1
|
Ding SL. Lamination, Borders, and Thalamic Projections of the Primary Visual Cortex in Human, Non-Human Primate, and Rodent Brains. Brain Sci 2024; 14:372. [PMID: 38672021 PMCID: PMC11048015 DOI: 10.3390/brainsci14040372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The primary visual cortex (V1) is one of the most studied regions of the brain and is characterized by its specialized and laminated layer 4 in human and non-human primates. However, studies aiming to harmonize the definition of the cortical layers and borders of V1 across rodents and primates are very limited. This article attempts to identify and harmonize the molecular markers and connectional patterns that can consistently link corresponding cortical layers of V1 and borders across mammalian species and ages. V1 in primates has at least two additional and unique layers (L3b2 and L3c) and two sublayers of layer 4 (L4a and L4b) compared to rodent V1. In all species examined, layers 4 and 3b of V1 receive strong inputs from the (dorsal) lateral geniculate nucleus, and V1 is mostly surrounded by the secondary visual cortex except for one location where V1 directly abuts area prostriata. The borders of primate V1 can also be clearly identified at mid-gestational ages using gene markers. In rodents, a novel posteromedial extension of V1 is identified, which expresses V1 marker genes and receives strong inputs from the lateral geniculate nucleus. This V1 extension was labeled as the posterior retrosplenial cortex and medial secondary visual cortex in the literature and brain atlases. Layer 6 of the rodent and primate V1 originates corticothalamic projections to the lateral geniculate, lateral dorsal, and reticular thalamic nuclei and the lateroposterior-pulvinar complex with topographic organization. Finally, the direct geniculo-extrastriate (particularly the strong geniculo-prostriata) projections are probably major contributors to blindsight after V1 lesions. Taken together, compared to rodents, primates, and humans, V1 has at least two unique middle layers, while other layers are comparable across species and display conserved molecular markers and similar connections with the visual thalamus with only subtle differences.
Collapse
Affiliation(s)
- Song-Lin Ding
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| |
Collapse
|
2
|
Herlin B, Uszynski I, Chauvel M, Poupon C, Dupont S. Cross-subject variability of the optic radiation anatomy in a cohort of 1065 healthy subjects. Surg Radiol Anat 2023:10.1007/s00276-023-03161-4. [PMID: 37195302 DOI: 10.1007/s00276-023-03161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/28/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Optic radiations are tracts of particular interest for neurosurgery, especially for temporal lobe resection, because their lesion is responsible for visual field defects. However, histological and MRI studies found a high inter-subject variability of the optic radiation anatomy, especially for their most rostral extent inside the Meyer's temporal loop. We aimed to better assess inter-subject anatomical variability of the optic radiations, in order to help to reduce the risk of postoperative visual field deficiencies. METHODS Using an advanced analysis pipeline relying on a whole-brain probabilistic tractography and fiber clustering, we processed the diffusion MRI data of the 1065 subjects of the HCP cohort. After registration in a common space, a cross-subject clustering on the whole cohort was performed to reconstruct the reference optic radiation bundle, from which all optic radiations were segmented on an individual scale. RESULTS We found a median distance between the rostral tip of the temporal pole and the rostral tip of the optic radiation of 29.2 mm (standard deviation: 2.1 mm) for the right side and 28.8 mm (standard deviation: 2.3 mm) for the left side. The difference between both hemispheres was statistically significant (p = 1.10-8). CONCLUSION We demonstrated inter-individual variability of the anatomy of the optic radiations on a large-scale study, especially their rostral extension. In order to better guide neurosurgical procedures, we built a MNI-based reference atlas of the optic radiations that can be used for fast optic radiation reconstruction from any individual diffusion MRI tractography.
Collapse
Affiliation(s)
- B Herlin
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France.
- AP-HP, Epilepsy Unit, GH Pitié-Salpêtrière-Charles Foix, 47-83 Boulevard de L'Hôpital, 75013, Paris, France.
- Sorbonne Université, Paris, France.
| | - I Uszynski
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France
| | - M Chauvel
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France
| | - C Poupon
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France
| | - S Dupont
- AP-HP, Epilepsy Unit, GH Pitié-Salpêtrière-Charles Foix, 47-83 Boulevard de L'Hôpital, 75013, Paris, France
- Sorbonne Université, Paris, France
| |
Collapse
|
3
|
Shi J, Lu D, Pan R, Chen H, Teng H, Xu Y, Bo F, Zhou Q, Zhang Y. Applications of diffusion tensor imaging integrated with neuronavigation to prevent visual damage during tumor resection in the optic radiation area. Front Oncol 2022; 12:955418. [PMID: 36052256 PMCID: PMC9424997 DOI: 10.3389/fonc.2022.955418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/29/2022] [Indexed: 12/05/2022] Open
Abstract
Background Intracranial tumors involving the temporo-occipital lobe often compress or destroy the optic radiation (OpR), resulting in decreased visual function. The aim of this study is to explore the value of diffusion tensor imaging (DTI) tractography integrated with neuronavigation to prevent visual damage when resecting tumors involving the OpR and find potential factors affecting patients’ visual function and quality of life (QOL). Methods Our study is a cross-sectional study that included 28 patients with intracranial tumors in close morphological relationship with the OpR recruited between January 2020 and February 2022. The surgical incision and approach were preoperatively designed and adjusted according to the DTI tractography results and visual function scores. All patients underwent examinations of visual acuity (VA) and visual field index (VFI) and completed visual function and QOL scales at admission and 2 months after discharge. Logistic regression and linear regression analysis were conducted to evaluate clinical factors potentially affecting pre/postoperative OpR morphology, VA, VFI, visual function, and QOL. Results Lesion size was the main factor found to affect visual function (β = -0.74, 95%CI: -1.12~-0.36, P = 0.05), VA (left: β = -0.11, 95%CI: -0.14~-0.08, P < 0.001; right: β = -0.15, 95%CI: -0.17~-0.13, P < 0.001), and VFI (left: β = -0.11, 95%CI: -0.14~-0.08, P < 0.001; right: β = -0.14, 95%CI: -0.16~-0.12, P < 0.001). Lesion size, edema, and involvement of the lateral ventricle temporal horn were factors affecting OpR morphology and QOL. The 28 patients showed significantly improved VA, VFI, visual function, and QOL results (P < 0.05) 2 months after discharge. Conclusions Combining DTI of OpR mapping and microscopic-based neuronavigation aided precise mapping and thus preservation of visual function in patients undergoing tumor resection. Potential clinical factors affecting patients’ visual function and QOL scores were identified which are useful for assessing a patient’s condition and predicting prognosis.
Collapse
Affiliation(s)
- Jianwei Shi
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Dafeng Lu
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ruihan Pan
- Department of Neurosurgery, First Affliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hairong Chen
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hong Teng
- Department of Geriatrics , The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Xu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Fuduo Bo
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Zhou
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yansong Zhang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yansong Zhang,
| |
Collapse
|
4
|
Costa E, Joris V, Vaz G, Santos SF, El-Tahry R, Duprez T, Raftopoulos C. The trans superior temporal gyrus approach for selective amygdalohippocamptectomy. World Neurosurg 2021; 159:e244-e251. [PMID: 34923179 DOI: 10.1016/j.wneu.2021.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Different surgical approaches have been described for selective amygdalohippocampectomy (SeAH) in patients with pharmacoresistant temporal lobe epilepsy (TLE). We report the results of the innovative trans-superior temporal gyrus (trans-STG) approach in a monocentric patients' series. METHODS We reviewed the patients' characteristics, post-operative outcomes, and complications in a series of 8 consecutive TLE patients operated on using the trans-STG approach and recruited between November 2015 and April 2017. RESULTS Over a mean 2,5-year follow-up period, 7/8 patients (87,5%) remained seizure-free (Engel 1). Only one (12,5%) was not cured (Engel 3) without clear explanation for treatment failure. Mean operative time was 237 minutes, representing a shortage of 80 minutes when compared to our historic trans-sylvian approach. No peri-operative death was recorded nor visual field defect/visual acuity impairment due to the approach. One patient suffered from a left posterior thalamo-capsular stroke. CONCLUSION Trans-STG approach is feasible, fast, and safefor SeAH in drug refractory TLE patients. This approach allows preservation of the optic radiation but cuts part of the uncinate fasciculus and potentially the anterior aspect of the anterior bundle of the midlle longitudinal fasciculus.
Collapse
Affiliation(s)
- Emmanuel Costa
- Department of Neurosurgery, Saint-Luc academic Hospital, Université catholique de Louvain, Brussels, Belgium
| | - Vincent Joris
- Department of Neurosurgery, Saint-Luc academic Hospital, Université catholique de Louvain, Brussels, Belgium
| | - Geraldo Vaz
- Department of Neurosurgery, Saint-Luc academic Hospital, Université catholique de Louvain, Brussels, Belgium
| | - Susana Ferrao Santos
- Department of Neurology, Saint-Luc academic Hospital, Université catholique de Louvain, Brussels, Belgium
| | - Riëm El-Tahry
- Department of Neurology, Saint-Luc academic Hospital, Université catholique de Louvain, Brussels, Belgium
| | - Thierry Duprez
- Department of Radiology and Medical Imaging, Saint-Luc academic Hospital, Université catholique de Louvain, Brussels, Belgium
| | - Christian Raftopoulos
- Department of Neurosurgery, Saint-Luc academic Hospital, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
5
|
Reid LB, Martínez‐Heras E, Manjón JV, Jeffree RL, Alexander H, Trinder J, Solana E, Llufriu S, Rose S, Prior M, Fripp J. Fully automated delineation of the optic radiation for surgical planning using clinically feasible sequences. Hum Brain Mapp 2021; 42:5911-5926. [PMID: 34547147 PMCID: PMC8596983 DOI: 10.1002/hbm.25658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
Quadrantanopia caused by inadvertent severing of Meyer's Loop of the optic radiation is a well-recognised complication of temporal lobectomy for conditions such as epilepsy. Dissection studies indicate that the anterior extent of Meyer's Loop varies considerably between individuals. Quantifying this for individual patients is thus an important step to improve the safety profile of temporal lobectomies. Previous attempts to delineate Meyer's Loop using diffusion MRI tractography have had difficulty estimating its full anterior extent, required manual ROI placement, and/or relied on advanced diffusion sequences that cannot be acquired routinely in most clinics. Here we present CONSULT: a pipeline that can delineate the optic radiation from raw DICOM data in a completely automated way via a combination of robust pre-processing, segmentation, and alignment stages, plus simple improvements that bolster the efficiency and reliability of standard tractography. We tested CONSULT on 696 scans of predominantly healthy participants (539 unique brains), including both advanced acquisitions and simpler acquisitions that could be acquired in clinically acceptable timeframes. Delineations completed without error in 99.4% of the scans. The distance between Meyer's Loop and the temporal pole closely matched both averages and ranges reported in dissection studies for all tested sequences. Median scan-rescan error of this distance was 1 mm. When tested on two participants with considerable pathology, delineations were successful and realistic. Through this, we demonstrate not only how to identify Meyer's Loop with clinically feasible sequences, but also that this can be achieved without fundamental changes to tractography algorithms or complex post-processing methods.
Collapse
Affiliation(s)
- Lee B. Reid
- The Australian e‐Health Research CentreCSIROBrisbaneQueenslandAustralia
| | - Eloy Martínez‐Heras
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic BarcelonaInstitut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Universitat de BarcelonaBarcelonaSpain
| | - Jose V. Manjón
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de ValènciaValenciaSpain
| | - Rosalind L. Jeffree
- Royal Brisbane and Women's HospitalMetro NorthQueenslandAustralia
- School of Clinical MedicineUniversity of QueenslandHerstonQueenslandAustralia
| | - Hamish Alexander
- Royal Brisbane and Women's HospitalMetro NorthQueenslandAustralia
| | - Julie Trinder
- The Australian e‐Health Research CentreCSIROBrisbaneQueenslandAustralia
| | - Elisabeth Solana
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic BarcelonaInstitut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Universitat de BarcelonaBarcelonaSpain
| | - Sara Llufriu
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic BarcelonaInstitut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Universitat de BarcelonaBarcelonaSpain
| | - Stephen Rose
- The Australian e‐Health Research CentreCSIROBrisbaneQueenslandAustralia
| | - Marita Prior
- Royal Brisbane and Women's HospitalMetro NorthQueenslandAustralia
| | - Jurgen Fripp
- The Australian e‐Health Research CentreCSIROBrisbaneQueenslandAustralia
| |
Collapse
|
6
|
Jacqmot O, Van Thielen B, Michotte A, de Mey J, Provyn S, Tresignie J. Neuroanatomical Reconstruction of the Canine Visual Pathway Using Diffusion Tensor Imaging. Front Neuroanat 2020; 14:54. [PMID: 32973464 PMCID: PMC7461977 DOI: 10.3389/fnana.2020.00054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
The first anatomical atlas of diffusion tensor imaging (DTI) of white matter pathways in the canine brain was published in 2013; however, the anatomical orientation of the entire visual pathway in the canine brain, from the retina to the cortex, has not yet been studied using DTI. In the present study, 3T DTI magnetic resonance (MR) images of three dogs euthanized for reasons other than neurological disorders were obtained. The process of obtaining combined fractional anisotropy and directional maps was initiated within 1 h of death. The heads were amputated immediately after MR imaging and stored in 10% formalin until dissection and histological sampling was performed. The trajectory of the visual pathway is dissimilar to the horizontal representation in other literature. To our knowledge, ours is the first study to visualize the entire canine visual pathway in its full antero-posterior extension. Fibers from the retina to the cortex passed through the optic nerve, optic chiasm, optic tracts, lateral geniculate nucleus, Meyer’s and Baum’s loops, and pretectal fibers. Their projections to the cortex were similar to those in the human visual pathway. The crossing of fibers at the optic chiasm occurred in 75% of fibers. In addition to advancing our knowledge in this field of study, these results could help plan neurosurgical and radiotherapeutic procedures to avoid unnecessary damage to the visual fiber system.
Collapse
Affiliation(s)
- Olivier Jacqmot
- Anatomical Research and Clinical Studies (ARCS), Vrije Universiteit Brussel, Brussels, Belgium.,MOVE-HIM (Morpho Veterinary and Human Imaging) Brussels, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Bert Van Thielen
- MOVE-HIM (Morpho Veterinary and Human Imaging) Brussels, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,Department of Radiology, UZ Brussel, Brussels, Belgium.,Odisee Brussel, Educational Department for Imaging Technologists, Brussels, Belgium.,Anatomical Research, Training and Education (ARTE), Vrije Universiteit Brussel, Brussels, Belgium
| | - Alex Michotte
- Department of Neurology and Neuropathology, Neuroanatomy, UZ Brussel, Brussels, Belgium
| | - Johan de Mey
- Department of Radiology, UZ Brussel, Brussels, Belgium
| | - Steven Provyn
- Anatomical Research and Clinical Studies (ARCS), Vrije Universiteit Brussel, Brussels, Belgium
| | - Jonathan Tresignie
- Anatomical Research and Clinical Studies (ARCS), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
7
|
Donos C, Rollo P, Tombridge K, Johnson JA, Tandon N. Visual field deficits following laser ablation of the hippocampus. Neurology 2020; 94:e1303-e1313. [DOI: 10.1212/wnl.0000000000008940] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/02/2019] [Indexed: 11/15/2022] Open
Abstract
ObjectiveTo qualify the incidence of and risk factors for visual field deficits (VFD) following laser interstitial thermal ablation (LITT) for mesial temporal lobe epilepsy (MTLE) and to relate this to anterior temporal lobectomy (ATL).MethodsFifty-seven patients underwent LITT of the amygdalo-hippocampal complex (AH) for MTLE. Masks of ablation volumes, laser probe trajectories, and visual radiations (VRs) from individual subject space were transformed into standardized space using nonlinear registration. Voxel-wise statistics were performed to model relationships between VFDs vs ablation volumes, laser trajectories, VRs, and AH asymmetry. A review of VFDs following ATLs was performed.ResultsThe incidence of VFD after LITT is much lower than after ATLs. A total of 37.5% of patients developed a VFD, with the probability of this being much higher after left (50%) vs right hemisphere LITT (10%) (Fisher test, p = 0.05). This laterality effect on VFDs is mirrored but underappreciated in ATL series. The most consistent LITT-VFD occurred in the superior vertical octant. Ablation of Meyer loop as well as the summed probability of VRs within laser trajectories correlated with VFDs (p < 0.05). Left and right hippocampi have significantly distinct orientations in axial and coronal planes, which may be one reason for the variation in VFD probability.ConclusionsLITT results in lower rates of and smaller VFDs—typically an octantanopsia. VRs are at greater risk during surgery for left than right MTLE. Anatomical asymmetries in hippocampal anatomy may explain the hemispheric differences in deficits, and should factor into trajectory planning and also into preoperative patient counseling. Overall the incidence and extent of visual deficits following LITT for MTLE is lower than the reported data following anterior temporal lobectomy. VF tractography incorporated into LITT planning may reduce the occurrence of VFDs.
Collapse
|
8
|
Yang JYM, Beare R, Wu MH, Barton SM, Malpas CB, Yeh CH, Harvey AS, Anderson V, Maixner WJ, Seal M. Optic Radiation Tractography in Pediatric Brain Surgery Applications: A Reliability and Agreement Assessment of the Tractography Method. Front Neurosci 2019; 13:1254. [PMID: 31824251 PMCID: PMC6879599 DOI: 10.3389/fnins.2019.01254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/05/2019] [Indexed: 11/13/2022] Open
Abstract
Background Optic radiation (OR) tractography may help predict and reduce post-neurosurgical visual field deficits. OR tractography methods currently lack pediatric and surgical focus. Purpose We propose a clinically feasible OR tractography strategy in a pediatric neurosurgery setting and examine its intra-rater and inter-rater reliability/agreements. Methods Preoperative and intraoperative MRI data were obtained from six epilepsy and two brain tumor patients on 3 Tesla MRI scanners. Four raters with different clinical experience followed the proposed strategy to perform probabilistic OR tractography with manually drawing anatomical landmarks to reconstruct the OR pathway, based on fiber orientation distributions estimated from high angular resolution diffusion imaging data. Intra- and inter-rater reliabilities/agreements of tractography results were assessed using intraclass correlation coefficient (ICC) and dice similarity coefficient (DSC) across various tractography and OR morphological metrics, including the lateral geniculate body positions, tract volumes, and Meyer's loop position from temporal anatomical landmarks. Results Good to excellent intra- and inter-rater reproducibility was demonstrated for the majority of OR reconstructions (ICC = 0.70-0.99; DSC = 0.84-0.89). ICC was higher for non-lesional (0.82-0.99) than lesional OR (0.70-0.99). The non-lesional OR's mean volume was 22.66 cm3; the mean Meyer's loop position was 29.4 mm from the temporal pole, 5.89 mm behind of and 10.26 mm in front of the temporal ventricular horn. The greatest variations (± 1.00-3.00 mm) were observed near pathology, at the tract edges or at cortical endpoints. The OR tractography were used to assist surgical planning and guide lesion resection in all cases, no patient had new visual field deficits postoperatively. Conclusion The proposed tractography strategy generates reliable and reproducible OR tractography images that can be reliably implemented in the routine, non-emergency pediatric neurosurgical setting.
Collapse
Affiliation(s)
- Joseph Yuan-Mou Yang
- Department of Neurosurgery, The Royal Children's Hospital, Melbourne, VIC, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Neuroscience Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Richard Beare
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Michelle Hao Wu
- Medical Imaging, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Sarah M Barton
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Neuroscience Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia.,Department of Neurology, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Charles B Malpas
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Clinical Outcomes Research Unit, Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia.,Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Chun-Hung Yeh
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - A Simon Harvey
- Neuroscience Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia.,Department of Neurology, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Vicki Anderson
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia.,Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Brain and Mind, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Psychology, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Wirginia J Maixner
- Department of Neurosurgery, The Royal Children's Hospital, Melbourne, VIC, Australia.,Neuroscience Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Marc Seal
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Bertani GA, Bertulli L, Scola E, Di Cristofori A, Zavanone M, Triulzi F, Rampini PM, Carrabba GG. Optic Radiation Diffusion Tensor Imaging Tractography: An Alternative and Simple Technique for the Accurate Detection of Meyer's Loop. World Neurosurg 2018; 117:e42-e56. [DOI: 10.1016/j.wneu.2018.05.131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/11/2022]
|
10
|
Chamberland M, Tax CMW, Jones DK. Meyer's loop tractography for image-guided surgery depends on imaging protocol and hardware. Neuroimage Clin 2018; 20:458-465. [PMID: 30128284 PMCID: PMC6096050 DOI: 10.1016/j.nicl.2018.08.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/31/2018] [Accepted: 08/10/2018] [Indexed: 12/19/2022]
Abstract
Introduction Surgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if surgeons knew the exact location of the anterior part of the optic radiation (OR), the Meyer's loop. To this end, there is increasing prevalence of image-guided surgery using diffusion MRI tractography. Despite considerable effort in developing analysis methods, a wide discrepancy in Meyer's loop reconstructions is observed in the literature. Moreover, the impact of differences in image acquisition on Meyer's loop tractography remains unclear. Here, while employing the same state-of-the-art analysis protocol, we explored the extent to which variance in data acquisition leads to variance in OR reconstruction. Methods Diffusion MRI data were acquired for the same thirteen healthy subjects using standard and state-of-the-art protocols on three scanners with different maximum gradient amplitudes (MGA): Siemens Connectom (MGA = 300 mT/m); Siemens Prisma (MGA = 80 mT/m) and GE Excite-HD (MGA = 40 mT/m). Meyer's loop was reconstructed on all subjects and its distance to the temporal pole (ML-TP) was compared across protocols. Results A significant effect of data acquisition on the ML-TP distance was observed between protocols (p < .01 to 0.0001). The biggest inter-acquisition discrepancy for the same subject across different protocols was 16.5 mm (mean: 9.4 mm, range: 3.7-16.5 mm). Conclusion We showed that variance in data acquisition leads to substantive variance in OR tractography. This has direct implications for neurosurgical planning, where part of the OR is at risk due to an under-estimation of its location using conventional acquisition protocols.
Collapse
Affiliation(s)
- Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| | - Chantal M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom; School of Psychology, Faculty of Health Sciences, Australian Catholic University, Victoria, Australia
| |
Collapse
|
11
|
Wang C, Klistorner A, Ly L, Barnett MH. White matter tract-specific quantitative analysis in multiple sclerosis: Comparison of optic radiation reconstruction techniques. PLoS One 2018; 13:e0191131. [PMID: 29342192 PMCID: PMC5771610 DOI: 10.1371/journal.pone.0191131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 12/28/2017] [Indexed: 11/23/2022] Open
Abstract
The posterior visual pathway is commonly affected by multiple sclerosis (MS) pathology that results in measurable clinical and electrophysiological impairment. Due to its highly structured retinotopic mapping, the visual pathway represents an ideal substrate for investigating patho-mechanisms in MS. Therefore, a reliable and robust imaging segmentation method for in-vivo delineation of the optic radiations (OR) is needed. However, diffusion-based tractography approaches, which are typically used for OR segmentation are confounded by the presence of focal white matter lesions. Current solutions require complex acquisition paradigms and demand expert image analysis, limiting application in both clinical trials and clinical practice. In the current study, using data acquired in a clinical setting on a 3T scanner, we optimised and compared two approaches for optic radiation (OR) reconstruction: individual probabilistic tractography-based and template-based methods. OR segmentation results were applied to subjects with MS and volumetric and diffusivity parameters were compared between OR segmentation techniques. Despite differences in reconstructed OR volumes, both OR lesion volume and OR diffusivity measurements in MS subjects were highly comparable using optimised probabilistic tractography-based, and template-based, methods. The choice of OR reconstruction technique should be determined primarily by the research question and the nature of the available dataset. Template-based approaches are particularly suited to the semi-automated analysis of large image datasets and have utility even in the absence of dMRI acquisitions. Individual tractography methods, while more complex than template based OR reconstruction, permit measurement of diffusivity changes along fibre bundles that are affected by specific MS lesions or other focal pathologies.
Collapse
Affiliation(s)
- Chenyu Wang
- Sydney Neuroimaging Analysis Centre, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Alexander Klistorner
- Sydney Neuroimaging Analysis Centre, Sydney, New South Wales, Australia
- Department of Ophthalmology, Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
- Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Linda Ly
- Sydney Neuroimaging Analysis Centre, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Michael H. Barnett
- Sydney Neuroimaging Analysis Centre, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
12
|
Schmeiser B, Daniel M, Kogias E, Böhringer D, Egger K, Yang S, Foit NA, Schulze-Bonhage A, Steinhoff BJ, Zentner J, Lagrèze WA, Gross NJ. Visual field defects following different resective procedures for mesiotemporal lobe epilepsy. Epilepsy Behav 2017; 76:39-45. [PMID: 28954709 DOI: 10.1016/j.yebeh.2017.08.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/15/2017] [Accepted: 08/26/2017] [Indexed: 10/18/2022]
Abstract
INTRODUCTION One of the most common side effects of mesiotemporal lobe resection in patients with medically intractable epilepsy are visual field defects (VFD). While peripheral defects usually remain unnoticed by patients, extended VFD influence daily life activities and can, in particular, affect driving regulations. This study had been designed to evaluate frequency and extent of VFD following different surgical approaches to the mesiotemporal area with respect to the ability to drive. MATERIALS AND METHODS This study comprises a consecutive series of 366 patients operated at the Epilepsy Center in Freiburg for intractable mesiotemporal lobe epilepsy from 1998 to 2016. The following procedures were performed: standard anterior temporal lobectomy (ATL: n=134; 37%), anterior temporal or keyhole resection (KH: n=53; 15%), and selective amygdalohippocampectomy via the transsylvian (tsAHE: n=145; 40%) and the subtemporal (ssAHE: n=34; 9%) approach. Frequency and extent of postoperative VFD were evaluated in relation to different surgical procedures. According to the German driving guidelines, postoperative VFD were classified as driving-relevant VFD with the involvement of absolute, homonymous central scotoma within 20° and driving-irrelevant VFD with either none or exclusively minor VFD sparing the center. RESULTS Postoperative visual field examinations were available in 276 of 366 cases. Postoperative VFD were observed in 202 of 276 patients (73%) and were found to be driving-relevant in 133 of 276 patients (48%), whereas 69 patients (25%) showed VFD irrelevant for driving. Visual field defects were significantly less likely following ssAHE compared with other temporal resections, and if present, they were less frequently driving-relevant (p<0.05), irrespective of the side of surgery. CONCLUSION Subtemporal sAHE (ssAHE) caused significantly less frequently and less severely driving-relevant VFD compared with all other approaches to the temporal lobe, irrespective of the side of surgery.
Collapse
Affiliation(s)
- Barbara Schmeiser
- Department of Neurosurgery, Medical Center - University of Freiburg, Breisacherstrasse 64, 79106 Freiburg, Germany.
| | - Moritz Daniel
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Trust and UCL Institute of Ophthalmology, London, United Kingdom; Eye Center, Medical Center - University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Evangelos Kogias
- Department of Neurosurgery, Medical Center - University of Freiburg, Breisacherstrasse 64, 79106 Freiburg, Germany
| | - Daniel Böhringer
- Eye Center, Medical Center - University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Karl Egger
- Department of Neuroradiology, Medical Center - University of Freiburg, Breisacherstrasse 64, 79106 Freiburg, Germany
| | - Shan Yang
- Department of Neuroradiology, Medical Center - University of Freiburg, Breisacherstrasse 64, 79106 Freiburg, Germany
| | - Niels Alexander Foit
- Department of Neurosurgery, Medical Center - University of Freiburg, Breisacherstrasse 64, 79106 Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Department of Epileptology, Medical Center - University of Freiburg, Breisacherstrasse 64, 79106 Freiburg, Germany
| | | | - Josef Zentner
- Department of Neurosurgery, Medical Center - University of Freiburg, Breisacherstrasse 64, 79106 Freiburg, Germany
| | - Wolf Alexander Lagrèze
- Eye Center, Medical Center - University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Nikolai Johannes Gross
- Eye Center, Medical Center - University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| |
Collapse
|
13
|
Agarwal V, Malcolm JG, Pradilla G, Barrow DL. Tractography for Optic Radiation Preservation in Transcortical Approaches to Intracerebral Lesions. Cureus 2017; 9:e1722. [PMID: 29188166 PMCID: PMC5705171 DOI: 10.7759/cureus.1722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We present a case of intraventricular meningioma resected via a transcortical approach using tractography for optic radiation and arcuate fasciculus preservation. We include a review of the literature. A 54-year-old woman with a history of breast cancer presented with gait imbalance. Workup revealed a mass in the atrium of the left lateral ventricle consistent with a meningioma. Whole brain automated diffusion tensor imaging (DTI) was used to plan a transcortical resection while sparing the optic radiations and arcuate fasciculus. A left posterior parietal craniotomy was performed using the Synaptive BrightMatter™ frameless navigation (Synaptive Medical, Toronto, Canada) to minimally disrupt the white matter pathways. A gross total resection was achieved. Postoperatively, the patient had temporary right upper extremity weakness, which improved, and her visual fields and speech remained intact. Pathology confirmed a World Health Organization (WHO) Grade I meningothelial meningioma. While a thorough understanding of cortical anatomy is essential for safe resection of eloquent or deep-seated lesions, significant variability in fiber bundles, such as optic radiations and the arcuate fasciculus, necessitates a more individualized understanding of a patient's potential surgical risk. The addition of enhanced DTI to the neurosurgeon's armamentarium may allow for more complete resections of difficult intracerebral lesions while minimizing complications, such as visual deficit.
Collapse
Affiliation(s)
- Vijay Agarwal
- Department of Neurosurgery, Emory University School of Medicine
| | - James G Malcolm
- Department of Neurosurgery, Emory University School of Medicine
| | | | - Daniel L Barrow
- Department of Neurological Surgery, Emory University School of Medicine
| |
Collapse
|
14
|
Meesters S, Ossenblok P, Wagner L, Schijns O, Boon P, Florack L, Vilanova A, Duits R. Stability metrics for optic radiation tractography: Towards damage prediction after resective surgery. J Neurosci Methods 2017; 288:34-44. [PMID: 28648721 PMCID: PMC5538260 DOI: 10.1016/j.jneumeth.2017.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/25/2017] [Accepted: 05/31/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND An accurate delineation of the optic radiation (OR) using diffusion MR tractography may reduce the risk of a visual field deficit after temporal lobe resection. However, tractography is prone to generate spurious streamlines, which deviate strongly from neighboring streamlines and hinder a reliable distance measurement between the temporal pole and the Meyer's loop (ML-TP distance). NEW METHOD Stability metrics are introduced for the automated removal of spurious streamlines near the Meyer's loop. Firstly, fiber-to-bundle coherence (FBC) measures can identify spurious streamlines by estimating their alignment with the surrounding streamline bundle. Secondly, robust threshold selection removes spurious streamlines while preventing an underestimation of the extent of the Meyer's loop. Standardized parameter selection is realized through test-retest evaluation of the variability in ML-TP distance. RESULTS The variability in ML-TP distance after parameter selection was below 2mm for each of the healthy volunteers studied (N=8). The importance of the stability metrics is illustrated for epilepsy surgery candidates (N=3) for whom the damage to the Meyer's loop was evaluated by comparing the pre- and post-operative OR reconstruction. The difference between predicted and observed damage is in the order of a few millimeters, which is the error in measured ML-TP distance. COMPARISON WITH EXISTING METHOD(S) The stability metrics are a novel method for the robust estimate of the ML-TP distance. CONCLUSIONS The stability metrics are a promising tool for clinical trial studies, in which the damage to the OR can be related to the visual field deficit that may occur after epilepsy surgery.
Collapse
Affiliation(s)
- Stephan Meesters
- Academic Center for Epileptology Kempenhaeghe & Maastricht University Medical Center, Netherlands; Department of Mathematics & Computer Science, Eindhoven University of Technology, Netherlands.
| | - Pauly Ossenblok
- Academic Center for Epileptology Kempenhaeghe & Maastricht University Medical Center, Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Netherlands
| | - Louis Wagner
- Academic Center for Epileptology Kempenhaeghe & Maastricht University Medical Center, Netherlands
| | - Olaf Schijns
- Academic Center for Epileptology Kempenhaeghe & Maastricht University Medical Center, Netherlands; Department of Neurosurgery, Maastricht University Medical Center, Netherlands
| | - Paul Boon
- Academic Center for Epileptology Kempenhaeghe & Maastricht University Medical Center, Netherlands
| | - Luc Florack
- Department of Mathematics & Computer Science, Eindhoven University of Technology, Netherlands
| | - Anna Vilanova
- Department of Mathematics and Computer Science, Delft University of Technology, Netherlands; Department of Mathematics & Computer Science, Eindhoven University of Technology, Netherlands
| | - Remco Duits
- Department of Mathematics & Computer Science, Eindhoven University of Technology, Netherlands
| |
Collapse
|
15
|
Essayed WI, Zhang F, Unadkat P, Cosgrove GR, Golby AJ, O'Donnell LJ. White matter tractography for neurosurgical planning: A topography-based review of the current state of the art. Neuroimage Clin 2017; 15:659-672. [PMID: 28664037 PMCID: PMC5480983 DOI: 10.1016/j.nicl.2017.06.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/17/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022]
Abstract
We perform a review of the literature in the field of white matter tractography for neurosurgical planning, focusing on those works where tractography was correlated with clinical information such as patient outcome, clinical functional testing, or electro-cortical stimulation. We organize the review by anatomical location in the brain and by surgical procedure, including both supratentorial and infratentorial pathologies, and excluding spinal cord applications. Where possible, we discuss implications of tractography for clinical care, as well as clinically relevant technical considerations regarding the tractography methods. We find that tractography is a valuable tool in variable situations in modern neurosurgery. Our survey of recent reports demonstrates multiple potentially successful applications of white matter tractography in neurosurgery, with progress towards overcoming clinical challenges of standardization and interpretation.
Collapse
Affiliation(s)
- Walid I Essayed
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Fan Zhang
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prashin Unadkat
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - G Rees Cosgrove
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra J Golby
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren J O'Donnell
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Preoperative visual field deficits in temporal lobe epilepsy. EPILEPSY & BEHAVIOR CASE REPORTS 2017; 7:37-39. [PMID: 28348961 PMCID: PMC5357740 DOI: 10.1016/j.ebcr.2016.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/11/2016] [Accepted: 12/09/2016] [Indexed: 11/24/2022]
Abstract
Surgical resection and laser thermoablation have been used to treat drug resistant epilepsy with good results. However, they are not without risk. One of the most commonly reported complications of temporal lobe surgery is contralateral superior homonymous quadrantanopsia. We describe a patient with asymptomatic preoperative quadrantanopsia fortuitously discovered as part of our recently modified protocol to evaluate patients prior to temporal lobe epilepsy surgery. This visual field deficit was subtle and not detected on routine clinical neurological examination. While we understand that this is a single case, we advocate further study for more detailed preoperative visual field examinations to characterize the true incidence of postoperative visual field lesions.
Collapse
|
17
|
Adry RARDC, Meguins LC, da Silva Júnior SC, Pereira CU, de Araújo Filho GM, Marques LHN. Factors predicting the outcome following surgical treatment of mesial temporal epilepsy due to mesial temporal sclerosis. Acta Neurochir (Wien) 2016; 158:2355-2363. [PMID: 27770263 DOI: 10.1007/s00701-016-2992-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 10/06/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Mesial temporal sclerosis (MTS) is the most common disease found in an epilepsy surgery series. Early age of onset, a history of febrile convulsions, epileptiform discharges on EEG, duration of epilepsy, number of generalized seizures and severity of psychiatric disorders are possible prognostic factors in patients with MTS. OBJECTIVE The aim of this study is to review the clinical, semiotic, psychological, electrophysiological and neuroradiological researches and relate their findings to the prognosis of patients with MTS who underwent anteromedial temporal lobectomy (ATL). METHODS Of 1,214 patients evaluated for surgery in the epilepsy Center of Faculdade de Medicina de São Jose do Rio Preto (FAMERP), a tertiary Brazilian epilepsy center, 400 underwent ATL for MTS. Examinations and clinical data were analyzed and compared with the Engel Outcome Classification. RESULTS Of all the items analyzed, the MRI showed the greatest influence on patient outcome. As for the clinical evaluation and pathological antecedents, age at surgery, epilepsy duration, perinatal insults, family history of epilepsy, febrile seizures, neuropsychological abnormalities and presence of generalized tonic-clonic seizure all had statistical significance. CONCLUSION In order to identify the most appropriate candidates for ATL, it is very important to consider the prognostic factors associated with a favorable outcome for counseling patients in daily practice.
Collapse
Affiliation(s)
- Rodrigo Antonio Rocha da Cruz Adry
- Neurosurgery. Department of Neurological Sciences, Hospital de Base de São José do Rio Preto-Faculty of Medicine at São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil.
- Hospital Aliança, Salvador, Bahia, Brazil.
| | - Lucas Crociati Meguins
- Neurosurgery. Department of Neurological Sciences, Hospital de Base de São José do Rio Preto-Faculty of Medicine at São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
| | - Sebastião Carlos da Silva Júnior
- Neurosurgery. Department of Neurological Sciences, Hospital de Base de São José do Rio Preto-Faculty of Medicine at São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
| | | | - Gerardo Maria de Araújo Filho
- Psychiatry. Department of Neurological Sciences, Hospital de Base de São José do Rio Preto-Faculty of Medicine at São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
| | - Lúcia Helena Neves Marques
- Neurology. Department of Neurological Sciences, Hospital de Base de São José do Rio Preto-Faculty of Medicine at São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
18
|
Sivakanthan S, Neal E, Murtagh R, Vale FL. The evolving utility of diffusion tensor tractography in the surgical management of temporal lobe epilepsy: a review. Acta Neurochir (Wien) 2016; 158:2185-2193. [PMID: 27566714 DOI: 10.1007/s00701-016-2910-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/27/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) is a relatively new imaging modality that has found many peri-operative applications in neurosurgery. METHODS A comprehensive survey of the applications of diffusion tensor imaging (DTI) in planning for temporal lobe epilepsy surgery was conducted. The presentation of this literature is supplemented by a case illustration. RESULTS The authors have found that DTI is well utilized in epilepsy surgery, primarily in the tractography of Meyer's loop. DTI has also been used to demonstrate extratemporal connections that may be responsible for surgical failure as well as perioperative planning. The tractographic anatomy of the temporal lobe is discussed and presented with original DTI pictures. CONCLUSIONS The uses of DTI in epilepsy surgery are varied and rapidly evolving. A discussion of the technology, its limitations, and its applications is well warranted and presented in this article.
Collapse
Affiliation(s)
- Sananthan Sivakanthan
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, 2 Tampa General Circle, 7th Floor, Tampa, FL, 33606, USA.
| | - Elliot Neal
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, 2 Tampa General Circle, 7th Floor, Tampa, FL, 33606, USA
- Brainlab Inc, Westchester, IL, USA
| | - Ryan Murtagh
- Department of Radiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Fernando L Vale
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, 2 Tampa General Circle, 7th Floor, Tampa, FL, 33606, USA
| |
Collapse
|
19
|
Martinez-Rios C, McAndrews MP, Logan W, Krings T, Lee D, Widjaja E. MRI in the evaluation of localization-related epilepsy. J Magn Reson Imaging 2016; 44:12-22. [PMID: 27115073 DOI: 10.1002/jmri.25269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/28/2016] [Indexed: 11/06/2022] Open
Abstract
This article covers the MRI evaluation of patients with epilepsy, with a focus on neuroimaging in those with localization-related epilepsy who may be potential epilepsy surgery candidates. The article includes structural MRI to identify a lesion, functional MRI to identify the eloquent cortex and diffusion tensor imaging to identify the eloquent white matter tracts. We consider the equipment, protocol or procedures, and reporting of MRI in patients with epilepsy. Recommendations for both adult and pediatric patients are described for protocols and procedures. The authors hope that this article will provide a standardized approach for clinical imaging of patients with suspected localization-related epilepsy who may be evaluated for epilepsy surgery. J. Magn. Reson. Imaging 2016.
Collapse
Affiliation(s)
| | | | - William Logan
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Timo Krings
- University Health Network, Toronto, Ontario, Canada
| | - Donald Lee
- London Health Sciences Center, London, Ontario, Canada
| | - Elysa Widjaja
- Department of Radiology, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Automated retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis. Neuroimage 2015; 125:767-779. [PMID: 26551261 DOI: 10.1016/j.neuroimage.2015.11.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 09/22/2015] [Accepted: 11/03/2015] [Indexed: 12/30/2022] Open
Abstract
Diffusion MRI tractography provides a non-invasive modality to examine the human retinofugal projection, which consists of the optic nerves, optic chiasm, optic tracts, the lateral geniculate nuclei (LGN) and the optic radiations. However, the pathway has several anatomic features that make it particularly challenging to study with tractography, including its location near blood vessels and bone-air interface at the base of the cerebrum, crossing fibers at the chiasm, somewhat-tortuous course around the temporal horn via Meyer's Loop, and multiple closely neighboring fiber bundles. To date, these unique complexities of the visual pathway have impeded the development of a robust and automated reconstruction method using tractography. To overcome these challenges, we develop a novel, fully automated system to reconstruct the retinofugal visual pathway from high-resolution diffusion imaging data. Using multi-shell, high angular resolution diffusion imaging (HARDI) data, we reconstruct precise fiber orientation distributions (FODs) with high order spherical harmonics (SPHARM) to resolve fiber crossings, which allows the tractography algorithm to successfully navigate the complicated anatomy surrounding the retinofugal pathway. We also develop automated algorithms for the identification of ROIs used for fiber bundle reconstruction. In particular, we develop a novel approach to extract the LGN region of interest (ROI) based on intrinsic shape analysis of a fiber bundle computed from a seed region at the optic chiasm to a target at the primary visual cortex. By combining automatically identified ROIs and FOD-based tractography, we obtain a fully automated system to compute the main components of the retinofugal pathway, including the optic tract and the optic radiation. We apply our method to the multi-shell HARDI data of 215 subjects from the Human Connectome Project (HCP). Through comparisons with post-mortem dissection measurements, we demonstrate the retinotopic organization of the optic radiation including a successful reconstruction of Meyer's loop. Then, using the reconstructed optic radiation bundle from the HCP cohort, we construct a probabilistic atlas and demonstrate its consistency with a post-mortem atlas. Finally, we generate a shape-based representation of the optic radiation for morphometry analysis.
Collapse
|
21
|
Portegies JM, Fick RHJ, Sanguinetti GR, Meesters SPL, Girard G, Duits R. Improving Fiber Alignment in HARDI by Combining Contextual PDE Flow with Constrained Spherical Deconvolution. PLoS One 2015; 10:e0138122. [PMID: 26465600 PMCID: PMC4605742 DOI: 10.1371/journal.pone.0138122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/25/2015] [Indexed: 11/19/2022] Open
Abstract
We propose two strategies to improve the quality of tractography results computed from diffusion weighted magnetic resonance imaging (DW-MRI) data. Both methods are based on the same PDE framework, defined in the coupled space of positions and orientations, associated with a stochastic process describing the enhancement of elongated structures while preserving crossing structures. In the first method we use the enhancement PDE for contextual regularization of a fiber orientation distribution (FOD) that is obtained on individual voxels from high angular resolution diffusion imaging (HARDI) data via constrained spherical deconvolution (CSD). Thereby we improve the FOD as input for subsequent tractography. Secondly, we introduce the fiber to bundle coherence (FBC), a measure for quantification of fiber alignment. The FBC is computed from a tractography result using the same PDE framework and provides a criterion for removing the spurious fibers. We validate the proposed combination of CSD and enhancement on phantom data and on human data, acquired with different scanning protocols. On the phantom data we find that PDE enhancements improve both local metrics and global metrics of tractography results, compared to CSD without enhancements. On the human data we show that the enhancements allow for a better reconstruction of crossing fiber bundles and they reduce the variability of the tractography output with respect to the acquisition parameters. Finally, we show that both the enhancement of the FODs and the use of the FBC measure on the tractography improve the stability with respect to different stochastic realizations of probabilistic tractography. This is shown in a clinical application: the reconstruction of the optic radiation for epilepsy surgery planning.
Collapse
Affiliation(s)
- J. M. Portegies
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
- * E-mail:
| | - R. H. J. Fick
- Athena Project-Team, INRIA Sophia Antipolis—Méditerranée, France
| | - G. R. Sanguinetti
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - S. P. L. Meesters
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
- Academic Center for Epileptology Kempenhaeghe & Maastricht UMC+, Heeze, The Netherlands
| | - G. Girard
- Athena Project-Team, INRIA Sophia Antipolis—Méditerranée, France
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Canada
| | - R. Duits
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
22
|
Kochan M, Daga P, Burgos N, White M, Cardoso MJ, Mancini L, Winston GP, McEvoy AW, Thornton J, Yousry T, Duncan JS, Stoyanov D, Ourselin S. Simulated field maps for susceptibility artefact correction in interventional MRI. Int J Comput Assist Radiol Surg 2015; 10:1405-16. [PMID: 26179219 DOI: 10.1007/s11548-015-1253-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Intraoperative MRI (iMRI) is a powerful modality for acquiring images of the brain to facilitate precise image-guided neurosurgery. Diffusion-weighted MRI (DW-MRI) provides critical information about location, orientation and structure of nerve fibre tracts, but suffers from the "susceptibility artefact" stemming from magnetic field perturbations due to the step change in magnetic susceptibility at air-tissue boundaries in the head. An existing approach to correcting the artefact is to acquire a field map by means of an additional MRI scan. However, to recover true field maps from the acquired field maps near air-tissue boundaries is challenging, and acquired field maps are unavailable in historical MRI data sets. This paper reports a detailed account of our method to simulate field maps from structural MRI scans that was first presented at IPCAI 2014 and provides a thorough experimental and analysis section to quantitatively validate our technique. METHODS We perform automatic air-tissue segmentation of intraoperative MRI scans, feed the segmentation into a field map simulation step and apply the acquired and the simulated field maps to correct DW-MRI data sets. RESULTS We report results for 12 patient data sets acquired during anterior temporal lobe resection surgery for the surgical management of focal epilepsy. We find a close agreement between acquired and simulated field maps and observe a statistically significant reduction in the susceptibility artefact in DW-MRI data sets corrected using simulated field maps in the vicinity of the resection. The artefact reduction obtained using acquired field maps remains better than that using the simulated field maps in all evaluated regions of the brain. CONCLUSIONS The proposed simulated field maps facilitate susceptibility artefact reduction near the resection. Accurate air-tissue segmentation is key to achieving accurate simulation. The proposed simulation approach is adaptable to different iMRI and neurosurgical applications.
Collapse
Affiliation(s)
- Martin Kochan
- Centre for Medical Image Computing, University College London, London, UK,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lilja Y, Ljungberg M, Starck G, Malmgren K, Rydenhag B, Nilsson DT. Tractography of Meyer's loop for temporal lobe resection—validation by prediction of postoperative visual field outcome. Acta Neurochir (Wien) 2015; 157:947-56; discussion 956. [PMID: 25845549 DOI: 10.1007/s00701-015-2403-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Postoperative visual field defects are common after temporal lobe resection because of injury to the most anterior part of the optic radiation, Meyer's loop. Diffusion tensor tractography is a promising technique for visualizing the optic radiation preoperatively. The aim of this study was to assess the anatomical accuracy of Meyer's loop, visualized by the two most common tractography methods—deterministic (DTG) and probabilistic tractography (PTG)—in patients who had undergone temporal lobe resection. METHODS Eight patients with temporal lobe resection for temporal lobe pathology were included. Perimetry and diffusion tensor imaging were performed pre- and postoperatively. Two independent operators analyzed the distance between the temporal pole and Meyer's loop (TP-ML) using DTG and PTG. Results were compared to each other, to data from previously published dissection studies and to postoperative perimetry results. For the latter, Spearman's rank correlation coefficient (r(s)) was used. RESULTS Median preoperative TP-ML distances for nonoperated sides were 42 and 35 mm, as determined by DTG and PTG, respectively. TP-ML assessed with PTG was a closer match to dissection studies. Intraclass correlation coefficients were 0.4 for DTG and 0.7 for PTG. Difference between preoperative TP-ML (by DTG and PTG, respectively) and resection length could predict the degree of postoperative visual field defects (DTG: r(s) = -0.86, p < 0.05; PTG: r(s) = -0.76, p < 0.05). CONCLUSION Both DTG and PTG could predict the degree of visual field defects. However, PTG was superior to DTG in terms of reproducibility and anatomical accuracy. PTG is thus a strong candidate for presurgical planning of temporal lobe resection that aims to minimize injury to Meyer's loop.
Collapse
|
24
|
Lilja Y, Nilsson DT. Strengths and limitations of tractography methods to identify the optic radiation for epilepsy surgery. Quant Imaging Med Surg 2015; 5:288-99. [PMID: 25853086 DOI: 10.3978/j.issn.2223-4292.2015.01.08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/22/2015] [Indexed: 11/14/2022]
Abstract
Diffusion tensor imaging (DTI) tractography (TG) can visualize Meyer's loop (ML), providing important information for the epilepsy surgery team, both for preoperative counseling and to reduce the frequency of visual field defects after temporal lobe resection (TLR). This review highlights significant steps in the TG process, specifically the processing of raw data including choice of TG algorithm and the interpretation and validation of results. A lack of standardization of TG of the optic radiation makes study comparisons challenging. We discuss results showing differences between studies and uncertainties large enough to be of clinical relevance and present implications of this technique for temporal lobe epilepsy surgery. Recent studies in temporal lobe epilepsy patients, employing TG intraoperatively, show promising results in reduction of visual field defects, with maintained seizure reduction.
Collapse
Affiliation(s)
- Ylva Lilja
- 1 Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ; 2 Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Daniel T Nilsson
- 1 Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ; 2 Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
25
|
Dayan M, Kreutzer S, Clark CA. Tractography of the optic radiation: a repeatability and reproducibility study. NMR IN BIOMEDICINE 2015; 28:423-431. [PMID: 25703088 DOI: 10.1002/nbm.3266] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/19/2014] [Accepted: 01/04/2015] [Indexed: 06/04/2023]
Abstract
Our main objective was to evaluate the repeatability and reproducibility of optic radiation (OR) reconstruction from diffusion MRI (dMRI) data. 14 adults were scanned twice with the same 60-direction dMRI sequence. Peaks in the diffusion profile were estimated with the single tensor (ST), Q-ball (QSH) and persistent angular structure (PAS) methods. Segmentation of the OR was performed by two experimenters with probabilistic tractography based on a manually drawn region-of-interest (ROI) protocol typically employed for OR segmentation, with both standard and extended sets of ROIs. The repeatability and reproducibility were assessed by calculating the intra-class correlation coefficient (ICC) of intra- and inter-rater experiments, respectively. ICCs were calculated for commonly used dMRI metrics (FA, MD, AD, RD) and anatomical dimensions of the optic radiation (distance from Meyer's loop to the temporal pole, ML-TP), as well as the Dice similarity coefficient (DSC) between the raters' OR segmentation. Bland-Altman plots were also calculated to investigate bias and variability in the reproducibility measurements. The OR was successfully reconstructed in all subjects by both raters. The ICC was found to be in the good to excellent range for both repeatability and reproducibility of the dMRI metrics, DSC and ML-TP distance. The Bland-Altman plots did not show any apparent systematic bias for any quantities. Overall, higher ICC values were found for the multi-fiber methods, QSH and PAS, and for the standard set of ROIs. Considering the good to excellent repeatability and reproducibility of all the quantities investigated, these findings support the use of multi-fiber OR reconstruction with a limited number of manually drawn ROIs in clinical applications utilizing either OR microstructure characterization or OR dimensions, as is the case in neurosurgical planning for temporal lobectomy.
Collapse
|
26
|
Lim JC, Phal PM, Desmond PM, Nichols AD, Kokkinos C, Danesh-Meyer HV, Kaye AH, Moffat BA. Probabilistic MRI tractography of the optic radiation using constrained spherical deconvolution: a feasibility study. PLoS One 2015; 10:e0118948. [PMID: 25742640 PMCID: PMC4351098 DOI: 10.1371/journal.pone.0118948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
Background and Purpose Imaging the optic radiation (OR) is of considerable interest in studying diseases affecting the visual pathway and for pre-surgical planning of temporal lobe resections. The purpose of this study was to investigate the clinical feasibility of using probabilistic diffusion tractography based on constrained spherical deconvolution (CSD) to image the optic radiation. It was hypothesized that CSD would provide improved tracking of the OR compared with the widely used ball-and-stick model. Methods Diffusion weighted MRI (30 directions) was performed on twenty patients with no known visual deficits. Tractography was performed using probabilistic algorithms based on fiber orientation distribution models of local white matter trajectories. The performance of these algorithms was evaluated by comparing computational times and receiver operating characteristic results, and by correlation of anatomical landmark distances to dissection estimates. Results The results showed that it was consistently feasible to reconstruct individual optic radiations from clinically practical (4.5 minute acquisition) diffusion weighted imaging data sets using CSD. Tractography based on the CSD model resulted in significantly shorter computational times, improved receiver operating characteristic results, and shorter Meyer’s loop to temporal pole distances (in closer agreement with dissection studies) when compared to the ball-and-stick based algorithm. Conclusions Accurate tractography of the optic radiation can be accomplished using diffusion MRI data collected within a clinically practical timeframe. CSD based tractography was faster, more accurate and had better correlation with known anatomical landmarks than ball-and-stick tractography.
Collapse
Affiliation(s)
- Jeremy C. Lim
- Department of Radiology, The University of Melbourne, Victoria 3050, Australia
- Department of Radiology, The Royal Melbourne Hospital, Grattan Street, Parkville, Victoria 3050, Australia
| | - Pramit M. Phal
- Department of Radiology, The University of Melbourne, Victoria 3050, Australia
- Department of Radiology, The Royal Melbourne Hospital, Grattan Street, Parkville, Victoria 3050, Australia
| | - Patricia M. Desmond
- Department of Radiology, The University of Melbourne, Victoria 3050, Australia
- Department of Radiology, The Royal Melbourne Hospital, Grattan Street, Parkville, Victoria 3050, Australia
| | - Andrew D. Nichols
- Department of Surgery, The University of Melbourne, Victoria 3050, Australia
- Department of Neurosurgery, The Royal Melbourne Hospital, Grattan Street, Parkville, Victoria 3050, Australia
| | - Chris Kokkinos
- Department of Radiology, The Royal Melbourne Hospital, Grattan Street, Parkville, Victoria 3050, Australia
| | - Helen V. Danesh-Meyer
- Department of Surgery, The University of Melbourne, Victoria 3050, Australia
- Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| | - Andrew H. Kaye
- Department of Surgery, The University of Melbourne, Victoria 3050, Australia
- Department of Neurosurgery, The Royal Melbourne Hospital, Grattan Street, Parkville, Victoria 3050, Australia
| | - Bradford A. Moffat
- Department of Radiology, The University of Melbourne, Victoria 3050, Australia
- Department of Radiology, The Royal Melbourne Hospital, Grattan Street, Parkville, Victoria 3050, Australia
- * E-mail:
| |
Collapse
|
27
|
James JS, Radhakrishnan A, Thomas B, Madhusoodanan M, Kesavadas C, Abraham M, Menon R, Rathore C, Vilanilam G. Diffusion tensor imaging tractography of Meyer's loop in planning resective surgery for drug-resistant temporal lobe epilepsy. Epilepsy Res 2014; 110:95-104. [PMID: 25616461 DOI: 10.1016/j.eplepsyres.2014.11.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/09/2014] [Accepted: 11/19/2014] [Indexed: 11/24/2022]
Abstract
PURPOSE Whether Meyer's loop (ML) tracking using diffusion tensor imaging tractography (DTIT) can be utilized to avoid post-operative visual field deficits (VFD) after anterior temporal lobectomy (ATL) for drug-resistant temporal lobe epilepsy (TLE) using a large cohort of controls and patients. Also, we wanted to create a normative atlas of ML in normal population. METHODS DTIT was used to study ML in 75 healthy subjects and 25 patients with and without VFD following ATL. 1.5T MRI echo-planar DTI sequences with DTI data were processed in Nordic ICE using a probabilistic method; a multiple region of interest technique was used for reconstruction of optic radiation trajectory. Visual fields were assessed in patients pre- and post-operatively. RESULTS Results of ANOVA showed that the left ML-TP distance was less than right across all groups (p = 0.01). The average distance of ML from left temporal pole was 37.44 ± 4.7 mm (range: 32.2-46.6 mm) and from right temporal pole 39.08 ± 4.9 mm (range: 34.3-49.7 mm). Average distance of left and right temporal pole to tip of temporal horn was 28.32 ± 2.03 mm (range: 26.4-32.8 mm) and was 28.92 ± 2.09 mm, respectively (range: 25.9-33.3 mm). If the anterior limit of the Meyer's loop was ≤38 mm on the right and ≤35 mm on the left from the temporal pole, they are at a greater risk of developing VFDs. CONCLUSIONS DTIT is a novel technique to delineate ML and plays an important role in planning surgical resection in TLE to predict post-operative visual performance and disability.
Collapse
Affiliation(s)
- Jija S James
- Department of Imaging and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| | - Ashalatha Radhakrishnan
- R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India.
| | - Bejoy Thomas
- Department of Imaging and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| | - Mini Madhusoodanan
- R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| | - Chandrashekharan Kesavadas
- Department of Imaging and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| | - Mathew Abraham
- R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| | - Ramshekhar Menon
- R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| | - Chaturbhuj Rathore
- R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| | - George Vilanilam
- R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| |
Collapse
|
28
|
Sarubbo S, De Benedictis A, Milani P, Paradiso B, Barbareschi M, Rozzanigo U, Colarusso E, Tugnoli V, Farneti M, Granieri E, Duffau H, Chioffi F. The course and the anatomo-functional relationships of the optic radiation: a combined study with 'post mortem' dissections and 'in vivo' direct electrical mapping. J Anat 2014; 226:47-59. [PMID: 25402811 DOI: 10.1111/joa.12254] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2014] [Indexed: 11/28/2022] Open
Abstract
Even if different dissection, tractographic and connectivity studies provided pure anatomical evidences about the optic radiations (ORs), descriptions of both the anatomical structure and the anatomo-functional relationships of the ORs with the adjacent bundles were not reported. We propose a detailed anatomical and functional study with 'post mortem' dissections and 'in vivo' direct electrical stimulation (DES) of the OR, demonstrating also the relationships with the adjacent eloquent bundles in a neurosurgical 'connectomic' perspective. Six human hemispheres (three left, three right) were dissected after a modified Klingler's preparation. The anatomy of the white matter was analysed according to systematic and topographical surgical perspectives. The anatomical results were correlated to the functional responses collected during three resections of tumours guided by cortico-subcortical DES during awake procedures. We identified two groups of fibres forming the OR. The superior component runs along the lateral wall of the occipital horn, the trigone and the supero-medial wall of the temporal horn. The inferior component covers inferiorly the occipital horn and the trigone, the lateral wall of the temporal horn and arches antero-medially to form the Meyer's Loop. The inferior fronto-occipital fascicle (IFOF) covers completely the superior OR along its entire course, as confirmed by the subcortical DES. The inferior longitudinal fascicle runs in a postero-anterior and inferior direction, covering the superior OR posteriorly and the inferior OR anteriorly. The IFOF identification allows the preservation of the superior OR in the anterior temporal resection, avoiding post-operative complete hemianopia. The identification of the superior OR during the posterior temporal, inferior parietal and occipital resections leads to the preservation of the IFOF and of the eloquent functions it subserves. The accurate knowledge of the OR course and the relationships with the adjacent bundles is crucial to optimize quality of resection and functional outcome.
Collapse
Affiliation(s)
- Silvio Sarubbo
- Department of Neurosciences, Division of Neurosurgery, 'S. Chiara' Hospital, Trento, Italy; Biomedical and Surgical Sciences, Section of Neurological Psychiatric and Psychological Sciences, 'S. Anna' University-Hospital, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chaudhary UJ, Duncan JS. Applications of blood-oxygen-level-dependent functional magnetic resonance imaging and diffusion tensor imaging in epilepsy. Neuroimaging Clin N Am 2014; 24:671-94. [PMID: 25441507 DOI: 10.1016/j.nic.2014.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lifetime prevalence of epilepsy ranges from 2.7 to 12.4 per 1000 in Western countries. Around 30% of patients with epilepsy remain refractory to antiepileptic drugs and continue to have seizures. Noninvasive imaging techniques such as functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) have helped to better understand mechanisms of seizure generation and propagation, and to localize epileptic, eloquent, and cognitive networks. In this review, the clinical applications of fMRI and DTI are discussed, for mapping cognitive and epileptic networks and organization of white matter tracts in individuals with epilepsy.
Collapse
Affiliation(s)
- Umair J Chaudhary
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; MRI Unit, Epilepsy Society, Chesham Lane, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK.
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; MRI Unit, Epilepsy Society, Chesham Lane, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK; Queen Square Division, UCLH NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
30
|
Tax CMW, Duits R, Vilanova A, ter Haar Romeny BM, Hofman P, Wagner L, Leemans A, Ossenblok P. Evaluating contextual processing in diffusion MRI: application to optic radiation reconstruction for epilepsy surgery. PLoS One 2014; 9:e101524. [PMID: 25077946 PMCID: PMC4117467 DOI: 10.1371/journal.pone.0101524] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/09/2014] [Indexed: 11/18/2022] Open
Abstract
Diffusion MRI and tractography allow for investigation of the architectural configuration of white matter in vivo, offering new avenues for applications like presurgical planning. Despite the promising outlook, there are many pitfalls that complicate its use for (clinical) application. Amongst these are inaccuracies in the geometry of the diffusion profiles on which tractography is based, and poor alignment with neighboring profiles. Recently developed contextual processing techniques, including enhancement and well-posed geometric sharpening, have shown to result in sharper and better aligned diffusion profiles. However, the research that has been conducted up to now is mainly of theoretical nature, and so far these techniques have only been evaluated by visual inspection of the diffusion profiles. In this work, the method is evaluated in a clinically relevant application: the reconstruction of the optic radiation for epilepsy surgery. For this evaluation we have developed a framework in which we incorporate a novel scoring procedure for individual pathways. We demonstrate that, using enhancement and sharpening, the extraction of an anatomically plausible reconstruction of the optic radiation from a large amount of probabilistic pathways is greatly improved in three healthy controls, where currently used methods fail to do so. Furthermore, challenging reconstructions of the optic radiation in three epilepsy surgery candidates with extensive brain lesions demonstrate that it is beneficial to integrate these methods in surgical planning.
Collapse
Affiliation(s)
- Chantal M. W. Tax
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomedical Engineering, Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, The Netherlands
- * E-mail:
| | - Remco Duits
- Department of Biomedical Engineering, Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anna Vilanova
- Department of Biomedical Engineering, Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Bart M. ter Haar Romeny
- Department of Biomedical Engineering, Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Paul Hofman
- Department of Function and Medical Technology, Epilepsy Center Kempenhaeghe, Heeze, The Netherlands
| | - Louis Wagner
- Department of Function and Medical Technology, Epilepsy Center Kempenhaeghe, Heeze, The Netherlands
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pauly Ossenblok
- Department of Biomedical Engineering, Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Function and Medical Technology, Epilepsy Center Kempenhaeghe, Heeze, The Netherlands
| |
Collapse
|
31
|
Borius PY, Roux FE, Valton L, Sol JC, Lotterie JA, Berry I. Can DTI fiber tracking of the optic radiations predict visual deficit after surgery? Clin Neurol Neurosurg 2014; 122:87-91. [DOI: 10.1016/j.clineuro.2014.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/02/2014] [Accepted: 04/20/2014] [Indexed: 10/25/2022]
|
32
|
Dreessen de Gervai P, Sboto-Frankenstein UN, Bolster RB, Thind S, Gruwel MLH, Smith SD, Tomanek B. Tractography of Meyer's Loop asymmetries. Epilepsy Res 2014; 108:872-82. [PMID: 24725809 DOI: 10.1016/j.eplepsyres.2014.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 01/24/2014] [Accepted: 03/16/2014] [Indexed: 11/20/2022]
Affiliation(s)
- Patricia Dreessen de Gervai
- National Research Council Institute for Biodiagnostics, Magnetic Resonance Technology, 435 Ellice Avenue, Winnipeg, MB R3B 1Y6, Canada
| | | | - R Bruce Bolster
- National Research Council Institute for Biodiagnostics, Magnetic Resonance Technology, 435 Ellice Avenue, Winnipeg, MB R3B 1Y6, Canada; Biopsychology Program, Department of Psychology, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada
| | - Sunny Thind
- National Research Council Institute for Biodiagnostics, Magnetic Resonance Technology, 435 Ellice Avenue, Winnipeg, MB R3B 1Y6, Canada
| | - Marco L H Gruwel
- National Research Council Aquatic and Crop Resource Development, 435 Ellice Avenue, Winnipeg, MB R3B 1Y6, Canada
| | - Stephen D Smith
- National Research Council Institute for Biodiagnostics, Magnetic Resonance Technology, 435 Ellice Avenue, Winnipeg, MB R3B 1Y6, Canada; Biopsychology Program, Department of Psychology, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada
| | - Boguslaw Tomanek
- Alberta Innovates Technology Futures, 435 Ellice Avenue, Winnipeg, MB R3B 1Y6, Canada; Multimodal and Functional Imaging Group, Central Europe Institute of Technology, Kamenice 753, Brno CZ-62500, Czech Republic
| |
Collapse
|
33
|
Application of diffusion tensor imaging and tractography of the optic radiation in anterior temporal lobe resection for epilepsy: a systematic review. Clin Neurol Neurosurg 2014; 124:59-65. [PMID: 25016240 DOI: 10.1016/j.clineuro.2014.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/08/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Approximately 50-100% of patients with temporal lobe epilepsy undergoing anterior temporal lobe resection (ATLR) will suffer a postoperative visual field defect (VFD) due to disruption of the optic radiation (OpR). OBJECTIVE We conducted a systematic review of the literature to examine the role of DTI and tractography in ATLR and its potential in reducing the incidence of postoperative VFD. METHODS We conducted an electronic literature search using PubMed, Embase, Web of Science and BMJ case report databases. Eligibility for study inclusion was determined on abstract screening using the following criteria: the study must have been (1) an original investigation or case report in humans; (2) investigating the OpR with DTI in cases of ATLR in temporal lobe epilepsy; (3) investigating postoperative VFD. All forms of ATLR and ways of assessing VFD were included to reflect clinical practice. RESULTS 13 studies (four case reports, eight prospective observational studies, one prospective comparative trial) were included in the review, 179 (mean±SD, 13.8±12.6; range, 1-48) subjects were investigated using DTI. The time of postoperative VFD measurement differed between the detected studies, ranging from two weeks to nine years following ATLR. A modest number of studies and insufficient statistical homogeneity precluded meta-analysis. However, DTI methods were consistently accurate at quantifying and predicting postoperative damage to the OpR. These methods revealed a correlation between the extent of OpR damage and the severity of postoperative VFD. The first and only trial with 15 subjects compared to 23 controls reported that using intraoperative tractography in ATLR significantly reduces the occurrence of postoperative VFD on comparison to conventional surgical planning. CONCLUSIONS DTI shows potential to be an effective method used in planning ATLR. Findings from a single modest sized study suggest that tractography may be employed as part of intraoperative navigation techniques in order to avoid injury to the OpR. Further research needs to be conducted to ensure the applicability and effectiveness of this technology before implementation in routine clinical practice.
Collapse
|
34
|
Diffusion tensor imaging analysis of optic radiation using readout-segmented echo-planar imaging. Surg Radiol Anat 2014; 36:973-80. [PMID: 24771005 DOI: 10.1007/s00276-014-1299-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE To investigate the diffusion tensor imaging parameters of the optic radiation and surrounding structures using the high-resolution readout-segmented diffusion tensor imaging method. MATERIALS AND METHODS Coronal readout-segmented diffusion tensor images were acquired in 15 healthy volunteers. On three slices of each image, eigenvalue 1, fractional anisotropy, radial diffusivity, apparent diffusion coefficient, and signal intensity on T2-weighted images were measured in the lateral inferior longitudinal fasciculus, external and internal layers of the optic radiation, and the tapetum within regions of interest delineated by two independent observers. Profile curve analysis of regions of interest across the optic radiation and surrounding structures was performed for a representative typical case. RESULTS Significant differences in fractional anisotropy, radial diffusivity and apparent diffusion coefficient were observed between external and internal layers of the optic radiation, while there was no significant difference in eigenvalue 1. In fractional anisotropy maps, two low signal bands were observed between the inferior longitudinal fasciculus, the optic radiation and the tapetum. Profile curve analysis showed a minimum on the fractional anisotropy and eigenvalue 1 images and a maximum in the radial diffusivity image. CONCLUSION Readout-segmented diffusion tensor imaging revealed significant differences in the diffusion tensor imaging parameters between internal and external layers of the optic radiation.
Collapse
|
35
|
Schmitt FC, Kaufmann J, Hoffmann MB, Tempelmann C, Kluge C, Rampp S, Voges J, Heinze HJ, Buentjen L, Grueschow M. Case report: practicability of functionally based tractography of the optic radiation during presurgical epilepsy work up. Neurosci Lett 2014; 568:56-61. [PMID: 24690576 DOI: 10.1016/j.neulet.2014.03.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/05/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
Pre-operative tractography of the optic radiation (OR) has been advised to assess the risk for postoperative visual field deficit (VFD) in certain candidates for resective epilepsy surgery. Diffusion tensor imaging (DTI) tractography relies on a precise anatomical determination of start and target regions of interest (ROIs), such as the lateral geniculate nucleus (LGN) and the primary visual cortex (V1). The post-chiasmal visual pathway and V1 show considerable inter-individual variability, and in epilepsy patients parenchymatous lesions might further complicate this matter. A functionally based tractography (FBT) seems beneficial for precise OR identification. We assessed practicability of FBT for OR identification in a patient with occipital lobe epilepsy due to a temporo-occipital maldevelopmental tumor. The MRI protocol at 3T included a T1-weighted sagittal 3D scan, a T2-weighted axial 2D scan and a DTI scan using an echo planar spin echo sequence. ROIs for fiber tracking of OR (LGN & V1) were determined with T2*-weighted fMRI-based retinotopic assessment. After DTI pre-processing and fiber tracking, paths with similar properties were combined in clusters for visual presentation and OR localization. Retinotopic phase maps allowed for the identification of V1 and LGN for a precise DTI-based reconstruction of OR, which was distant to the patient's tumor. Location and structure of ORs were comparable in each hemisphere. FBT could thus influence the human research of the extrastriate visual pathway and the risk management of post-operative VFD in epilepsy surgery.
Collapse
Affiliation(s)
- F C Schmitt
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - J Kaufmann
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - M B Hoffmann
- Department of Ophthalmology, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany; Center for Behavioural Brain Science (CBBS), Otto-von-Guericke-University, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - C Tempelmann
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - C Kluge
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany; Center for Behavioural Brain Science (CBBS), Otto-von-Guericke-University, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - S Rampp
- Epilepsy Center Erlangen, University of Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - J Voges
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany; Leibnitz Institute of Neurobiology, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - H J Heinze
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany; Leibnitz Institute of Neurobiology, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - L Buentjen
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - M Grueschow
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany; Department of Economics, University Zurich, Blümlisalpstrasse 10, CH-8006 Zurich, Switzerland
| |
Collapse
|
36
|
Visualizing Meyer's loop: A comparison of deterministic and probabilistic tractography. Epilepsy Res 2014; 108:481-90. [PMID: 24559840 DOI: 10.1016/j.eplepsyres.2014.01.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/29/2013] [Accepted: 01/14/2014] [Indexed: 11/20/2022]
Abstract
BACKGROUND Diffusion tensor tractography of the anterior extent of the optic radiation - Meyer's loop - prior to temporal lobe resection (TLR) may reduce the risk for postoperative visual field defect. Currently there is no standardized way to perform tractography. OBJECTIVE To visualize Meyer's loop using deterministic (DTG) and probabilistic tractography (PTG) at different probability levels, with the primary aim to explore possible differences between methods, and the secondary aim to explore anatomical accuracy. METHODS Twenty-three diffusion tensor imaging exams (11 controls and 7 TLR-patients, pre- and post-surgical) were analyzed using DTG and PTG thresholded at probability levels 0.2%, 0.5%, 1%, 5% and 10%. The distance from the tip of the temporal lobe to the anterior limit of Meyer's loop (TP-ML) was measured in 46 optic radiations. Differences in TP-ML between the methods were compared. Results of the control group were compared to dissection studies and to a histological atlas. RESULTS For controls and patients together, there were statistically significant differences (p<0.01) for TP-ML between all methods thresholded at PTG ≤1% compared to all methods thresholded at PTG ≥5% and DTG. There were no statistically significant differences between PTG 0.2%, 0.5% and 1% or between PTG 5%, 10% and DTG. For the control group, PTG ≤1% showed a closer match to dissection studies and PTG 1% showed the best match to histological tracings of Meyer's loop. CONCLUSIONS Choice of tractography method affected the visualized location of Meyer's loop significantly in a heterogeneous, clinically relevant study group. For the controls, PTG at probability levels ≤1% was a closer match to dissection studies. To determine the anterior extent of Meyer's loop, PTG is superior to DTG and the probability level of PTG matters.
Collapse
|
37
|
Lee DH, Park JW, Hong CP. Quantitative volumetric analysis of the optic radiation in the normal human brain using diffusion tensor magnetic resonance imaging-based tractography. Neural Regen Res 2014; 9:280-4. [PMID: 25206813 PMCID: PMC4146140 DOI: 10.4103/1673-5374.128223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2013] [Indexed: 11/29/2022] Open
Abstract
To attain the volumetric information of the optic radiation in normal human brains, we performed diffusion tensor imaging examination in 13 healthy volunteers. Simultaneously, we used a brain normalization method to reduce individual brain variation and increase the accuracy of volumetric information analysis. In addition, tractography-based group mapping method was also used to investigate the probability and distribution of the optic radiation pathways. Our results showed that the measured optic radiation fiber tract volume was a range of about 0.16% and that the fractional anisotropy value was about 0.53. Moreover, the optic radiation probability fiber pathway that was determined with diffusion tensor tractography-based group mapping was able to detect the location relatively accurately. We believe that our methods and results are helpful in the study of optic radiation fiber tract information.
Collapse
Affiliation(s)
- Dong-Hoon Lee
- Center for Medical Metrology, Division of Convergence Technology, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea ; Department of Radiological Science, College of Health Science, Yonsei University, Wonju, Republic of Korea
| | - Ji-Won Park
- Department of Physical Therapy, College of Medical Science, Catholic University of Daegu, Daegu, Republic of Korea
| | - Cheol-Pyo Hong
- Center for Medical Metrology, Division of Convergence Technology, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| |
Collapse
|
38
|
Dayan M, Munoz M, Jentschke S, Chadwick MJ, Cooper JM, Riney K, Vargha-Khadem F, Clark CA. Optic radiation structure and anatomy in the normally developing brain determined using diffusion MRI and tractography. Brain Struct Funct 2013; 220:291-306. [PMID: 24170375 PMCID: PMC4286633 DOI: 10.1007/s00429-013-0655-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/26/2013] [Indexed: 11/28/2022]
Abstract
The optic radiation (OR) is a component of the visual system known to be myelin mature very early in life. Diffusion tensor imaging (DTI) and its unique ability to reconstruct the OR in vivo were used to study structural maturation through analysis of DTI metrics in a cohort of 90 children aged 5–18 years. As the OR is at risk of damage during epilepsy surgery, we measured its position relative to characteristic anatomical landmarks. Anatomical distances, DTI metrics and volume of the OR were investigated for age, gender and hemisphere effects. We observed changes in DTI metrics with age comparable to known trajectories in other white matter tracts. Left lateralization of DTI metrics was observed that showed a gender effect in lateralization. Sexual dimorphism of DTI metrics in the right hemisphere was also found. With respect to OR dimensions, volume was shown to be right lateralised and sexual dimorphism demonstrated for the extent of the left OR. The anatomical results presented for the OR have potentially important applications for neurosurgical planning.
Collapse
Affiliation(s)
- Michael Dayan
- Imaging and Biophysics Unit, UCL Institute of Child Health, London, UK,
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Winston GP. Epilepsy surgery, vision, and driving: what has surgery taught us and could modern imaging reduce the risk of visual deficits? Epilepsia 2013; 54:1877-88. [PMID: 24199825 PMCID: PMC4030586 DOI: 10.1111/epi.12372] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2013] [Indexed: 11/29/2022]
Abstract
Up to 40% of patients with temporal lobe epilepsy (TLE) are refractory to medication. Surgery is an effective treatment but may cause new neurologic deficits including visual field deficits (VFDs). The ability to drive after surgery is a key goal, but a postoperative VFD precludes driving in 4-50% of patients even if seizure-free. VFDs are a consequence of damage to the most anterior portion of the optic radiation, Meyer's loop. Anatomic dissection reveals that the anterior extent of Meyer's loop is highly variable and may clothe the temporal horn, a key landmark entered during temporal lobe epilepsy surgery. Experience from surgery since the 1940s has shown that VFDs are common (48-100%) and that the degree of resection affects the frequency or severity of the deficit. The pseudowedge shape of the deficit has led to a revised retinotopic model of the organization of the optic radiation. Evidence suggests that the left optic radiation is more anterior and thus at greater risk. Alternative surgical approaches, such as selective amygdalo-hippocampectomy, may reduce this risk, but evidence is conflicting or lacking. The optic radiation can be delineated in vivo using diffusion tensor imaging tractography, which has been shown to be useful in predicting the postoperative VFDs and in surgical planning. These data are now being used for surgical guidance with the aim of reducing the severity of VFDs. Compensation for brain shift occurring during surgery can be performed using intraoperative magnetic resonance imaging (MRI), but the additional utility of this expensive technique remains unproven.
Collapse
Affiliation(s)
- Gavin P Winston
- Epilepsy Society MRI Unit, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
40
|
Optic radiation fiber tractography in glioma patients based on high angular resolution diffusion imaging with compressed sensing compared with diffusion tensor imaging - initial experience. PLoS One 2013; 8:e70973. [PMID: 23923036 PMCID: PMC3724794 DOI: 10.1371/journal.pone.0070973] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 06/26/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Up to now, fiber tractography in the clinical routine is mostly based on diffusion tensor imaging (DTI). However, there are known drawbacks in the resolution of crossing or kissing fibers and in the vicinity of a tumor or edema. These restrictions can be overcome by tractography based on High Angular Resolution Diffusion Imaging (HARDI) which in turn requires larger numbers of gradients resulting in longer acquisition times. Using compressed sensing (CS) techniques, HARDI signals can be obtained by using less non-collinear diffusion gradients, thus enabling the use of HARDI-based fiber tractography in the clinical routine. METHODS Eight patients with gliomas in the temporal lobe, in proximity to the optic radiation (OR), underwent 3T MRI including a diffusion-weighted dataset with 30 gradient directions. Fiber tractography of the OR using a deterministic streamline algorithm based on DTI was compared to tractography based on reconstructed diffusion signals using HARDI+CS. RESULTS HARDI+CS based tractography displayed the OR more conclusively compared to the DTI-based results in all eight cases. In particular, the potential of HARDI+CS-based tractography was observed for cases of high grade gliomas with significant peritumoral edema, larger tumor size or closer proximity of tumor and reconstructed fiber tract. CONCLUSIONS Overcoming the problem of long acquisition times, HARDI+CS seems to be a promising basis for fiber tractography of the OR in regions of disturbed diffusion, areas of high interest in glioma surgery.
Collapse
|
41
|
Abstract
The potential utility of diffusion tensor (DT) imaging in clinical practice is broad, and new applications continue to evolve as technology advances. Clinical applications of DT imaging and tractography include tissue characterization, lesion localization, and mapping of white matter tracts. DT imaging metrics are sensitive to microstructural changes associated with central nervous system disease; however, further research is needed to enhance specificity so as to facilitate more widespread clinical application. Preoperative tract mapping, with either directionally encoded color maps or tractography, provides useful information to the neurosurgeon and has been shown to improve clinical outcomes.
Collapse
|
42
|
Benjamin CFA, Singh JM, Prabhu SP, Warfield SK. Optimization of tractography of the optic radiations. Hum Brain Mapp 2012; 35:683-97. [PMID: 23225566 DOI: 10.1002/hbm.22204] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/13/2012] [Accepted: 08/29/2012] [Indexed: 11/12/2022] Open
Abstract
Imaging and delineation of the optic radiations (OpRs) remains challenging, despite repeated attempts to achieve reliable validated tractography of this complex structure. Previous studies have used varying methods to generate representations of the OpR which differ markedly from one another and, frequently, from the OpR's known structure. We systematically examined the influence of a key variable that has differed across previous studies, the tractography seed region, in 13 adult participants (nine male; mean age 31 years; SD 8.7 years; range 16-47). First, we compared six seed regions at the lateral geniculate nucleus (LGN) and sagittal stratum based on the literature and known OpR anatomy. Three of the LGN regions seeded streamlines consistent with the OpR's three "bundles," whereas a fourth seeded streamlines consistent with each of the three bundles. The remaining two generated OpR streamlines unreliably and inconsistently. Two stratum regions seeded the radiations. This analysis identified a set of optimal regions of interest (ROI) for seeding OpR tractography and important inclusion and exclusion ROI. An optimized approach was then used to seed LGN regions to the stratum. The radiations, including streamlines consistent with Meyer's Loop, were streamlined in all cases. Streamlines extended 0.2 ± 2.4 mm anterior to the tip of the anterior horn of the lateral ventricle. These data suggest some existing approaches likely seed representations of the OpR that are visually plausible but do not capture all OpR components, and that using an optimized combination of regions seeded previously allows optimal mapping of this complex structure.
Collapse
Affiliation(s)
- Christopher F A Benjamin
- Harvard Medical School, Boston, Massachusetts; Department of Radiology, Boston Children's Hospital, Boston, Massachusetts; Semel institute, UCLA, Los Angeles, California
| | | | | | | |
Collapse
|
43
|
Wu W, Rigolo L, O'Donnell LJ, Norton I, Shriver S, Golby AJ. Visual pathway study using in vivo diffusion tensor imaging tractography to complement classic anatomy. Neurosurgery 2012; 70:145-56; discussion 156. [PMID: 21808220 DOI: 10.1227/neu.0b013e31822efcae] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Knowledge of the individual course of the optic radiations (ORs) is important to avoid postoperative visual deficits. Cadaveric studies of the visual pathways are limited because it has not been possible to separate the OR from neighboring tracts accurately and results may not apply to individual patients. Diffusion tensor imaging studies may be able to demonstrate the relationships between the OR and neighboring fibers in vivo in individual subjects. OBJECTIVE To use diffusion tensor imaging tractography to study the OR and the Meyer loop (ML) anatomy in vivo. METHODS Ten healthy subjects underwent magnetic resonance imaging with diffusion imaging at 3 T. With the use of a fiducial-based diffusion tensor imaging tractography tool (Slicer 3.3), seeds were placed near the lateral geniculate nucleus to reconstruct individual visual pathways and neighboring tracts. Projections of the ORs onto 3-dimensional brain models were shown individually to quantify relationships to key landmarks. RESULTS Two patterns of visual pathways were found. The OR ran more commonly deep in the whole superior and middle temporal gyri and superior temporal sulcus. The OR was closely surrounded in all cases by an inferior longitudinal fascicle and a parieto/occipito/temporo-pontine fascicle. The mean left and right distances between the tip of the OR and temporal pole were 39.8 ± 3.8 and 40.6 ± 5.7 mm, respectively. CONCLUSION Diffusion tensor imaging tractography provides a practical complementary method to study the OR and the Meyer loop anatomy in vivo with reference to individual 3-dimensional brain anatomy.
Collapse
Affiliation(s)
- Wentao Wu
- Brigham and Women's Hospital, Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
44
|
Sun GC, Chen XL, Zhao Y, Wang F, Hou BK, Wang YB, Song ZJ, Wang D, Xu BN. Intraoperative high-field magnetic resonance imaging combined with fiber tract neuronavigation-guided resection of cerebral lesions involving optic radiation. Neurosurgery 2012; 69:1070-84; discussion 1084. [PMID: 21654536 DOI: 10.1227/neu.0b013e3182274841] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Intraoperative magnetic resonance imaging (iMRI) combined with optic radiation neuronavigation may be safer for resection of cerebral lesions involving the optic radiation. OBJECTIVE To investigate whether iMRI combined with optic radiation neuronavigation can help maximize tumor resection while protecting the patient's visual field. METHODS Forty-four patients with cerebral tumors adjacent to the optic radiation were enrolled in the study. The reconstructed optic radiations were observed so that a reasonable surgical plan could be developed. During the surgery, microscope-based fiber tract neuronavigation was routinely implemented. The lesion location (lateral or not to the optic radiation) and course of the optic radiation (stretched or not) were categorized, and their relationships to the visual field defect were determined. RESULTS Analysis of the visible relationship between the optic radiation and the lesion led to a change in surgical approach in 6 patients (14%). The mean tumor residual rate for glioma patients was 5.3% (n = 36) and 0% for patients with nonglioma lesions (n = 8). Intraoperative MRI and fiber tract neuronavigation increased the average size of resection (first and last iMRI scanning, 88.3% vs 95.7%; P < .01). Visual fields after surgery improved in 5 cases (11.4%), exhibited no change in 36 cases (81.8%), and were aggravated in 3 cases (6.8%). CONCLUSION Diffusion tensor imaging information was helpful in surgical planning. When iMRI was combined with fiber tract neuronavigation, the resection rate of brain lesions involving the optic radiation was increased in most patients without harming the patients' visual fields.
Collapse
Affiliation(s)
- Guo-chen Sun
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mandelstam SA. Challenges of the anatomy and diffusion tensor tractography of the Meyer loop. AJNR Am J Neuroradiol 2012; 33:1204-10. [PMID: 22422189 DOI: 10.3174/ajnr.a2652] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This review addresses the complex and often controversial anatomy of the anterior bundle of the OR, also known as the Meyer loop. Before the advent of MR imaging, 2 main types of studies attempted to ascertain the "safe" distance for anterior temporal lobe resection to avoid postsurgical VFDs. There were those based first on postoperative VFD correlation and second on anatomic dissection studies. In the past decade, noninvasive diffusion MR imaging-based tractography techniques have been developed in an attempt to elucidate white matter connectivity. Although many of these techniques are still experimental, there are some clinical situations for which they may prove to be very helpful if properly performed and validated. The motivation for this review was to improve the outcome of patients with TLE undergoing temporal lobectomy: Would having anatomic information about the OR available to the neurosurgeon decrease the risk of postsurgical VFDs?
Collapse
Affiliation(s)
- S A Mandelstam
- Florey Neuroscience and Brain Research Institutes, Melbourne Brain Centre, Heidelberg, Victoria, Australia.
| |
Collapse
|
46
|
Winston GP, Daga P, Stretton J, Modat M, Symms MR, McEvoy AW, Ourselin S, Duncan JS. Optic radiation tractography and vision in anterior temporal lobe resection. Ann Neurol 2012; 71:334-41. [PMID: 22451201 PMCID: PMC3698700 DOI: 10.1002/ana.22619] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Objective Anterior temporal lobe resection (ATLR) is an effective treatment for refractory temporal lobe epilepsy but may result in a contralateral superior visual field deficit (VFD) that precludes driving in the seizure-free patient. Diffusion tensor imaging (DTI) tractography can delineate the optic radiation preoperatively and stratify risk. It would be advantageous to incorporate display of tracts into interventional magnetic resonance imaging (MRI) to guide surgery. Methods We studied 20 patients undergoing ATLR. Structural MRI scans, DTI, and visual fields were acquired before and 3 to 12 months following surgery. Tractography of the optic radiation was performed on preoperative images and propagated onto postoperative images. The anteroposterior extent of the damage to Meyer's loop was determined, and visual loss was quantified using Goldmann perimetry. Results Twelve patients (60%) suffered a VFD (10–92% of upper quadrant; median, 39%). Image registration took <3 minutes and predicted that Meyer's loop was 4.4 to 18.7mm anterior to the resection margin in these patients, but 0.0 to 17.6mm behind the resection margin in the 8 patients without VFD. The extent of damage to Meyer's loop significantly correlated with the degree of VFD and explained 65% of the variance in this measure. Interpretation The optic radiation can be accurately delineated by tractography and propagated onto postoperative images. The technique is fast enough to propagate accurate preoperative tractography onto intraoperative scans acquired during neurosurgery, with the potential to reduce the risk of VFD. ANN NEUROL 2012;
Collapse
Affiliation(s)
- Gavin P Winston
- Epilepsy Society Magnetic Resonance Imaging Unit, Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, and Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Development and dysgenesis of the cerebral cortex: malformations of cortical development. Neuroimaging Clin N Am 2012; 21:483-543, vii. [PMID: 21807310 DOI: 10.1016/j.nic.2011.05.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cerebral cortex develops in several stages from a pseudostratified epithelium at 5 weeks to an essentially complete cortex at 47 weeks. Cortical connectivity starts with thalamocortical connections in the 3rd trimester only and continues until well after birth. Vascularity adapts to proliferation and connectivity. Malformations of cortical development are classified into disorders of specification, proliferation/apoptosis, migration, and organization. However, all processes are intermingled, as for example a dysplastic cell may migrate incompletely and not connect appropriately. However, this classification is convenient for didactic purposes as long as the complex interactions between the different processes are kept in mind.
Collapse
|
48
|
Abstract
From their origin as simple techniques primarily used for detecting acute cerebral ischemia, diffusion MR imaging techniques have rapidly evolved into a versatile set of tools that provide the only noninvasive means of characterizing brain microstructure and connectivity, becoming a mainstay of both clinical and investigational brain MR imaging. In this article, the basic principles required for understanding diffusion MR imaging techniques are reviewed with clinical neuroradiologists in mind.
Collapse
Affiliation(s)
- Edward Yang
- Division of Neuroradiology, Department of Radiology, University of Pennsylvania School of Medicine, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
49
|
Leclercq D, Delmaire C, de Champfleur NM, Chiras J, Lehéricy S. Diffusion tractography: methods, validation and applications in patients with neurosurgical lesions. Neurosurg Clin N Am 2011; 22:253-68, ix. [PMID: 21435575 DOI: 10.1016/j.nec.2010.11.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Diffusion tensor imaging (DTI) tractography is increasingly used in presurgical mapping in tumors located in eloquent areas since it is the only non invasive technique that permits in vivo dissection of white matter tracts. Concordance between the DTI tracts and subcortical electrical intraoperative mapping is high, and DTI tractography has proven useful to guide surgery. However, it presents limitations due to the technique and the tumor, which must be known before using the images in the operative room. This review focuses on the possibilities and limits of DTI imaging in intraoperative tumoral mapping and presents an overview of current knowledge.
Collapse
Affiliation(s)
- Delphine Leclercq
- Centre de NeuroImagerie de Recherche-CENIR, Groupe Hospitalier Pitié-Salpêtrière 47-83, Bd de l'Hôpital, 75013 Paris, France.
| | | | | | | | | |
Collapse
|
50
|
Lutz M, Mayer T, Schiefer U. Empfehlungen für eine standardisierte Perimetrie im Rahmen epilepsiechirurgischer Eingriffe. Ophthalmologe 2011; 108:628-36. [DOI: 10.1007/s00347-011-2390-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|