1
|
Shaikh-Ibrahim A, Curci N, De Lise F, Sacco O, Di Fenza M, Castaldi S, Isticato R, Oliveira A, Aniceto JPS, Silva CM, Serafim LS, M Krogh KBR, Moracci M, Cobucci-Ponzano B. Carbohydrate conversion in spent coffee grounds: pretreatment strategies and novel enzymatic cocktail to produce value-added saccharides and prebiotic mannooligosaccharides. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:2. [PMID: 39773291 PMCID: PMC11705863 DOI: 10.1186/s13068-024-02601-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Spent coffee grounds (SCG) are the most abundant waste byproducts generated from coffee beverage production worldwide. Typically, these grounds are seen as waste and end up in landfills. However, SCG contain valuable compounds that can be valorized and used in different applications. Notably, they are rich in carbohydrates, primarily galactomannan, arabinogalactan type II, and cellulose. Within the framework of a circular bioeconomy, the targeted degradation of these polysaccharides via a tailored cocktail of carbohydrate-active enzymes offers a promising strategy for producing high-value saccharides from coffee waste. RESULTS In this study, various mild pretreatments were evaluated to increase the enzyme accessibility of SCG-derived biomass, reduce lignin content, and minimize hemicellulose loss. Thermostable enzymes were selected to construct an enzymatic cocktail specifically targeting cellulose and hemicelluloses in pretreated SCGs. The approach used achieved a conversion of 52% of the polysaccharide content to oligo- and monosaccharides, producing 17.4 mg of reducing sugars and 5.1 mg of monosaccharides from 50 mg of SCG. Additionally, microwave pretreatment followed by the application of a thermostable endo β-mannanase resulted in the production of 62.3 mg of mannooligosaccharides from 500 mg of SCG. In vitro experiments demonstrated that the produced mannooligosaccharides exhibited prebiotic activity, promoting the growth and biofilm formation of five probiotic bacterial strains. CONCLUSIONS This study highlights an effective strategy for the valorization of SCG polysaccharides through mild pretreatment and customized enzymatic cocktails in a circular bioeconomic context. The production of both monosaccharides and oligosaccharides with prebiotic activity illustrates the versatility and commercial potential of SCG as a substrate for high-value saccharides. Furthermore, the use of mild pretreatment methods and thermostable enzymes minimizes chemical inputs and energy demands, aligning with sustainable processing practices. The ability to selectively target and degrade specific polysaccharides within SCG not only enhances the yield of desirable products, but also preserves key structural components, reducing waste and promoting resource efficiency.
Collapse
Affiliation(s)
- Ali Shaikh-Ibrahim
- Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino, 111, 80131, Naples, Italy
- Department of Biology, University of Naples Federico II, Via V.C. Cintia, 26, 80126, Naples, Italy
- Department of Plant Production and Protection, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, P.O. Box 707, Nablus, Palestine
| | - Nicola Curci
- Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino, 111, 80131, Naples, Italy.
| | - Federica De Lise
- Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino, 111, 80131, Naples, Italy
| | - Oriana Sacco
- Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino, 111, 80131, Naples, Italy
- Department of Biology, University of Naples Federico II, Via V.C. Cintia, 26, 80126, Naples, Italy
| | - Mauro Di Fenza
- Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino, 111, 80131, Naples, Italy
| | - Stefany Castaldi
- Department of Biology, University of Naples Federico II, Via V.C. Cintia, 26, 80126, Naples, Italy
| | - Rachele Isticato
- Department of Biology, University of Naples Federico II, Via V.C. Cintia, 26, 80126, Naples, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - André Oliveira
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - José P S Aniceto
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlos M Silva
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Luísa Seuanes Serafim
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | - Marco Moracci
- Department of Biology, University of Naples Federico II, Via V.C. Cintia, 26, 80126, Naples, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Beatrice Cobucci-Ponzano
- Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino, 111, 80131, Naples, Italy.
| |
Collapse
|
2
|
Nath S, Kango N. Optimized production and characterization of endo-β-mannanase by Aspergillus niger for generation of prebiotic mannooligosaccharides from guar gum. Sci Rep 2024; 14:14015. [PMID: 38890382 PMCID: PMC11637063 DOI: 10.1038/s41598-024-63803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Optimized production of Aspergillus niger ATCC 26011 endo-β-mannanase (ManAn) on copra meal resulted in 2.46-fold increase (10,028 U/gds). Purified ManAn (47 kDa) showed high affinity towards guar gum (GG) as compared to konjac gum and locust bean gum with Km 2.67, 3.25 and 4.07 mg/mL, respectively. ManAn efficiently hydrolyzed GG and liberated mannooligosaccharides (MOS). Changes occurring in the rheological and compositional aspects of GG studied using Differential scanning calorimetry (DSC), Thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) revealed increased thermal stability and crystallinity of the partially hydrolyzed guar gum (PHGG). Parametric optimization of the time and temperature dependent hydrolysis of GG (1% w/v) with 100 U/mL of ManAn at 60 °C and pH: 5.0 resulted in 12.126 mg/mL of mannotetraose (M4) in 5 min. Enhanced growth of probiotics Lactobacilli and production of short chain fatty acids (SCFA) that inhibited enteropathogens, confirmed the prebiotic potential of PHGG and M4.
Collapse
Affiliation(s)
- Suresh Nath
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India.
| |
Collapse
|
3
|
Xin D, Yin H, Ran G. Efficient production of High-Purity manno-oligosaccharides from guar gum by citric acid and enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2024; 401:130719. [PMID: 38642662 DOI: 10.1016/j.biortech.2024.130719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Currently, the production of manno-oligosaccharides (MOS) from guar gum faces challenges of low oligosaccharide enzymatic hydrolysis yield and complicated steps in separation and purification. In this work, a potential strategy to address these issues was explored. By combining citric acid pretreatment (300 mM, 130 °C, 1 h) with β-mannanase hydrolysis, an impressive MOS yield of 61.8 % from guar gum (10 %, w/v) was achieved. The key success lay in the optimizing conditions that completely degraded other galactomannans into monosaccharides, which could be easily removable through Saccharomyces cerevisiae fermentation (without additional nutrients). Following ion exchange chromatography for desalination, and concluding with spray drying, 4.57 g of solid MOS with a purity of 90 % was obtained from 10 g of guar gum. This method offers a streamlined and effective pathway for obtaining high-yield and high-purity MOS from guar gum by combining citric acid pretreatment and enzymatic hydrolysis.
Collapse
Affiliation(s)
- Donglin Xin
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, China
| | - Hong Yin
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, China
| | - Ganqiao Ran
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, China.
| |
Collapse
|
4
|
Wang P, Pei X, Zhou W, Zhao Y, Gu P, Li Y, Gao J. Research and application progress of microbial β-mannanases: a mini-review. World J Microbiol Biotechnol 2024; 40:169. [PMID: 38630389 DOI: 10.1007/s11274-024-03985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Mannan is a predominant constituent of cork hemicellulose and is widely distributed in various plant tissues. β-Mannanase is the principal mannan-degrading enzyme, which breaks down the β-1,4-linked mannosidic bonds in mannans in an endo-acting manner. Microorganisms are a valuable source of β-mannanase, which exhibits catalytic activity in a wide range of pH and temperature, making it highly versatile and applicable in pharmaceuticals, feed, paper pulping, biorefinery, and other industries. Here, the origin, classification, enzymatic properties, molecular modification, immobilization, and practical applications of microbial β-mannanases are reviewed, the future research directions for microbial β-mannanases are also outlined.
Collapse
Affiliation(s)
- Ping Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Xiaohui Pei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, PR China
| | - Weiqiang Zhou
- Weili Biotechnology (Shandong) Co., Ltd, Taian, 271400, PR China
| | - Yue Zhao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Yumei Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China.
| | - Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China.
- Shandong Engineering Research Center of Key Technologies for High-Value and High-Efficiency Full Industry Chain of Lonicera japonica, Linyi, 273399, PR China.
| |
Collapse
|
5
|
Li N, Han J, Zhou Y, Zhang H, Xu X, He B, Liu M, Wang J, Wang Q. A rumen-derived bifunctional glucanase/mannanase uncanonically releases oligosaccharides with a high degree of polymerization preferentially from branched substrates. Carbohydr Polym 2024; 330:121828. [PMID: 38368107 DOI: 10.1016/j.carbpol.2024.121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 02/19/2024]
Abstract
Glycoside hydrolases (GHs) are known to depolymerize polysaccharides into oligo-/mono-saccharides, they are extensively used as additives for both animals feed and our food. Here we reported the characterization of IDSGH5-14(CD), a weakly-acidic mesophilic bifunctional mannanase/glucanase of GH5, originally isolated from sheep rumen microbes. Biochemical characterization studies revealed that IDSGH5-14(CD) exhibited preferential hydrolysis of mannan-like and glucan-like substrates. Interestingly, the enzyme exhibited significantly robust catalytic activity towards branched-substrates compared to linear polysaccharides (P < 0.05). Substrate hydrolysis pattern indicated that IDSGH5-14(CD) predominantly liberated oligosaccharides with a degree of polymerization (DP) of 3-7 as the end products, dramatically distinct from canonical endo-acting enzymes. Comparative modeling revealed that IDSGH5-14(CD) was mainly comprised of a (β/α)8-barrel-like structure with a spacious catalytic cleft on surface, facilitating the enzyme to target high-DP or branched oligosaccharides. Molecular dynamics (MD) simulations further suggested that the branched-ligand, 64-α-D-galactosyl-mannohexose, was steadily accommodated within the catalytic pocket via a two-sided clamp formed by the aromatic residues. This study first reports a bifunctional GH5 enzyme that predominantly generates high-DP oligosaccharides, preferentially from branched-substrates. This provides novel insights into the catalytic mechanism and molecular underpinnings of polysaccharide depolymerization, with potential implications for feed additive development and high-DP oligosaccharides preparation.
Collapse
Affiliation(s)
- Nuo Li
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China
| | - Junyan Han
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Yebo Zhou
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Huien Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Xiaofeng Xu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Bo He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqi Liu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jiakun Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China
| | - Qian Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Frota EG, Pessoa ARS, Souza de Azevedo POD, Dias M, Veríssimo NVP, Zanin MHA, Tachibana L, de Souza Oliveira RP. Symbiotic microparticles produced through spray-drying-induced in situ alginate crosslinking for the preservation of Pediococcus pentosaceus viability. Int J Biol Macromol 2024; 261:129818. [PMID: 38290636 DOI: 10.1016/j.ijbiomac.2024.129818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Probiotic microorganisms are a promising alternative to antibiotics in preventing and treating bacterial infections. Within the probiotic group, the lactic acid bacteria (LAB)stand out for their health benefits and for being recognized as safe by regulatory agencies. However, these microorganisms are sensitive to various environmental conditions, including the acidic environment of the stomach. Faced with these obstacles, this work aimed to promote the symbiotic microencapsulation of LAB in a composite matrix of alginate and prebiotics to enhance their survival and improve their probiotic activity during gastrointestinal transit. We evaluated the effect of inulin, fructo-oligosaccharides (FOS) and mannan-oligosaccharides (MOS) as prebiotic sources on the growth of Pediococcus pentosaceus LBM34 strain, finding that MOS favored LAB growth and maintenance of microencapsulated cell viability. The symbiotic microparticles were produced using the spray-drying technique with an average size of 10 μm, a smooth surface, and a composition that favored the stabilization of live cells according to the FTIR and the thermal analysis of the material. The best formulation was composed of 1 % of alginate, 10 % MOS and 1 % M10 (% w/v), which presented notable increases in the survival rates of the probiotic strain in both alkaline and acidic conditions. Therefore, this industrially scalable approach to symbiotic LAB microencapsulation can facilitate their growth and colonization within the host. This effort aims to contribute to reducing antibiotic reliance and mitigating the emergence of new zoonotic diseases, which pose significant challenges to public health.
Collapse
Affiliation(s)
- Elionio Galvão Frota
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo 05508-000, Brazil
| | - Amanda Romana Santos Pessoa
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo 05508-000, Brazil
| | - Pamela Oliveira de Souza de Azevedo
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo 05508-000, Brazil
| | - Meriellen Dias
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo 05508-000, Brazil
| | - Nathalia Vieira Porphirio Veríssimo
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo 05508-000, Brazil; Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú/Km 01, 14800-903 Araraquara, SP, Brazil
| | - Maria Helena Ambrosio Zanin
- Institute for Technological Research (IPT), Bionanomanufacturing Nucleus, Prof. Almeida Prado Avenue, 532, Butantã, São Paulo, SP 05508-901, Brazil.
| | - Leonardo Tachibana
- Aquaculture Research Center, Scientific Research of Fisheries Institute/APTA/SAA, São Paulo, Brazil.
| | - Ricardo Pinheiro de Souza Oliveira
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo 05508-000, Brazil.
| |
Collapse
|
7
|
Rana M, Jassal S, Yadav R, Sharma A, Puri N, Mazumder K, Gupta N. Functional β-mannooligosaccharides: Sources, enzymatic production and application as prebiotics. Crit Rev Food Sci Nutr 2023; 64:10221-10238. [PMID: 37335120 DOI: 10.1080/10408398.2023.2222165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
One of the emerging non-digestible oligosaccharide prebiotics is β-mannooligosaccharides (β-MOS). β-MOS are β-mannan derived oligosaccharides, they are selectively fermented by gut microbiota, promoting the growth of beneficial microorganisms (probiotics), whereas the growth of enteric pathogens remains unaffected or gets inhibited in their presence, along with production of metabolites such as short-chain fatty acids. β-MOS also exhibit several other bioactive properties and health-promoting effects. Production of β-MOS using the enzymes such as β-mannanases is the most effective and eco-friendly approach. For the application of β-MOS on a large scale, their production needs to be standardized using low-cost substrates, efficient enzymes and optimization of the production conditions. Moreover, for their application, detailed in-vivo and clinical studies are required. For this, a thorough information of various studies in this regard is needed. The current review provides a comprehensive account of the enzymatic production of β-MOS along with an evaluation of their prebiotic and other bioactive properties. Their characterization, structural-functional relationship and in-vivo studies have also been summarized. Research gaps and future prospects have also been discussed, which will help in conducting further research for the commercialization of β-MOS as prebiotics, functional food ingredients and therapeutic agents.
Collapse
Affiliation(s)
- Monika Rana
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sunena Jassal
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Richa Yadav
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Anupama Sharma
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Neena Puri
- Department of Industrial Microbiology, Guru Nanak Khalsa College, Yamunanagar, Haryana, India
| | - Koushik Mazumder
- Food & Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Naveen Gupta
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
8
|
Gonçalves DA, González A, Roupar D, Teixeira JA, Nobre C. How prebiotics have been produced from agro-industrial waste: An overview of the enzymatic technologies applied and the models used to validate their health claims. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Gao J, Zheng H, Wang X, Li Y. Characterization of a novel GH26 β-mannanase from Paenibacillus polymyxa and its application in the production of mannooligosaccharides. Enzyme Microb Technol 2023; 165:110197. [PMID: 36680817 DOI: 10.1016/j.enzmictec.2023.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
A novel glycoside hydrolase family 26 β-mannanase gene ppman26a was cloned from Paenibacillus polymyxa KF-1. The full-length enzyme PpMan26A and its truncated products CBM35pp (aa 35-328) and PpMan26A-Δ205 (aa 206-656) were overexpressed in Escherichia coli. PpMan26A hydrolyzed locust bean gum, guar gum, konjac gum and ivory nut mannan, with the highest specific activity toward konjac gum. The Km and kcat values for konjac gum were 2.13 mg/mL and 416.66 s-1, respectively. The oligosaccharides fraction obtained from the hydrolysis of konjac gum by PpMan26A was analyzed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometer (MALDI-TOF-MS). The degradation products were mainly mannooligosaccharides with a degree of polymerization of 3-8. CBM35pp exerted strong binding activity toward mannans but without β-mannanase activity. PpMan26A-Δ205, with the deletion of the N-terminal CBM domain, showed lower substrate binding capacity, resulting in reduced enzymatic activity and thermostability. This study complements our understanding of GH26 β-mannanases and expands the potential industrial application of PpMan26A.
Collapse
Affiliation(s)
- Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan 250022, PR China.
| | - Haolei Zheng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, PR China
| | - Xiaoqian Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, PR China
| | - Yumei Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
10
|
Magengelele M, Malgas S, Pletschke BI. Bioconversion of spent coffee grounds to prebiotic mannooligosaccharides - an example of biocatalysis in biorefinery. RSC Adv 2023; 13:3773-3780. [PMID: 36756573 PMCID: PMC9890647 DOI: 10.1039/d2ra07605e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Spent coffee ground (SCG), an agro-industrial waste, have a high content of polysaccharides such as mannan, making it ideal for utilisation for the production of nutraceutical oligosaccharides. Recently, there has been growing interest in the production of mannooligosaccharides (MOS) for health promotion in humans and animals. MOS are reported to exhibit various bioactive properties, including prebiotic and antioxidant activity. In this study, SCG was Vivinal pretreated using NaOH, characterized and hydrolysed using a Bacillus sp. derived endo-β-1,4-mannanase, Man26A, for MOS production. Structural analyses using Fourier-transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) were conducted to assess the efficacy of the pretreatment. Lignin removal by the pretreatment from SCG was clearly shown by TGA. FT-IR, on the other hand, showed the presence of α-linked d-galactopyranoside (812 cm-1) and β-linked d-mannopyranoside residues (817 cm-1) in both SCG samples, signifying the presence of mannan. Hydrolysis of pretreated SCG by Man26A produced mannobiose and mannotriose as the main MOS products. The effect of simulated gastric conditions on the MOS was investigated and showed this product to be suitable for oral administration. Finally, the prebiotic effect of the MOS on the growth of selected beneficial bacteria was investigated in vitro; showing that it enhanced Lactobacillus bulgaricus, Bacillus subtilis and Streptococcus thermophilus growth. These findings suggest that SCG is a viable source for the production of MOS which can be orally administered as prebiotics for effecting luxuriant growth of probiotic bacteria in the host's digestive tract, leading to a good health status.
Collapse
Affiliation(s)
- Mihle Magengelele
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University Makhanda (Grahamstown) 6140 Eastern Cape South Africa
| | - Samkelo Malgas
- Department of Biochemistry, Genetics and Microbiology, University of PretoriaHatfield 0002GautengSouth Africa
| | - Brett I. Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes UniversityMakhanda (Grahamstown) 6140Eastern CapeSouth Africa
| |
Collapse
|
11
|
Advances in Prebiotic Mannooligosaccharides. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Yan B, Tao Y, Huang C, Lai C, Yong Q. Using One-pot Fermentation Technology to Prepare Enzyme Cocktail to Sustainably Produce Low Molecular Weight Galactomannans from Sesbania cannabina Seeds. Appl Biochem Biotechnol 2022; 194:3016-3030. [PMID: 35334068 DOI: 10.1007/s12010-022-03891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
Enzymatic hydrolysis using β-mannanase and α-galactosidase is necessary to produce low molecular weight galactomannan (LMW-GM) from galactomannans (GM) in the leguminous seeds. In this study, different ratios of avicel and melibiose were used as the inductors (carbon sources) for Trichoderma reesei to metabolize the enzyme cocktail containing β-mannanase and α-galactosidase using one-pot fermentation technology. The obtained enzyme cocktail was used to efficiently produce LMW-GM from GM in Sesbania cannabina seeds. Results showed that 15 g/L avicel and 10 g/L melibiose were the best carbon sources to prepare enzyme cocktail containing β-mannanase and α-galactosidase with activities of 3.69 ± 0.27 U/mL and 0.51 ± 0.02 U/mL, respectively. Specifically, melibiose could effectively induce the metabolite product of α-galactosidase by T. reesei, which showed good performance in degrading the galactose substituent from GM backbone. The degradation of galactose alleviated the spatial site-blocking effect for enzymatic hydrolysis by β-mannanase and improved the yield of LMW-GM. This research can lay the foundation for the industrial technology amplification of LMW-GM production for further application.
Collapse
Affiliation(s)
- Bowen Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuheng Tao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|