1
|
Zhang X, Zong Y, Zhang F, Liu Q, Gong D, Bi Y, Sionov E, Prusky D. The small GTPase Ypt7 of Penicillium expansum is required for growth, patulin biosynthesis and virulence. Food Microbiol 2024; 119:104434. [PMID: 38225046 DOI: 10.1016/j.fm.2023.104434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/13/2023] [Accepted: 11/25/2023] [Indexed: 01/17/2024]
Abstract
Ypt GTPases are the largest subfamily of small GTPases involved in membrane transport. Here, a PeYpt7 gene deletion mutant of P. expansum was constructed. The ΔPeYpt7 mutant showed reduced colony growth with abnormal mycelial growth, reduced conidiation, and insufficient spore development. The mutation rendered the pathogen susceptible to osmotic stress and cell wall stressors. In addition, the absence of PeYpt7 reduced patulin production in P. expansum and significantly limited gene expression (PatG, PatH, PatI, PatD, PatF, and PatL). In addition, the mutant showed attenuated virulence in infected fruit and reduced expression of pathogenic factors was (PMG, PG, PL, and GH1). Thus, PeYpt7 modulates the growth, morphology, patulin accumulation, and pathogenicity of P. expansum by limiting the expression of related genes.
Collapse
Affiliation(s)
- Xuemei Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Zong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Feng Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qili Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Di Gong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Edward Sionov
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, 7528809, Israel
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, 7528809, Israel
| |
Collapse
|
2
|
Thi Nguyen NH, Kim JH, Lee SM, Cho BK, Kim YH, Min J. Inhibition of tau phosphorylation and Aβ accumulation by S. cerevisiae-derived vacuoles in LPS-induced SH-SY5Y cells. J Biotechnol 2023; 376:45-52. [PMID: 37777088 DOI: 10.1016/j.jbiotec.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/18/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), are characterized by the accumulation of intracellular tau and amyloid beta (Aβ) proteins, which lead to neuroinflammation and neuronal apoptosis. In this study, we investigated the potential of a bioengineered vacuoles derived from Saccharomyces cerevisiae-derived vacuoles to treat neuroinflammation and protein accumulation in AD. The yeast-derived vacuole is a small organelle that achieves efficient degradation by utilizing a diverse array of hydrolytic enzymes. These hydrolytic enzymes break down and process proteins into smaller fragments. We found that vacuoles treatment significantly reduced LPS-primed cell apoptosis and diminished Aβ42 secretion in vitro, potentially through the inhibition of the NF-kB p65 signaling pathway. Additionally, vacuole pre-treatment down-regulated NF-κB translocation and reduced phosphorylated tau levels in LPS-induced SH-SY5Y cells. Our results suggest that the vacuoles have potential as a therapeutic agent for neurodegenerative diseases. The vacuole's small size and diverse hydrolytic enzymes make it a promising drug delivery system for targeting intracellular proteins. Future studies may explore the use of vacuoles in animal models of AD to determine their therapeutic potential.
Collapse
Affiliation(s)
- Ngoc-Han Thi Nguyen
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-Gu, Jeonju 54896, South Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced institute of Science and Technology, 291 Daehak-ro, Yuseong-Gu, Daejeon 34141, South Korea
| | - Su-Min Lee
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-Gu, Jeonju 54896, South Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced institute of Science and Technology, 291 Daehak-ro, Yuseong-Gu, Daejeon 34141, South Korea.
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea.
| | - Jiho Min
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-Gu, Jeonju 54896, South Korea; Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-Gu, Jeonju 54896, South Korea.
| |
Collapse
|
3
|
Choi SY, Choi W, Park YS, Kim HK, Kim YH, Min J. Vacuoles isolated from Saccharomyces cerevisiae inhibit differentiation of 3T3-L1 adipocyte. Enzyme Microb Technol 2023; 163:110165. [DOI: 10.1016/j.enzmictec.2022.110165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
|
4
|
Nguyen NHT, Nguyen NT, Kim YH, Min J. Yeast-derived vacuoles as a novel carrier with enhanced hCMEC/D3 cell monolayer penetration. Biotechnol J 2023; 18:e2200393. [PMID: 36321515 DOI: 10.1002/biot.202200393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022]
Abstract
The blood-brain barrier (BBB) is a brain protection structure that restricts drug delivery from the blood to the central nervous system. Thus, we developed a novel drug carrier using yeast vacuoles to overcome this problem. The purpose of this study was to assess the drug transportability of yeast vacuoles using a human cerebral microvascular endothelial cell line (hCMEC/D3) cell monolayer. Here, we used daunorubicin (DNR) as a microtubule-targeting agent with the ability to disaggregate pre-formed fibrils and prevent Tau fibrillization. An in vitro model was developed by culturing hCMEC/D3 cells on Transwell inserts in EBM-2 endothelial basal medium until the cells formed a monolayer. Next, nano-sized yeast vacuoles were loaded with DNR, and the signals inside and outside the hMEC/D3 cell monolayer were detected using the GloMax® Explorer fluorometer. DNR penetrated the cell monolayer and was regulated by endocytosis via receptor-mediated macropinocytosis on the surface of the cell. Confocal imaging showed a significant increase in intracellular DNR fluorescence when the cells were treated with the vacuole-encapsulated drug. These results indicate that the drug penetrated the hCMEC/D3 cell monolayer via encapsulation into the vacuoles. Overall, yeast-derived vacuoles are promising candidates as drug carriers to the brain.
Collapse
Affiliation(s)
- Ngoc-Han Thi Nguyen
- Department of Bioprocess Engineering, Jeonbuk National University, Jeonju, South Korea
| | - Ngoc-Tu Nguyen
- School of Chemical Engineering, Jeonbuk National University, Jeonju, South Korea
| | - Yang Hoon Kim
- School of Biological Sciences, Chungbuk National University, Cheongju, South Korea
| | - Jiho Min
- Department of Bioprocess Engineering, Jeonbuk National University, Jeonju, South Korea.,School of Chemical Engineering, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
5
|
Luo G, Geng Z, Kuerban B, Xu Y, Yang J, Liu J, Li M. Enhancement of HSA-pFSHβ production by disrupting YPS1 and supplementing N-acetyl-L-cysteine in Pichia pastoris. Front Microbiol 2022; 13:998647. [PMID: 36620033 PMCID: PMC9810807 DOI: 10.3389/fmicb.2022.998647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Pichia pastoris is widely used for the production of recombinant proteins, but the low production efficiency hinders its wide application in biopharmaceuticals. Moreover, many biopharmaceutical-like proteins are accompanied by degradation during secretory expression in P. pastoris. Objective In this study, we used human serum albumin and porcine follicle-stimulating hormone β (HSA-pFSHβ) fusion protein as a model protein to investigate whether YPS1 and YPT7 gene disruption and N-acetyl-L-cysteine (NAC) supplementation have synergistic effects to inhibit the degradation of recombinant proteins. Results and discussion Our results showed that YPS1 gene disruption reduced the degradation of intact HSA-pFSHβ and increased the yield of intact protein in the culture medium and cells without affecting the integrity of the cell wall. Moreover, the beneficial effects of YPS1 gene disruption were associated with the upregulation of the MAPK signaling pathway and maintenance of redox homeostasis. YPS1 gene disruption and NAC supplementation had synergistic effects on HSA-pFSHβ production. In addition, disruption of vacuolar morphology by YPT7 gene disruption or NH4Cl treatment affected the production of recombinant HSA-pFSHβ protein. Furthermore, YPT7 gene disruption inhibited the processing of signal peptide in high-level produced HSA-pFSHβ strain. In conclusion, our results demonstrated that YPS1 disruption could reduce the degradation of intact HSA-pFSHβ proteins, and synergistically increase the yield of intact HSA-pFSHβ with NAC supplementation. This study provided a valuable reference for reducing recombinant protein degradation and therefore improving the yield of recombinant proteins in P. pastoris.
Collapse
Affiliation(s)
- Gang Luo
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Zijian Geng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Buayisham Kuerban
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Yingqing Xu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Jingjing Yang
- Jiangsu Guiliu Animal Husbandry Group Co., Ltd., Xuzhou, Jiangsu, China
| | - Jiying Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Muwang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China,Jiangsu Guiliu Animal Husbandry Group Co., Ltd., Xuzhou, Jiangsu, China,*Correspondence: Muwang Li,
| |
Collapse
|