression network analysis (WGCNA) and drew nine metabolic heatmaps and protein-protein interaction networks to map light regulation.
Collapse
Affiliation(s)
- Peng Li
- Institute of Pomology of CAAS, Xingcheng 125100, China
| | - Zhiqiang Wang
- Institute of Pomology of CAAS, Xingcheng 125100, China
| | - Xiaodi Wang
- Institute of Pomology of CAAS, Xingcheng 125100, China
| | - Fengzhi Liu
- Institute of Pomology of CAAS, Xingcheng 125100, China
| | - Haibo Wang
- Institute of Pomology of CAAS, Xingcheng 125100, China
| |
Collapse
|
4
|
Smirnova EO, Egorova AM, Lantsova NV, Chechetkin IR, Toporkova YY, Grechkin AN. Recombinant Soybean Lipoxygenase 2 (GmLOX2) Acts Primarily as a ω6( S)-Lipoxygenase. Curr Issues Mol Biol 2023; 45:6283-6295. [PMID: 37623215 PMCID: PMC10452975 DOI: 10.3390/cimb45080396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
The lipoxygenase (LOX) cascade is a source of bioactive oxylipins that play a regulatory role in plants, animals, and fungi. Soybean (Glycine max (L.) Merr.) LOXs are the classical models for LOX research. Progress in genomics has uncovered a large diversity of GmLOX isoenzymes. Most of them await biochemical investigations. The catalytic properties of recombinant soybean LOX2 (GmLOX2) are described in the present work. The GmLOX2 gene has been cloned before, but only for nucleotide sequencing, while the recombinant protein was not prepared and studied. In the present work, the recombinant GmLOX2 behavior towards linoleic, α-linolenic, eicosatetraenoic (20:4), eicosapentaenoic (20:5), and hexadecatrienoic (16:3) acids was examined. Linoleic acid was a preferred substrate. Oxidation of linoleic acid afforded 94% optically pure (13S)-hydroperoxide and 6% racemic 9-hydroperoxide. GmLOX2 was less active on other substrates but possessed an even higher degree of regio- and stereospecificity. For example, it converted α-linolenic acid into (13S)-hydroperoxide at about 98% yield. GmLOX2 showed similar specificity towards other substrates, producing (15S)-hydroperoxides (with 20:4 and 20:5) or (11S)-hydroperoxide (with 16:3). Thus, the obtained data demonstrate that soybean GmLOX2 is a specific (13S)-LOX. Overall, the catalytic properties of GmLOX2 are quite similar to those of GmLOX1, but pH is optimum.
Collapse
Affiliation(s)
- Elena O. Smirnova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia; (A.M.E.); (N.V.L.); (I.R.C.)
| | | | | | | | | | - Alexander N. Grechkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia; (A.M.E.); (N.V.L.); (I.R.C.)
| |
Collapse
|
5
|
Marcotuli I, Mandrone M, Chiocchio I, Poli F, Gadaleta A, Ferrara G. Metabolomics and genetics of reproductive bud development in Ficus carica var. sativa (edible fig) and in Ficus carica var. caprificus (caprifig): similarities and differences. FRONTIERS IN PLANT SCIENCE 2023; 14:1192350. [PMID: 37360723 PMCID: PMC10285451 DOI: 10.3389/fpls.2023.1192350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/28/2023] [Indexed: 06/28/2023]
Abstract
In figs, reproductive biology comprises cultivars requiring or not pollination, with female trees (edible fig) and male trees (caprifig) bearing different types of fruits. Metabolomic and genetic studies may clarify bud differentiation mechanisms behind the different fruits. We used a targeted metabolomic analysis and genetic investigation through RNA sequence and candidate gene investigation to perform a deep analysis of buds of two fig cultivars, 'Petrelli' (San Pedro type) and 'Dottato' (Common type), and one caprifig. In this work, proton nuclear magnetic resonance (1H NMR-based metabolomics) has been used to analyze and compare buds of the caprifig and the two fig cultivars collected at different times of the season. Metabolomic data of buds collected on the caprifig, 'Petrelli', and 'Dottato' were treated individually, building three separate orthogonal partial least squared (OPLS) models, using the "y" variable as the sampling time to allow the identification of the correlations among metabolomic profiles of buds. The sampling times revealed different patterns between caprifig and the two edible fig cultivars. A significant amount of glucose and fructose was found in 'Petrelli', differently from 'Dottato', in the buds in June, suggesting that these sugars not only are used by the ripening brebas of 'Petrelli' but also are directed toward the developing buds on the current year shoot for either a main crop (fruit in the current season) or a breba (fruit in the successive season). Genetic characterization through the RNA-seq of buds and comparison with the literature allowed the identification of 473 downregulated genes, with 22 only in profichi, and 391 upregulated genes, with 21 only in mammoni.
Collapse
Affiliation(s)
- Ilaria Marcotuli
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Manuela Mandrone
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Ilaria Chiocchio
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Ferruccio Poli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Agata Gadaleta
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Giuseppe Ferrara
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
6
|
An improved method for rapid evaluation of enzymatic cis/trans isomerization of C18:1 monounsaturated fatty acids. Food Chem 2023; 404:134618. [DOI: 10.1016/j.foodchem.2022.134618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
7
|
Bacterial lipoxygenases: Biochemical characteristics, molecular structure and potential applications. Biotechnol Adv 2022; 61:108046. [DOI: 10.1016/j.biotechadv.2022.108046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/02/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
|
8
|
Yang Z, Zhou Y, Xing JJ, Guo XN, Zhu KX. Effect of superheated steam treatment and extrusion on lipid stability of black soybean noodles during storage. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
Feng X, Li X, Zhang C, Kong X, Chen Y, Hua Y. Formation Mechanism of Hexanal and ( E)-2-Hexenal during Soybean [ Glycine max (L.) Merr] Processing Based on the Subcellular and Molecular Levels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:289-300. [PMID: 34965722 DOI: 10.1021/acs.jafc.1c06732] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hexanal and (E)-2-hexenal in soymilk mainly form during the soaking and grinding of soybeans. In this study, freshly dehulled soybeans were soaked or ground in the presence or absence of different enzyme inhibitors. The results showed that (1) 1-palmitoyl-2-linoleoyl-sn-3-phosphatidylcholine, 1-stearoyl-2-linoleoyl-sn-3-phosphatidylcholine, 1-palmitoyl-2-linolenoyl-sn-3-phosphatidylcholine, and 1-stearoyl-2-linolenoyl-sn-3-phosphatidylcholine were preferentially acted upon by lipoxygenases (LOXs) and made predominant contributions to hexanal/(E)-2-hexenal formation. Phospholipase A2 (PLA2) is one of the key enzymes for hexanal/(E)-2-hexenal formation. (2) The ratio of net increase in hexanal/(E)-2-hexenal and net decrease in linoleic acid/linolenic acid was close to 100% during soaking, but it was only 60% during grinding. Only 13-hydroperoxy octadecad(tr)ienoic acid (13-HPOD/T) was formed for the membrane LOX, but both 13- and 9-hydroperoxy octadecad(tr)ienoic acid (9-HPOD/T) were produced for the cytoplasm LOX. Thus, only the membrane LOX was involved during soaking, while both membrane- and cytoplasm-bound LOXs worked during grinding. (3) Hydroperoxides and hexanal/(E)-2-hexenal during soybean grinding were studied. PC hydroperoxides formed almost instantly and reached a maximum in 10 s, while fatty acid hydroperoxides and hexanal/(E)-2-hexenal formed relatively slowly and reached a maximum in 50 s. The experimental data were fitted to the integrated form of the Michaelis-Menten equation, and Km, Vmax, and kcat for the LOX, PLA2, and hydroperoxide lyase were obtained, respectively.
Collapse
Affiliation(s)
- Xiaoxiao Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
| | - Xingfei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, P. R. China
| |
Collapse
|
10
|
Optimization of Spectrophotometric and Fluorometric Assays Using Alternative Substrates for the High-Throughput Screening of Lipase Activity. J CHEM-NY 2021. [DOI: 10.1155/2021/3688124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The effects of reaction conditions on the spectrophotometric and fluorometric assays using alternative substrates (p-nitrophenyl palmitate and 4-methylumbelliferyl oleate) were investigated to optimize them for the high-throughput screening of lipase activity from agricultural products. Four model lipases from Chromobacterium viscosum, Pseudomonas fluorescens, Sus scrofa pancreas, and wheat germ (Triticum aestivum) were allowed to hydrolyze the alternative substrates at different substrate concentrations (1–5 mM), operating pH (5.0–8.0), and operating temperatures (25–55°C). The results show that both the spectrophotometric and fluorometric assays worked well at the standard reaction conditions (pH 7.0 and 30°C) for finding a typical lipase, although pH conditions should be considered to detect the catalytic activity of lipases, which are applicable to more acidic or alkaline pH circumstances. To validate the optimized conditions, the high-throughput screening of lipase activity was conducted using 17 domestic agricultural products. A pileus of Pleurotus eryngii showed the highest activity in both the spectrophotometric (633.42 μU/mg) and fluorometric (101.77 μU/mg) assays. The results of this research provide practical information for the high-throughput screening of lipases using alternative substrates on microplates.
Collapse
|