1
|
Reddy DS, Vadassery A, Ramakrishnan S, Singh T, Clossen B, Wu X. Kindling Models of Epileptogenesis for Developing Disease-Modifying Drugs for Epilepsy. Curr Protoc 2024; 4:e70020. [PMID: 39436626 PMCID: PMC11498896 DOI: 10.1002/cpz1.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Kindling models are widely used animal models to study the pathobiology of epilepsy and epileptogenesis. These models exhibit distinctive features whereby sub-threshold stimuli instigate the initial induction of brief focal seizures. Over time, the severity and duration of these seizures progressively increase, leading to a fully epileptic state, which is marked by consistent development of generalized tonic-clonic seizures. Kindling involves focal stimulation via implanted depth electrodes or repeated administration of chemoconvulsants such as pentylenetetrazol. Comparative analysis of preclinical and clinical findings has confirmed a high predictive validity of fully kindled animals for testing novel antiseizure medications. Thus, kindling models remain an essential component of anticonvulsant drug development programs. This article provides a comprehensive guide to working protocols, testing of therapeutic drugs, outcome parameters, troubleshooting, and data analysis for various electrical and chemical kindling epileptogenesis models for new therapeutic development and optimization. The use of pharmacological agents or genetically modified mice in kindling experiments is valuable, offering insights into the impact of a specific target on various aspects of seizures, including thresholds, initiation, spread, termination, and the generation of a hyperexcitable network. These kindling epileptogenesis paradigms are helpful in identifying mechanisms and disease-modifying interventions for epilepsy. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Hippocampal kindling Basic Protocol 2: Amygdala kindling Basic Protocol 3: Rapid hippocampal kindling Basic Protocol 4: Chemical kindling.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
- Institute of Pharmacology and Neurotherapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Abhinav Vadassery
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Sreevidhya Ramakrishnan
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Bryan Clossen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Xin Wu
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
2
|
Song H, Mah B, Sun Y, Aloysius N, Bai Y, Zhang L. Development of spontaneous recurrent seizures accompanied with increased rates of interictal spikes and decreased hippocampal delta and theta activities following extended kindling in mice. Exp Neurol 2024; 379:114860. [PMID: 38876195 DOI: 10.1016/j.expneurol.2024.114860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Interictal epileptiform discharges refer to aberrant brain electrographic signals between seizures and feature intermittent interictal spikes (ISs), sharp waves, and/or abnormal rhythms. Recognition of these epileptiform activities by electroencephalographic (EEG) examinations greatly aids epilepsy diagnosis and localization of the seizure onset zone. ISs are a major form of interictal epileptiform discharges recognized in animal models of epilepsy. Progressive changes in IS waveforms, IS rates, and/or associated fast ripple oscillations have been shown to precede the development of spontaneous recurrent seizures (SRS) in various animal models. IS expressions in the kindling model of epilepsy have been demonstrated but IS changes during the course of SRS development in extended kindled animals remain to be detailed. We hence addressed this issue using a mouse model of kindling-induced SRS. Adult C57 black mice received twice daily hippocampal stimulations until SRS occurrence, with 24-h EEG monitoring performed following 50, 80, and ≥ 100 stimulations and after observation of SRS. In the stimulated hippocampus, increases in spontaneous ISs rates, but not in IS waveforms nor IS-associated fast ripples, along with decreased frequencies of hippocampal delta and theta rhythms, were observed before SRS onset. Comparable increases in IS rates were further observed in the unstimulated hippocampus, piriform cortex, and entorhinal cortex, but not in the unstimulated parietal cortex and dorsomedial thalamus. These data provide original evidence suggesting that increases in hippocampal IS rates, together with reductions in hippocampal delta and theta rhythms are closely associated with development of SRS in a rodent kindling model.
Collapse
Affiliation(s)
- Hongmei Song
- Department of Neurosurgery, the First Hospital of Jilin University, China; Krembil Research Institute, University Health Network, Canada.
| | - Bryan Mah
- Krembil Research Institute, University Health Network, Canada
| | - Yuqing Sun
- Krembil Research Institute, University Health Network, Canada
| | - Nancy Aloysius
- Krembil Research Institute, University Health Network, Canada
| | - Yang Bai
- Department of Neuro-Oncology, the First Hospital of Jilin University, China.
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Khan P, Saini S, Hussain S, Majid H, Gupta S, Agarwal N. A systematic review and meta-analysis on efficacy and safety of Ganaxolone in epilepsy. Expert Opin Pharmacother 2024; 25:621-632. [PMID: 38606458 DOI: 10.1080/14656566.2024.2342413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION Ganaxolone has exhibited potential in managing seizures for epilepsy. This systematic review and meta-analysis aim to assess both the safety and efficacy of Ganaxolone for refractory epilepsy. METHODS A thorough search of electronic databases was conducted to identify relevant randomized controlled trials involving patients with drug-resistant focal epilepsy and CDKL5 deficiency disorder. Efficacy and safety outcomes were extracted from the selected studies. Cochrane Review Manager was utilized for data synthesis and analysis, with risk ratios and mean differences calculated to evaluate the efficacy and safety profile of Ganaxolone. RESULTS The meta-analysis included a total of five randomized controlled trials. Ganaxolone exhibited significant efficacy in reducing seizure frequency by at least 50% from baseline [RR 0.90 (95% CI: 0.83, 0.98), p = 0.02]. However, the results did not reach significance for reducing 28-day seizure frequency [Mean Difference -1.45 (95% CI: -3.39, 0.49), p = 0.14]. Ganaxolone exhibited a positive safety profile, with no statistically significant occurrence of adverse events [RR 1.30 (95% CI: 0.93, 1.83), p = 0.12] and adverse events leading to discontinuation of the study drug [RR 1.01 (95% CI: 0.42, 2.39), p = 0.99] compared to placebo. CONCLUSION Ganaxolone presents itself as a viable therapeutic option for refractory epilepsy, showing efficacy in reducing seizure frequency and exhibited a favorable safety profile. PROSPERO REGISTRATION NUMBER CRD42023434883.
Collapse
Affiliation(s)
- Parvej Khan
- Department for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Sparsh Saini
- Department for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Shadan Hussain
- Department for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Haya Majid
- Department for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Sparsh Gupta
- Department of Pharmacology, Vardhman Mahavir Medical College & Safdarjung hospital, New Delhi, India
| | - Nidhi Agarwal
- Department for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
4
|
Richardson RJ, Petrou S, Bryson A. Established and emerging GABA A receptor pharmacotherapy for epilepsy. Front Pharmacol 2024; 15:1341472. [PMID: 38449810 PMCID: PMC10915249 DOI: 10.3389/fphar.2024.1341472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
Drugs that modulate the GABAA receptor are widely used in clinical practice for both the long-term management of epilepsy and emergency seizure control. In addition to older medications that have well-defined roles for the treatment of epilepsy, recent discoveries into the structure and function of the GABAA receptor have led to the development of newer compounds designed to maximise therapeutic benefit whilst minimising adverse effects, and whose position within the epilepsy pharmacologic armamentarium is still emerging. Drugs that modulate the GABAA receptor will remain a cornerstone of epilepsy management for the foreseeable future and, in this article, we provide an overview of the mechanisms and clinical efficacy of both established and emerging pharmacotherapies.
Collapse
Affiliation(s)
- Robert J. Richardson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Praxis Precision Medicines, Boston, MA, United States
| | - Alexander Bryson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
- Department of Neurology, Eastern Health, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Reddy DS. Neurosteroids as Novel Anticonvulsants for Refractory Status Epilepticus and Medical Countermeasures for Nerve Agents: A 15-Year Journey to Bring Ganaxolone from Bench to Clinic. J Pharmacol Exp Ther 2024; 388:273-300. [PMID: 37977814 PMCID: PMC10801762 DOI: 10.1124/jpet.123.001816] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023] Open
Abstract
This article describes recent advances in the use of neurosteroids as novel anticonvulsants for refractory status epilepticus (RSE) and as medical countermeasures (MCs) for organophosphates and chemical nerve agents (OPNAs). We highlight a comprehensive 15-year journey to bring the synthetic neurosteroid ganaxolone (GX) from bench to clinic. RSE, including when caused by nerve agents, is associated with devastating morbidity and permanent long-term neurologic dysfunction. Although recent approval of benzodiazepines such as intranasal midazolam and intranasal midazolam offers improved control of acute seizures, novel anticonvulsants are needed to suppress RSE and improve neurologic function outcomes. Currently, few anticonvulsant MCs exist for victims of OPNA exposure and RSE. Standard-of-care MCs for postexposure treatment include benzodiazepines, which do not effectively prevent or mitigate seizures resulting from nerve agent intoxication, leaving an urgent unmet medical need for new anticonvulsants for RSE. Recently, we pioneered neurosteroids as next-generation anticonvulsants that are superior to benzodiazepines for treatment of OPNA intoxication and RSE. Because GX and related neurosteroids that activate extrasynaptic GABA-A receptors rapidly control seizures and offer robust neuroprotection by reducing neuronal damage and neuroinflammation, they effectively improve neurologic outcomes after acute OPNA exposure and RSE. GX has been selected for advanced, Biomedical Advanced Research and Development Authority-supported phase 3 trials of RSE and nerve agent seizures. In addition, in mechanistic studies of neurosteroids at extrasynaptic receptors, we identified novel synthetic analogs with features that are superior to GX for current medical needs. Development of new MCs for RSE is complex, tedious, and uncertain due to scientific and regulatory challenges. Thus, further research will be critical to fill key gaps in evaluating RSE and anticonvulsants in vulnerable (pediatric and geriatric) populations and military persons. SIGNIFICANCE STATEMENT: Following organophosphate and nerve agent intoxication, refractory status epilepticus (RSE) occurs despite benzodiazepine treatment. RSE occurs in 40% of status epilepticus patients, with a 35% mortality rate and significant neurological morbidity in survivors. To treat RSE, neurosteroids are better anticonvulsants than benzodiazepines. Our pioneering use of neurosteroids for RSE and nerve agents led us to develop ganaxolone as a novel anticonvulsant and neuroprotectant with significantly improved neurological outcomes. This article describes the bench-to-bedside journey of bringing neurosteroid therapy to patients, with ganaxolone leading the way.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, Texas and Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
6
|
De SK. Ganaxolone: First FDA-approved Medicine for the Treatment of Seizures Associated with Cyclin-dependent Kinase-like 5 Deficiency Disorder. Curr Med Chem 2024; 31:388-392. [PMID: 36959132 DOI: 10.2174/0929867330666230320123952] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 03/25/2023]
Abstract
The neurosteroids progesterone and allopregnanolone control numerous neuroprotective functions in neural tissues, including inhibition of epileptic seizures and cell death. Ganaxolone (3α-hydroxy-3β-methyl-5α-pregnan-20-one) (GNX) is the 3β- methylated synthetic analog of allopregnanolone and an allosteric GABAA positive modulator. Ganaxolone reduces the frequency of CDD-associated seizures.
Collapse
Affiliation(s)
- Surya K De
- Department of Chemistry, Conju-Probe, San Diego, CA, USA
- Bharath University, Chennai, Tamil Nadu, 600126, India
| |
Collapse
|
7
|
Vitale G, Terrone G, Vitale S, Vitulli F, Aiello S, Bravaccio C, Pisano S, Bove I, Rizzo F, Seetahal-Maraj P, Wiese T. The Evolving Landscape of Therapeutics for Epilepsy in Tuberous Sclerosis Complex. Biomedicines 2023; 11:3241. [PMID: 38137462 PMCID: PMC10741146 DOI: 10.3390/biomedicines11123241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare multisystem genetic disorder characterized by benign tumor growth in multiple organs, including the brain, kidneys, heart, eyes, lungs, and skin. Pathogenesis stems from mutations in either the TSC1 or TSC2 gene, which encode the proteins hamartin and tuberin, respectively. These proteins form a complex that inhibits the mTOR pathway, a critical regulator of cell growth and proliferation. Disruption of the tuberin-hamartin complex leads to overactivation of mTOR signaling and uncontrolled cell growth, resulting in hamartoma formation. Neurological manifestations are common in TSC, with epilepsy developing in up to 90% of patients. Seizures tend to be refractory to medical treatment with anti-seizure medications. Infantile spasms and focal seizures are the predominant seizure types, often arising in early childhood. Drug-resistant epilepsy contributes significantly to morbidity and mortality. This review provides a comprehensive overview of the current state of knowledge regarding the pathogenesis, clinical manifestations, and treatment approaches for epilepsy and other neurological features of TSC. While narrative reviews on TSC exist, this review uniquely synthesizes key advancements across the areas of TSC neuropathology, conventional and emerging pharmacological therapies, and targeted treatments. The review is narrative in nature, without any date restrictions, and summarizes the most relevant literature on the neurological aspects and management of TSC. By consolidating the current understanding of TSC neurobiology and evidence-based treatment strategies, this review provides an invaluable reference that highlights progress made while also emphasizing areas requiring further research to optimize care and outcomes for TSC patients.
Collapse
Affiliation(s)
- Giovanni Vitale
- Neuroscience and Rare Diseases, Discovery and Translational Area, Roche Pharma Research and Early Development (pRED), F. Hoffmann–La Roche, 4070 Basel, Switzerland
| | - Gaetano Terrone
- Department of Translational Medical Sciences, Child and Adolescent Neuropsychiatry, University of Naples Federico II, 80138 Naples, Italy; (G.T.); (C.B.)
| | - Samuel Vitale
- School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy;
| | - Francesca Vitulli
- Department of Neurosciences and Reproductive and Dental Sciences, Division of Neurosurgery, University of Naples Federico II, 80138 Naples, Italy (I.B.)
| | - Salvatore Aiello
- Department of Translational Medical Sciences, Child and Adolescent Neuropsychiatry, University of Naples Federico II, 80138 Naples, Italy; (G.T.); (C.B.)
| | - Carmela Bravaccio
- Department of Translational Medical Sciences, Child and Adolescent Neuropsychiatry, University of Naples Federico II, 80138 Naples, Italy; (G.T.); (C.B.)
| | - Simone Pisano
- Department of Translational Medical Sciences, Child and Adolescent Neuropsychiatry, University of Naples Federico II, 80138 Naples, Italy; (G.T.); (C.B.)
| | - Ilaria Bove
- Department of Neurosciences and Reproductive and Dental Sciences, Division of Neurosurgery, University of Naples Federico II, 80138 Naples, Italy (I.B.)
| | - Francesca Rizzo
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy;
| | | | - Thomas Wiese
- Neuroscience and Rare Diseases, Discovery and Translational Area, Roche Pharma Research and Early Development (pRED), F. Hoffmann–La Roche, 4070 Basel, Switzerland
| |
Collapse
|
8
|
Perucca E, Bialer M, White HS. New GABA-Targeting Therapies for the Treatment of Seizures and Epilepsy: I. Role of GABA as a Modulator of Seizure Activity and Recently Approved Medications Acting on the GABA System. CNS Drugs 2023; 37:755-779. [PMID: 37603262 PMCID: PMC10501955 DOI: 10.1007/s40263-023-01027-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/22/2023]
Abstract
γ-Aminobutyric acid (GABA) is the most prevalent inhibitory neurotransmitter in the mammalian brain and has been found to play an important role in the pathogenesis or the expression of many neurological diseases, including epilepsy. Although GABA can act on different receptor subtypes, the component of the GABA system that is most critical to modulation of seizure activity is the GABAA-receptor-chloride (Cl-) channel complex, which controls the movement of Cl- ions across the neuronal membrane. In the mature brain, binding of GABA to GABAA receptors evokes a hyperpolarising (anticonvulsant) response, which is mediated by influx of Cl- into the cell driven by its concentration gradient between extracellular and intracellular fluid. However, in the immature brain and under certain pathological conditions, GABA can exert a paradoxical depolarising (proconvulsant) effect as a result of an efflux of chloride from high intracellular to lower extracellular Cl- levels. Extensive preclinical and clinical evidence indicates that alterations in GABAergic inhibition caused by drugs, toxins, gene defects or other disease states (including seizures themselves) play a causative or contributing role in facilitating or maintaning seizure activity. Conversely, enhancement of GABAergic transmission through pharmacological modulation of the GABA system is a major mechanism by which different antiseizure medications exert their therapeutic effect. In this article, we review the pharmacology and function of the GABA system and its perturbation in seizure disorders, and highlight how improved understanding of this system offers opportunities to develop more efficacious and better tolerated antiseizure medications. We also review the available data for the two most recently approved antiseizure medications that act, at least in part, through GABAergic mechanisms, namely cenobamate and ganaxolone. Differences in the mode of drug discovery, pharmacological profile, pharmacokinetic properties, drug-drug interaction potential, and clinical efficacy and tolerability of these agents are discussed.
Collapse
Affiliation(s)
- Emilio Perucca
- Department of Medicine (Austin Health), The University of Melbourne, Melbourne, VIC, Australia.
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia.
| | - Meir Bialer
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Reddy DS, Mbilinyi RH, Estes E. Preclinical and clinical pharmacology of brexanolone (allopregnanolone) for postpartum depression: a landmark journey from concept to clinic in neurosteroid replacement therapy. Psychopharmacology (Berl) 2023; 240:1841-1863. [PMID: 37566239 PMCID: PMC10471722 DOI: 10.1007/s00213-023-06427-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
This article describes the critical role of neurosteroids in postpartum depression (PPD) and outlines the landmark pharmacological journey of brexanolone as a first-in-class neurosteroid antidepressant with significant advantages over traditional antidepressants. PPD is a neuroendocrine disorder that affects about 20% of mothers after childbirth and is characterized by symptoms including persistent sadness, fatigue, dysphoria, as well as disturbances in cognition, emotion, appetite, and sleep. The main pathology behind PPD is the postpartum reduction of neurosteroids, referred to as neurosteroid withdrawal, a concept pioneered by our preclinical studies. We developed neurosteroid replacement therapy (NRT) as a rational approach for treating PPD and other conditions related to neurosteroid deficiency, unveiling the power of neurosteroids as novel anxiolytic-antidepressants. The neurosteroid, brexanolone (BX), is a progesterone-derived allopregnanolone that rapidly relieves anxiety and mood deficits by activating GABA-A receptors, making it a transformational treatment for PPD. In 2019, the FDA approved BX, an intravenous formulation of allopregnanolone, as an NRT to treat PPD. In clinical studies, BX significantly improved PPD symptoms within hours of administration, with tolerable side effects including headache, dizziness, and somnolence. We identified the molecular mechanism of BX in a neuronal PPD-like milieu. The mechanism of BX involves activation of both synaptic and extrasynaptic GABA-A receptors, which promote tonic inhibition and serve as a key target for PPD and related conditions. Neurosteroids offer several advantages over traditional antidepressants, including rapid onset, unique mechanism, and lack of tolerance upon repeated use. Some limitations of BX therapy include lack of aqueous solubility, limited accessibility, hospitalization for treatment, lack of oral product, and serious adverse events at high doses. However, the unmet need for synthetic neurosteroids to address this critical condition supersedes these limitations. Recently, we developed novel hydrophilic neurosteroids with a superior profile and improved drug delivery. Overall, approval of BX is a major milestone in the field of neurotherapeutics, paving the way for the development of novel synthetic neurosteroids to treat depression, epilepsy, and status epilepticus.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, 77807, USA.
- Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
| | - Robert H Mbilinyi
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, 77807, USA
| | - Emily Estes
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, 77807, USA
| |
Collapse
|
10
|
Pagano J, Landi S, Stefanoni A, Nardi G, Albanesi M, Bauer HF, Pracucci E, Schön M, Ratto GM, Boeckers TM, Sala C, Verpelli C. Shank3 deletion in PV neurons is associated with abnormal behaviors and neuronal functions that are rescued by increasing GABAergic signaling. Mol Autism 2023; 14:28. [PMID: 37528484 PMCID: PMC10394945 DOI: 10.1186/s13229-023-00557-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder characterized by developmental delay, intellectual disability, and autistic-like behaviors and is primarily caused by haploinsufficiency of SHANK3 gene. Currently, there is no specific treatment for PMS, highlighting the need for a better understanding of SHANK3 functions and the underlying pathophysiological mechanisms in the brain. We hypothesize that SHANK3 haploinsufficiency may lead to alterations in the inhibitory system, which could be linked to the excitatory/inhibitory imbalance observed in models of autism spectrum disorder (ASD). Investigation of these neuropathological features may shed light on the pathogenesis of PMS and potential therapeutic interventions. METHODS We recorded local field potentials and visual evoked responses in the visual cortex of Shank3∆11-/- mice. Then, to understand the impact of Shank3 in inhibitory neurons, we generated Pv-cre+/- Shank3Fl/Wt conditional mice, in which Shank3 was deleted in parvalbumin-positive neurons. We characterized the phenotype of this murine model and we compared this phenotype before and after ganaxolone administration. RESULTS We found, in the primary visual cortex, an alteration of the gain control of Shank3 KO compared with Wt mice, indicating a deficit of inhibition on pyramidal neurons. This alteration was rescued after the potentiation of GABAA receptor activity by Midazolam. Behavioral analysis showed an impairment in grooming, memory, and motor coordination of Pv-cre+/- Shank3Fl/Wt compared with Pv-cre+/- Shank3Wt/Wt mice. These deficits were rescued with ganaxolone, a positive modulator of GABAA receptors. Furthermore, we demonstrated that treatment with ganaxolone also ameliorated evocative memory deficits and repetitive behavior of Shank3 KO mice. LIMITATIONS Despite the significant findings of our study, some limitations remain. Firstly, the neurobiological mechanisms underlying the link between Shank3 deletion in PV neurons and behavioral alterations need further investigation. Additionally, the impact of Shank3 on other classes of inhibitory neurons requires further exploration. Finally, the pharmacological activity of ganaxolone needs further characterization to improve our understanding of its potential therapeutic effects. CONCLUSIONS Our study provides evidence that Shank3 deletion leads to an alteration in inhibitory feedback on cortical pyramidal neurons, resulting in cortical hyperexcitability and ASD-like behavioral problems. Specifically, cell type-specific deletion of Shank3 in PV neurons was associated with these behavioral deficits. Our findings suggest that ganaxolone may be a potential pharmacological approach for treating PMS, as it was able to rescue the behavioral deficits in Shank3 KO mice. Overall, our study highlights the importance of investigating the role of inhibitory neurons and potential therapeutic interventions in neurodevelopmental disorders such as PMS.
Collapse
Affiliation(s)
- Jessica Pagano
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Silvia Landi
- CNR, Neuroscience Institute, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Alessia Stefanoni
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Gabriele Nardi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Marica Albanesi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Helen F Bauer
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Enrico Pracucci
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Gian Michele Ratto
- CNR, Neuroscience Institute, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
- Padova Neuroscience Center, Università degli Studi di Padova, Padua, Italy
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- DZNE, Ulm Site, Ulm, Germany
| | - Carlo Sala
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Chiara Verpelli
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy.
| |
Collapse
|
11
|
Golub V, Ramakrishnan S, Reddy DS. Isobolographic analysis of adjunct antiseizure activity of the FDA-approved cannabidiol with neurosteroids and benzodiazepines in adult refractory focal onset epilepsy. Exp Neurol 2023; 360:114294. [PMID: 36493860 PMCID: PMC9884179 DOI: 10.1016/j.expneurol.2022.114294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/27/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Epilepsy is a serious neurological disorder associated with recurrent and unpredictable seizures and extensive neuropsychiatric comorbidities. There is no cure for epilepsy, and over one third of epileptic patients have been diagnosed with drug-refractory epilepsy, indicating the critical need for novel antiseizure medications (ASMs). Cannabidiol (CBD) has been shown to decrease seizures in pediatric epilepsies, such as Dravet and Lennox-Gastaut syndromes; however, it has not been rigorously tested for adult seizures or in models of refractory focal epilepsy. Although the exact mechanism is unknown, it is likely to act in a way that is unique to certain GABA-A receptor-modulating drugs, such as neurosteroids and benzodiazepines. In this study, we sought to determine the adjunct antiseizure activity of a clinical CBD product in an adult 6-Hz model of focal refractory epilepsy. CBD was evaluated alone in both a dose-response and time-course manner and in an adjunct combination with two ASMs ganaxolone (neurosteroid) and midazolam (benzodiazepine) against 6-Hz-induced refractory focal onset, generalized seizures. In pharmacological studies, CBD produced dose-dependent protection against seizures (ED50, 53 mg/kg, i.p.) without any side effects. CBD significantly reduced both electrographic activity and behavioral ictal responses with no apparent sex differences. CBD was evaluated in an isobologram design in conjunction with ganaxolone or midazolam at three standard ratios (1:1, 1:3, 3:1). Isobolographic analysis shows the combination regimens of CBD + ganaxolone and CBD + midazolam exerted combination index of 0.313 and 0.164, indicating strong synergism for seizure protection, with little to no toxicity. Together, these results demonstrate the therapeutic potential of CBD monotherapy and as an adjunct therapy for adult focal refractory epilepsy in combination with GABAergic ASMs.
Collapse
Affiliation(s)
- Victoria Golub
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Sreevidhya Ramakrishnan
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Health Institute of Pharmacology and Neurotherapeutics, Texas A&M University, Bryan, TX, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Health Institute of Pharmacology and Neurotherapeutics, Texas A&M University, Bryan, TX, USA.
| |
Collapse
|
12
|
Efficacy of the FDA-approved cannabidiol on the development and persistence of temporal lobe epilepsy and complex focal onset seizures. Exp Neurol 2023; 359:114240. [PMID: 36216124 DOI: 10.1016/j.expneurol.2022.114240] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022]
Abstract
Presently there is no drug therapy for curing epilepsy. Despite many advancements in epilepsy research, nearly 30% of people with epilepsy remain refractory to current antiseizure medications (ASM). Cannabidiol (CBD) has recently been approved as an ASM for pediatric refractory seizures, but it has not been widely tested for adult epileptogenesis and focal onset seizures. In this study, we investigated the efficacy of the FDA-approved CBD in controlling epileptogenesis and complex focal onset seizures using the mouse kindling model of human temporal lobe epilepsy. We also tested combination regimens of CBD with other ASMs. The two primary outcome measures were disease modification and suppression of generalized seizures. In the epileptogenesis study, CBD had a striking effect in attenuating kindling development, with a dose-dependent decrease in behavioral and electrographic seizure activity. In the retention study, mice previously treated with CBD had significantly reduced overall seizure burden, suggesting disease modification. In a fully-kindled seizure study, CBD produced rapid and atypical U-shaped dose-dependent protection against generalized seizures (ED50, 52 mg/kg, i.p.). In a time-course study, CBD showed a maximal protective effect within 1 h of injection, and it declined within 4 h with a biphasic response. In the combination study, CBD produced synergistic/ additive protection when given with midazolam and ganaxolone but not with tiagabine, indicating its strong potential as an adjunct ASM. Finally, the protective effects of CBD were not associated with motor and functional impairments. These preclinical findings demonstrate the potential of adjunct CBD for controlling adult complex focal onset seizure conditions.
Collapse
|
13
|
Zahra A, Sun Y, Aloysius N, Zhang L. Convulsive behaviors of spontaneous recurrent seizures in a mouse model of extended hippocampal kindling. Front Behav Neurosci 2022; 16:1076718. [PMID: 36620863 PMCID: PMC9816810 DOI: 10.3389/fnbeh.2022.1076718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Growing studies indicate that vigilance states and circadian rhythms can influence seizure occurrence in patients with epilepsy and rodent models of epilepsy. Electrical kindling, referred to brief, repeated stimulations of a limbic structure, is a commonly used model of temporal lobe epilepsy. Kindling via the classic protocol lasting a few weeks does not generally induce spontaneous recurrent seizures (SRS), but extended kindling that applies over the course of a few months has shown to induce SRS in several animal species. Kindling-induced SRS in monkeys and cats were observed mainly during resting wakefulness or sleep, but the behavioral activities associated with SRS in rodent models of extended kindling remain unknown. We aimed to add information in this area using a mouse model of extended hippocampal kindling. Middle-aged C57 black mice experienced ≥80 hippocampal stimulations (delivered twice daily) and then underwent continuous 24 h electroencephalography (EEG)-video monitoring for SRS detection. SRS were recognized by EEG discharges and associated motor seizures. The five stages of the modified Racine scale for mice were used to score motor seizure severities. Seizure-preceding behaviors were assessed in a 3 min period prior to seizure onset and categorized as active and inactive. Three main observations emerged from the present analysis. (1) SRS were found to predominantly manifest as generalized (stage 3-5) motor seizures in association with tail erection or Straub tail. (2) SRS occurrences were not significantly altered by the light on/off cycle. (3) Generalized (stage 3-5) motor seizures were mainly preceded by inactive behaviors such as immobility, standing still, or apparent sleep without evident volitional movement. Considering deeper subcortical structures implicated in genesis of tail erection in other seizure models, we postulate that genesis of generalized motor seizures in extended kindled mice may involve deeper subcortical structures. Our present data together with previous findings from post-status epilepticus models support the notion that ambient cage behaviors are strong influencing factors of SRS occurrence in rodent models of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Anya Zahra
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Yuqing Sun
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nancy Aloysius
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada,*Correspondence: Liang Zhang,
| |
Collapse
|
14
|
Miller SL, Bennet L, Sutherland AE, Pham Y, McDonald C, Castillo‐Melendez M, Allison BJ, Mihelakis J, Nitsos I, Boyd BJ, Hirst JJ, Walker DW, Hunt RW, Jenkin G, Wong F, Malhotra A, Fahey MC, Yawno T. Ganaxolone versus Phenobarbital for Neonatal Seizure Management. Ann Neurol 2022; 92:1066-1079. [PMID: 36054160 PMCID: PMC9828769 DOI: 10.1002/ana.26493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Seizures are more common in the neonatal period than at any other stage of life. Phenobarbital is the first-line treatment for neonatal seizures and is at best effective in approximately 50% of babies, but may contribute to neuronal injury. Here, we assessed the efficacy of phenobarbital versus the synthetic neurosteroid, ganaxolone, to moderate seizure activity and neuropathology in neonatal lambs exposed to perinatal asphyxia. METHODS Asphyxia was induced via umbilical cord occlusion in term lambs at birth. Lambs were treated with ganaxolone (5mg/kg/bolus then 5mg/kg/day for 2 days) or phenobarbital (20mg/kg/bolus then 5mg/kg/day for 2 days) at 6 hours. Abnormal brain activity was classified as stereotypic evolving (SE) seizures, epileptiform discharges (EDs), and epileptiform transients (ETs) using continuous amplitude-integrated electroencephalographic recordings. At 48 hours, lambs were euthanized for brain pathology. RESULTS Asphyxia caused abnormal brain activity, including SE seizures that peaked at 18 to 20 hours, EDs, and ETs, and induced neuronal degeneration and neuroinflammation. Ganaxolone treatment was associated with an 86.4% reduction in the number of seizures compared to the asphyxia group. The total seizure duration in the asphyxia+ganaxolone group was less than the untreated asphyxia group. There was no difference in the number of SE seizures between the asphyxia and asphyxia+phenobarbital groups or duration of SE seizures. Ganaxolone treatment, but not phenobarbital, reduced neuronal degeneration within hippocampal CA1 and CA3 regions, and cortical neurons, and ganaxolone reduced neuroinflammation within the thalamus. INTERPRETATION Ganaxolone provided better seizure control than phenobarbital in this perinatal asphyxia model and was neuroprotective for the newborn brain, affording a new therapeutic opportunity for treatment of neonatal seizures. ANN NEUROL 2022;92:1066-1079.
Collapse
Affiliation(s)
- Suzanne L. Miller
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Laura Bennet
- Department of PhysiologyUniversity of AucklandAucklandNew Zealand
| | - Amy E. Sutherland
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Yen Pham
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Courtney McDonald
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Margie Castillo‐Melendez
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Beth J. Allison
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Jamie Mihelakis
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Ilias Nitsos
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Ben J. Boyd
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Jonathan J. Hirst
- School of Biomedical Sciences and Pharmacy, University of NewcastleNewcastleNew South WalesAustralia
| | - David W. Walker
- School of Health and Biomedical Sciences, RMIT UniversityBundooraVictoriaAustralia
| | - Rodney W. Hunt
- Department of PaediatricsMonash UniversityClaytonVictoriaAustralia
| | - Graham Jenkin
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Flora Wong
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia,School of Health and Biomedical Sciences, RMIT UniversityBundooraVictoriaAustralia,Department of PaediatricsMonash UniversityClaytonVictoriaAustralia
| | - Atul Malhotra
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of PaediatricsMonash UniversityClaytonVictoriaAustralia,Monash Children's HospitalClaytonVictoriaAustralia
| | - Michael C. Fahey
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of PaediatricsMonash UniversityClaytonVictoriaAustralia,Monash Children's HospitalClaytonVictoriaAustralia
| | - Tamara Yawno
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of PaediatricsMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
15
|
Reddy DS. Neurosteroid replacement therapy for catamenial epilepsy, postpartum depression and neuroendocrine disorders in women. J Neuroendocrinol 2022; 34:e13028. [PMID: 34506047 PMCID: PMC9247111 DOI: 10.1111/jne.13028] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022]
Abstract
Neurosteroids are involved in the pathophysiology of many neuroendocrine disorders in women. This review describes recent advancements in pharmacology of neurosteroids and emphasizes the benefits of neurosteroid replacement therapy for the management of neuroendocrine disorders such as catamenial epilepsy (CE), postpartum depression (PPD) and premenstrual brain conditions. Neurosteroids are endogenous modulators of neuronal excitability. A variety of neurosteroids are present in the brain including allopregnanolone (AP), allotetrahydro-deoxycorticosterone and androstanediol. Neurosteroids interact with synaptic and extrasynaptic GABAA receptors in the brain. AP and related neurosteroids, which are positive allosteric modulators of GABAA receptors, are powerful anticonvulsants, anxiolytic, antistress and neuroprotectant agents. In CE, seizures are most often clustered around a specific menstrual period in women. Neurosteroid withdrawal-linked plasticity in extrasynaptic receptors has been shown to play a key role in catamenial seizures, anxiety and other mood disorders. Based on our extensive research spanning two decades, we have proposed and championed neurosteroid replacement therapy as a rational strategy for treating disorders marked by neurosteroid-deficiency, such as CE and other related ovarian or menstrual disorders. In 2019, AP (renamed as brexanolone) was approved for treating PPD. A variety of synthetic neurosteroids are in clinical trials for epilepsy, depression and other brain disorders. Recent advancements in our understanding of neurosteroids have entered a new era of drug discovery and one that offers a high therapeutic potential for treating complex brain disorders.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, USA
| |
Collapse
|
16
|
Liu H, Zhang L. Clustering of Spontaneous Recurrent Seizures in a Mouse Model of Extended Hippocampal Kindling. Front Neurol 2021; 12:738986. [PMID: 34899563 PMCID: PMC8654732 DOI: 10.3389/fneur.2021.738986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/05/2021] [Indexed: 02/03/2023] Open
Abstract
Acute repetitive seizures or seizure clusters are common in epileptic patients. Seizure clusters are associated with a high risk of developing status epilepticus and increased morbidity and mortality. Seizure clusters are also recognizable in spontaneous recurrent seizures (SRS) that occur in animal models of epilepsy. The electrical kindling of a limbic structure is a commonly used model of temporal lobe epilepsy. Although classic kindling over the course of a few weeks does not generally induce SRS, extended kindling over the course of a few months can induce SRS in several animal species. SRS in kindled cats often occur in clusters, but the existence of seizure clusters in rodent models of extended kindling remains to be demonstrated. We explored the existence of seizure clusters in mice following extended hippocampal kindling. Adult male mice (C57BL/6) experienced twice daily hippocampal stimulations and underwent continuous 24-hour electroencephalogram (EEG)-video monitoring after ≥80 stimulations. SRS events were recognized by EEG discharges and associated motor seizures. Seizure clusters, defined as ≥4 seizures per cluster and intra-cluster inter-seizure intervals ≤ 120 min, were observed in 19 of the 20 kindled mice. Individual mice showed variable seizure clusters in terms of cluster incidence and circadian-like expression patterns. For clusters consisting of 4-7 seizures and intra-seizure intervals ≤ 20 min, no consistent changes in inter-seizure intervals, EEG discharge duration, or motor seizure severity scores were observed approaching cluster termination. These results suggested that seizure clustering represents a prominent feature of SRS in hippocampal kindled mice. We speculate that, despite experimental limitations and confounding factors, systemic homeostatic mechanisms that have yet to be explored may play an important role in governing the occurrence and termination of seizure clusters.
Collapse
Affiliation(s)
- Haiyu Liu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Yousfan A, Rubio N, Al-Ali M, Nattouf AH, Kafa H. Intranasal delivery of phenytoin-loaded nanoparticles to the brain suppresses pentylenetetrazol-induced generalized tonic clonic seizures in an epilepsy mouse model. Biomater Sci 2021; 9:7547-7564. [PMID: 34652351 DOI: 10.1039/d1bm01251g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work we describe the preparation and characterization of lecithin-chitosan nanoparticles (L10Ci+), and investigate their ability to deliver the anti-epileptic drug phenytoin (PHT) to mouse brain following intranasal (IN) administration. L10Ci+ were retained in the nasal cavity compared to PHT in PEG200 solution (PHT/PEG), which suffered immediate nasal drainage. PHT was detected in the brain after 5 min of IN administration reaching a maximum of 11.84 ± 2.31 %ID g-1 after 48 hours. L10Ci+ were associated with a higher brain/plasma ratio (Cb/p) compared to the experimental control comprising free PHT injected via the intraperitoneal route (PHT-IP) across all tested time points. Additionally, L10Ci+ led to lower PHT accumulation in the liver and spleen compared to PHT-IP, which is vital for lowering the systemic side effects of PHT. The relatively high drug targeting efficiency (DTE%) of 315.46% and the drug targeting percentage (DTP%) of 68.29%, combined with the increasing anterior-to-posterior gradient of PHT in the brain confirmed the direct nose-to-brain transport of PHT from L10Ci+. Electroencephalogram (EEG) analysis was used to monitor seizure progression. L10Ci+ resulted in a complete seizure suppression after 4 hours of administration, and this inhibition persisted even with an 8-fold reduction of the encapsulated dose compared to the required PHT-IP dose to achieve a similar inhibitory effect due to systemic loss. The presented findings confirm the possibility of using L10Ci+ as a non-invasive delivery system of PHT for the management of epilepsy using reduced doses of PHT.
Collapse
Affiliation(s)
- Amal Yousfan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Syria
| | - Noelia Rubio
- Department of Chemistry and Materials, Imperial College London, SW7 2AZ, UK
| | - Mohammad Al-Ali
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria.
| | - Abdul Hakim Nattouf
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Syria
| | - Houmam Kafa
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria.
| |
Collapse
|
18
|
Reddy DS. Brain structural and neuroendocrine basis of sex differences in epilepsy. HANDBOOK OF CLINICAL NEUROLOGY 2021; 175:223-233. [PMID: 33008527 DOI: 10.1016/b978-0-444-64123-6.00016-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This chapter reviews the current information about sex differences in epilepsy and potential mechanisms underlying sex differences in seizure susceptibility and epilepsy. The susceptibility to and occurrence of seizures are generally higher in men than women. There is gender-specific epilepsies such as catamenial epilepsy, a neuroendocrine condition in which seizures are most often clustered around the perimenstrual or periovulatory period in adult women. Structural differences in cerebral morphology, the structural and functional circuits may render men and women differentially vulnerable to seizure disorders and epileptogenic processes. Changes in seizure sensitivity are evident at puberty, pregnancy, and menopause, often attributed to circulating steroid hormones and neurosteroids as well as neuroplasticity in receptor systems. An improved understanding of the sexual dimorphism in neural circuits and the neuroendocrine basis of sex differences or resistance to protective drugs is essential to develop sex-specific therapies for seizure conditions.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, United States.
| |
Collapse
|
19
|
Lattanzi S, Riva A, Striano P. Ganaxolone treatment for epilepsy patients: from pharmacology to place in therapy. Expert Rev Neurother 2021; 21:1317-1332. [PMID: 33724128 DOI: 10.1080/14737175.2021.1904895] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Nonsulfated neurosteroids can provide phasic and tonic inhibition through activation of synaptic and extra-synaptic γ-aminobutyric acid (GABA)A receptors, exhibiting a greater potency for the latter. These actions occur by interacting with modulatory sites that are distinct from those bound by benzodiazepines and barbiturates. Ganaxolone (GNX) is a synthetic analog of the endogenous neurosteroid allopregnanolone and a member of a novel class of neuroactive steroids called epalons.Areas covered: The authors review the pharmacology of GNX, summarize the main clinical evidence about its antiseizure efficacy and tolerability, and suggest implications for clinical practice and future research.Expert opinion: The clinical development of GNX is mainly oriented to target unmet needs and focused on status epilepticus and rare genetic epilepsies that have few or no treatment options.The availability of oral and intravenous formulations allows reaching adult and pediatric patients in acute and chronic care settings. Further evidence will complement the understanding of the potentialities of GNX and possibly lead to indications for use in clinical practice.
Collapse
Affiliation(s)
- Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, "G. Gaslini" Institute, University of Genoa, Genova, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, "G. Gaslini" Institute, University of Genoa, Genova, Italy
| |
Collapse
|
20
|
Rapid effects of neurosteroids on neuronal plasticity and their physiological and pathological implications. Neurosci Lett 2021; 750:135771. [PMID: 33636284 DOI: 10.1016/j.neulet.2021.135771] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 11/22/2022]
Abstract
Current neuroscience research on neurosteroids and their synthetic analogues - neuroactive steroids - clearly demonstrate their drug likeness in a variety of neurological and psychiatric conditions. Moreover, research on neurosteroids continues to provide novel mechanistic insights into receptor activation or inhibition of various receptors. This mini-review will provide a high-level overview of the research area and discuss the various classes of potential physiological and pathological implications discovered so far.
Collapse
|
21
|
Reddy DS, Thompson W, Calderara G. Does Stress Trigger Seizures? Evidence from Experimental Models. Curr Top Behav Neurosci 2021; 55:41-64. [PMID: 33547597 DOI: 10.1007/7854_2020_191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This chapter describes the experimental evidence of stress modulation of epileptic seizures and the potential role of corticosteroids and neurosteroids in regulating stress-linked seizure vulnerability. Epilepsy is a chronic neurological disorder that is characterized by repeated seizures. There are many potential causes for epilepsy, including genetic predispositions, infections, brain injury, and neurotoxicity. Stress is a known precipitating factor for seizures in individuals suffering from epilepsy. Severe acute stress and persistent exposure to stress may increase susceptibility to seizures, thereby resulting in a higher frequency of seizures. This occurs through the stress-mediated release of cortisol, which has both excitatory and proconvulsant properties. Stress also causes the release of endogenous neurosteroids from central and adrenal sources. Neurosteroids such as allopregnanolone and THDOC, which are allosteric modulators of GABA-A receptors, are powerful anticonvulsants and neuroprotectants. Acute stress increases the release of neurosteroids, while chronic stress is associated with severe neurosteroid depletion and reduced inhibition in the brain. This diminished inhibition occurs largely as a result of neurosteroid deficiencies. Thus, exogenous administration of neurosteroids (neurosteroid replacement therapy) may offer neuroprotection in epilepsy. Synthetic neurosteroid could offer a rational approach to control neurosteroid-sensitive, stress-related epileptic seizures.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA.
| | - Wesley Thompson
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Gianmarco Calderara
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| |
Collapse
|
22
|
Kapur J, Joshi S. Progesterone modulates neuronal excitability bidirectionally. Neurosci Lett 2021; 744:135619. [PMID: 33421486 PMCID: PMC7821816 DOI: 10.1016/j.neulet.2020.135619] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022]
Abstract
Progesterone acts on neurons directly by activating its receptor and through metabolic conversion to neurosteroids. There is emerging evidence that progesterone exerts excitatory effects by activating its cognate receptors (progesterone receptors, PRs) through enhanced expression of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs). Progesterone metabolite 5α,3α-tetrahydro-progesterone (allopregnanolone, THP) mediates its anxiolytic and sedative actions through the potentiation of synaptic and extrasynaptic γ-aminobutyric acid type-A receptors (GABAARs). Here, we review progesterone's neuromodulatory actions exerted through PRs and THP and their opposing role in regulating seizures, catamenial epilepsy, and seizure exacerbation associated with progesterone withdrawal.
Collapse
Affiliation(s)
- Jaideep Kapur
- Department of Neurology, University of Virginia-HSC, Charlottesville, VA, 22908, United States; Department of Neuroscience, University of Virginia-HSC, Charlottesville, VA, 22908, United States; UVA Brain Institute, University of Virginia-HSC, Charlottesville, VA, 22908, United States
| | - Suchitra Joshi
- Department of Neurology, University of Virginia-HSC, Charlottesville, VA, 22908, United States.
| |
Collapse
|
23
|
Liu H, Tufa U, Zahra A, Chow J, Sivanenthiran N, Cheng C, Liu Y, Cheung P, Lim S, Jin Y, Mao M, Sun Y, Wu C, Wennberg R, Bardakjian B, Carlen PL, Eubanks JH, Song H, Zhang L. Electrographic Features of Spontaneous Recurrent Seizures in a Mouse Model of Extended Hippocampal Kindling. Cereb Cortex Commun 2021; 2:tgab004. [PMID: 34296153 PMCID: PMC8152854 DOI: 10.1093/texcom/tgab004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 01/14/2023] Open
Abstract
Epilepsy is a chronic neurological disorder characterized by spontaneous recurrent seizures (SRS) and comorbidities. Kindling through repetitive brief stimulation of a limbic structure is a commonly used model of temporal lobe epilepsy. Particularly, extended kindling over a period up to a few months can induce SRS, which may simulate slowly evolving epileptogenesis of temporal lobe epilepsy. Currently, electroencephalographic (EEG) features of SRS in rodent models of extended kindling remain to be detailed. We explored this using a mouse model of extended hippocampal kindling. Intracranial EEG recordings were made from the kindled hippocampus and unstimulated hippocampal, neocortical, piriform, entorhinal, or thalamic area in individual mice. Spontaneous EEG discharges with concurrent low-voltage fast onsets were observed from the two corresponding areas in nearly all SRS detected, irrespective of associated motor seizures. Examined in brain slices, epileptiform discharges were induced by alkaline artificial cerebrospinal fluid in the hippocampal CA3, piriform and entorhinal cortical areas of extended kindled mice but not control mice. Together, these in vivo and in vitro observations suggest that the epileptic activity involving a macroscopic network may generate concurrent discharges in forebrain areas and initiate SRS in hippocampally kindled mice.
Collapse
Affiliation(s)
- Haiyu Liu
- Departments of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021 China.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8
| | - Uilki Tufa
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8.,Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3H5, Canada
| | - Anya Zahra
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8
| | - Jonathan Chow
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8
| | - Nila Sivanenthiran
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8
| | - Chloe Cheng
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8
| | - Yapg Liu
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8
| | - Phinehas Cheung
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8
| | - Stellar Lim
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8
| | - Yaozhong Jin
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8
| | - Min Mao
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8
| | - Yuqing Sun
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8
| | - Chiping Wu
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8
| | - Richard Wennberg
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8.,Department of Medicine, University of Toronto, Toronto, Ontario M2K 1E2, Canada
| | - Berj Bardakjian
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3H5, Canada
| | - Peter L Carlen
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8.,Department of Medicine, University of Toronto, Toronto, Ontario M2K 1E2, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - James H Eubanks
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8.,Department of Surgery, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - Hongmei Song
- Departments of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021 China.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8.,Department of Medicine, University of Toronto, Toronto, Ontario M2K 1E2, Canada
| |
Collapse
|
24
|
Molecular, physiological and behavioral characterization of the heterozygous Df[h15q13]/+ mouse model associated with the human 15q13.3 microdeletion syndrome. Brain Res 2020; 1746:147024. [PMID: 32712126 DOI: 10.1016/j.brainres.2020.147024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/18/2020] [Indexed: 12/29/2022]
Abstract
The human 15q13.3 microdeletion syndrome (DS) is caused by a heterozygous microdeletion (MD) affecting six genes: FAN1; MTMR10; TRPM1; KLF13; OTUD7A; and CHRNA7. Carriers are at risk for intellectual disability, epilepsy, autism spectrum disorder, and schizophrenia. Here we used the Df[h15q13]/+ mouse model with an orthologous deletion to further characterize molecular, neurophysiological, and behavioral parameters that are relevant to the 15q13.3 DS. First, we verified the expression and distribution of the α7 nicotinic acetylcholine receptor (nAChR), a gene product of the CHRNA7, in cortical and subcortical areas. Results revealed similar mRNA distribution pattern in wildtype (WT) and heterozygous (Het) mice, with about half the number of α7 nAChR binding sites in mutants. Hippocampal recordings showed similar input/output responses of field excitatory post-synaptic potentials and theta-burst induced long-term potentiation in WT and Het mice. Het males exhibited impaired spatial learning acquisition in the Barnes Maze. Indicative of increased seizure susceptibility, Het mice developed secondary seizures after 6-Hz corneal stimulation, and had significantly increased sensitivity to the chemoconvulsant pentylenetetrazol resulting in increased spiking in hippocampal EEG recordings. Basal mRNA expression of brain derived neurotrophic factor and activity regulated immediate early genes (c-fos, Arc, Erg-1 and Npas4) during adolescence, a critical period of brain maturation, was unaffected by genotype. Thus, the MD did not show gross neuroanatomical, molecular, and neurophysiological abnormalities despite deficits in spatial learning and increased susceptibility to seizures. Altogether, our results verify the phenotypic profile of the heterozygous Df[h15q13]/+ mouse model and underscore its translational relevance for human 15q13.3 DS.
Collapse
|
25
|
Sabetghadam A, Wu C, Liu J, Zhang L, Reid AY. Increased epileptogenicity in a mouse model of neurofibromatosis type 1. Exp Neurol 2020; 331:113373. [PMID: 32502580 DOI: 10.1016/j.expneurol.2020.113373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/22/2020] [Accepted: 06/01/2020] [Indexed: 11/19/2022]
Abstract
RATIONALE Neurofibromatosis type 1 (NF1) is associated with higher rates of epilepsy compared to the general population. Some NF1 patients with epilepsy do not have intracranial lesions, suggesting the genetic mutation itself may contribute to higher rates of epilepsy in these patients. We have recently demonstrated increased seizure susceptibility in the Nf1+/- mouse, but it is unknown whether this model displays altered epileptogenicity, as has been reported in patients with NF1. The aim of this study was to determine whether the Nf1+/- mouse is more susceptible to electrical kindling-induced epileptogenesis. METHODS Young male or female adult Nf1+/- or Nf1+/+ (wild-type; WT) mice were implanted with electrodes for neocortical or hippocampal kindling paradigms. Neocortical kindling was performed for 40 stimulation sessions followed by baseline EEG monitoring to detect possible SRSs. Hippocampal kindling was performed with a modified extended kindling paradigm, completed to a maximum of 80 sessions to try to induce spontaneous repetitive seizures (SRSs). Western blot assays were performed in naïve and kindled mice to compare levels of Akt and MAPK (ERK1/2), proteins downstream of the NF1 mutation. RESULTS The average initial neocortical after-discharge threshold (ADT) was significantly lower in the Nf1+/- group, which also required fewer stimulations to reach stage 5 seizure, had greater average seizure severity across all kindling sessions, had a greater number of convulsive seizures, and had a faster progression of after-discharge duration and Racine score during kindling. No WT mice exhibited SRS after neocortical kindling, versus 33% of Nf1+/- mice. The average initial hippocampal ADT was not significantly different between the WT and Nf1+/- groups, nor was there a difference in the number of stimulations required to reach the kindled state. The WT group had a significantly higher average seizure severity across all kindling sessions as compared with the Nf1+/- mice. The WT group also had faster progression of the Racine seizure score over the kindling sessions, mainly due to a faster increase in seizures severity early during the kindling process. However, SRSs were seen in 50% of Nf1+/- mice after modified extended kindling and in no WT mice. Western blots showed hippocampal kindling increased the ratio of phosphorylated/total Akt in both the WT and Nf1+/- mice, while neocortical kindling led to increased ratios of phosphorylated/total Akt and MAPK in Nf1+/- mice only. CONCLUSIONS We have demonstrated for the first time an increased rate of epileptogenesis in an animal model of NF1 with no known macroscopic/neoplastic brain lesions. This work provides evidence for the genetic mutation itself playing a role in seizures and epilepsy in patients with NF1, and supports the use of the Nf1+/- mouse model in future mechanistic studies.
Collapse
Affiliation(s)
- A Sabetghadam
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario M5T 0S8, Canada.
| | - C Wu
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario M5T 0S8, Canada
| | - J Liu
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario M5T 0S8, Canada
| | - L Zhang
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario M5T 0S8, Canada; Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada
| | - A Y Reid
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario M5T 0S8, Canada; Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Joshi S, Roden WH, Kapur J, Jansen LA. Reduced neurosteroid potentiation of GABA A receptors in epilepsy and depolarized hippocampal neurons. Ann Clin Transl Neurol 2020; 7:527-542. [PMID: 32243088 PMCID: PMC7187710 DOI: 10.1002/acn3.51023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Neurosteroids regulate neuronal excitability by potentiating γ-aminobutyric acid type-A receptors (GABARs). In animal models of temporal lobe epilepsy, the neurosteroid sensitivity of GABARs is diminished and GABAR subunit composition is altered. We tested whether similar changes occur in patients with epilepsy and if depolarization-induced increases in neuronal activity can replicate this effect. METHODS We determined GABAR α4 subunit expression in cortical tissue resected from pediatric epilepsy patients. Modulation of human GABARs by allopregnanolone and Ro15-4513 was measured in Xenopus oocytes using whole-cell patch clamp. To extend the findings obtained using tissue from epilepsy patients, we evaluated GABAR expression and modulation by allopregnanolone and Ro15-4513 in cultured rat hippocampal neurons exposed to high extracellular potassium (HK) to increase neuronal activity. RESULTS Expression of α4 subunits was increased in pediatric cortical epilepsy specimens encompassing multiple pathologies. The potentiation of GABA-evoked currents by the neurosteroid allopregnanolone was decreased in Xenopus oocytes expressing GABARs isolated from epilepsy patients. Furthermore, receptors isolated from epilepsy but not control tissue were sensitive to potentiation by Ro15-4513, indicating higher expression of α4 βx γ2 subunit-containing receptors. Correspondingly, increasing the activity of cultured rat hippocampal neurons reduced allopregnanolone potentiation of miniature inhibitory postsynaptic currents (mIPSCs), increased modulation of tonic GABAR current by Ro15-4513, upregulated the surface expression of α4 and γ2 subunits, and increased the colocalization of α4 and γ2 subunit immunoreactivity. INTERPRETATION These findings suggest that seizure activity-induced upregulation of α4 βx γ2 subunit-containing GABARs could affect the anticonvulsant actions of neurosteroids.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia
| | | | - Jaideep Kapur
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia
- Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginia
- UVA Brain InstituteUniversity of VirginiaCharlottesvilleVirginia
| | - Laura A. Jansen
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia
- Seattle Children’s Research InstituteSeattleWashington
- Department of NeurologyWashington University School of MedicineSt. LouisWashington
| |
Collapse
|
27
|
Miziak B, Chrościńska-Krawczyk M, Czuczwar SJ. Neurosteroids and Seizure Activity. Front Endocrinol (Lausanne) 2020; 11:541802. [PMID: 33117274 PMCID: PMC7561372 DOI: 10.3389/fendo.2020.541802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Still circa 25% to 30% of patients with epilepsy cannot be efficiently controlled with available antiepileptic drugs so newer pharmacological treatment options have been continuously searched for. In this context, a group of endogenous or exogenous neurosteroids allosterically positively modulating GABA-A receptors may offer a promising approach. Among endogenous neurosteroids synthesized in the brain, allopregnanolone or allotetrahydrodeoxycorticosterone have been documented to exert anticonvulsant activity in a number of experimental models of seizures-pentylenetetrazol-, bicuculline- pilocarpine-, or 6 Hz-induced convulsions in rodents. Neurosteroids can also inhibit fully kindled seizures and some of them have been reported to counteract maximal electroshock-induced convulsions. An exogenous neurosteroid, alphaxalone, significantly elevated the threshold for maximal electroconvulsions in mice but it did not potentiate the anticonvulsive action of a number of conventional antiepileptic drugs against maximal electroshock-induced seizures. Androsterone not only elevated the threshold but significantly enhanced the protective action of carbamazepine, gabapentin and phenobarbital against maximal electroshock in mice, as well. Ganaxolone (a 3beta-methylated analog of allopregnanolone) needs special consideration for two reasons. First, it performed better than conventional antiepileptic drugs, diazepam or valproate, in suppressing convulsive and lethal effects of pentylenetetrazol in pentylenetetrazol-kindled mice. Second, ganaxolone has been evaluated in the randomized, double-blind, placebo-controlled phase 2 trial in patients with intractable partial seizures, taking maximally 3 antiepileptic drugs. The initial results indicate that add-on therapy with ganaxolone resulted in reduced seizure frequency with adverse effect being mainly mild to moderate. Possibly, ganaxolone may be also considered against catamenial seizures. Some positive effects of ganaxolone as an adjuvant were also observed in children with refractory seizures and its use may also prove efficient for the management of neonatal seizures associated with hypoxic injury. Neurosteroids positively modulating GABA-A receptor complex exert anticonvulsive activity in many experimental models of seizures. Their interactions with antiepileptic drugs seem ambiguous in mice. Initial clinical data indicate that ganaxolone may provide a better seizure control in patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | | | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
- *Correspondence: Stanisław J. Czuczwar,
| |
Collapse
|
28
|
Chuang SH, Reddy DS. Isobolographic Analysis of Antiseizure Activity of the GABA Type A Receptor-Modulating Synthetic Neurosteroids Brexanolone and Ganaxolone with Tiagabine and Midazolam. J Pharmacol Exp Ther 2019; 372:285-298. [PMID: 31843812 DOI: 10.1124/jpet.119.261735] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is often treated with a combination of antiepileptic drugs. Although neurosteroids are potent anticonvulsants, little is known about their combination potential for the treatment of refractory epilepsy. Here, we investigated the combination efficacy of neurosteroids allopregnanolone (AP, brexanolone) and ganaxolone (GX) with the GABA-reuptake inhibitor tiagabine (TG) or the benzodiazepine midazolam (MDZ) on tonic inhibition in dentate gyrus granule cells and seizure protection in the hippocampus kindling and 6-Hz seizure models. Isobolographic analysis indicated that combinations of GX and TG or AP and TG at three standard ratios (1:1, 3:1, and 1:3) displayed significant synergism in augmenting tonic inhibition. In pharmacological studies, GX, AP, and TG produced dose-dependent antiseizure effects in mice (ED50 = 1.46, 4.20, and 0.20 mg/kg, respectively). The combination of GX and TG at the fixed ratio of 1:1 exerted the greatest combination index (CI = 0.53), indicating strong synergistic interaction in seizure protection. In addition, combination regimens of AP and TG showed robust synergism for seizure protection (CI = 0.4). Finally, combination regimens of GX and MDZ elicited synergistic (CI = 0.6) responses for seizure protection. These results demonstrate striking synergism of neurosteroids and TG combination for seizure protection, likely because of their effects at extrasynaptic GABA type A (GABA-A) receptors from TG-induced elevation in GABA levels. Superadditive antiseizure activity of neurosteroid-MDZ combinations may stem from their actions at both synaptic and extrasynaptic GABA-A receptors. Together, these findings provide a potential mechanistic basis for combination potential of neurosteroids with TG or benzodiazepines for the management of refractory epilepsy, status epilepticus, and seizure disorders. SIGNIFICANCE STATEMENT: This paper investigates for the first time the potential synergistic interactions between two neurosteroids with anticonvulsant properties, allopregnanolone (brexanolone) and the very similar synthetic analog, ganaxolone, and two conventional antiepileptic drugs active at GABA type A receptors: the GABA-reuptake inhibitor tiagabine and a benzodiazepine, midazolam. The results demonstrate a synergistic protective effect of neurosteroid-tiagabine combinations, as well as neurosteroid-midazolam regimens in seizure models.
Collapse
Affiliation(s)
- Shu-Hui Chuang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
29
|
Liu H, Stover KR, Sivanenthiran N, Chow J, Cheng C, Liu Y, Lim S, Wu C, Weaver DF, Eubanks JH, Song H, Zhang L. Impaired Spatial Learning and Memory in Middle-Aged Mice with Kindling-Induced Spontaneous Recurrent Seizures. Front Pharmacol 2019; 10:1077. [PMID: 31611787 PMCID: PMC6768971 DOI: 10.3389/fphar.2019.01077] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Temporal lobe epilepsy is the most common and often drug-resistant type of epilepsy in the adult and aging populations and has great diversity in etiology, electro-clinical manifestations, and comorbidities. Kindling through repeated brief stimulation of limbic structures is a commonly used model of temporal lobe epilepsy. Particularly, extended kindling can induce spontaneous recurrent seizures in several animal species. However, kindling studies in middle-aged, aging, or aged animals remain scarce, and currently, little is known about kindling-induced behavioral changes in middle-aged/aging animals. We therefore attempted to provide more information in this area using a mouse model of extended hippocampal kindling. We conducted experiments in middle-aged mice (C57BL/6, male, 12-14 months of age) to model new-onset epilepsy in adult/aging populations. Mice experienced twice daily hippocampal stimulations or handling manipulations for 60-70 days and then underwent continuous electroencephalogram (EEG)-video monitoring to detect spontaneous recurrent seizures. Extended kindled mice consistently exhibited spontaneous recurrent seizures with mean incidences of 6-7 events per day, and these seizures featured EEG discharges and corresponding convulsions. The handling control mice showed neither seizure nor aberrant EEG activity. The two groups of mice underwent the Morris water maze test of spatial learning and memory 1-2 weeks after termination of the kindling stimulation or handling manipulation. During visible platform trials, the kindled mice took a longer distance and required more time than the control mice to find the platform. During hidden platform trials, the kindled mice showed no improvement over 5-day trials in finding the platform whereas the control mice improved significantly. During probe tests in which the hidden platform was removed, the kindled mice spent less time than the controls searching in the correct platform location. There were no significant differences between the kindled and control mice with respect to swim speed or total locomotor activity in an open-field test. Together, these observations indicate that the extended kindled mice with spontaneous recurrent seizures are impaired in spatial learning and memory as assessed by the Morris water maze test. We postulate that the extended hippocampal kindling in middle-aged mice may help explore epileptogenic mechanisms and comorbidities potentially relevant to new-onset temporal lobe epilepsy in adult and aging patients. Limitations and confounds of our present experiments are discussed to improve future examinations of epileptic comorbidities in extended kindled mice.
Collapse
Affiliation(s)
- Haiyu Liu
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Kurt R. Stover
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nila Sivanenthiran
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Jonathan Chow
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Chloe Cheng
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Yapeng Liu
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Stellar Lim
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Chiping Wu
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Donald F. Weaver
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - James H. Eubanks
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Hongmei Song
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Abstract
This article describes current pursuits for developing novel antidotes for organophosphate (OP) intoxication. Recent mechanistic studies of benzodiazepine-resistant seizures have key consequences for victims of OP pesticide and nerve agent attacks. We uncovered why current therapies are not able to stop the OP-induced seizures and brain cell death and what type of drug might be better. OP exposure down regulates critical inhibitory GABA-A receptors, kills neurons, and causes massive neuroinflammation that will cause more neuronal death, which causes the problem of too few benzodiazepine receptors. The loss of inhibitory interneurons creates a self-sustaining seizure circuit and refractory status epilepticus. Thus, there is an urgent need for mechanism-based, new antidotes for OP intoxication. We have discovered neurosteroids as next-generation anticonvulsants superior to midazolam for the treatment of OP poisoning. Neurosteroids that activate both extrasynaptic and synaptic GABA-A receptors have the potential to stop seizures more effectively and safely than benzodiazepines. In addition, neurosteroids confers robust neuroprotection by reducing neuronal injury and neuroinflammation. The synthetic neurosteroid ganaxolone is being considered for advanced development as a future anticonvulsant for nerve agents. Experimental studies shows striking efficacy of ganaxolone and its analogs in OP exposure models. They are also effective in attenuating long-term neuropsychiatric deficits caused by OP exposure. Overall, neurosteroids represent rational anticonvulsants for OP intoxication, even when given late after exposure.
Collapse
|
31
|
Saporito MS, Gruner JA, DiCamillo A, Hinchliffe R, Barker-Haliski M, White HS. Intravenously Administered Ganaxolone Blocks Diazepam-Resistant Lithium-Pilocarpine–Induced Status Epilepticus in Rats: Comparison with Allopregnanolone. J Pharmacol Exp Ther 2018; 368:326-337. [DOI: 10.1124/jpet.118.252155] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/12/2018] [Indexed: 11/22/2022] Open
|
32
|
Chuang SH, Reddy DS. Zinc reduces antiseizure activity of neurosteroids by selective blockade of extrasynaptic GABA-A receptor-mediated tonic inhibition in the hippocampus. Neuropharmacology 2018; 148:244-256. [PMID: 30471294 DOI: 10.1016/j.neuropharm.2018.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/11/2018] [Accepted: 11/20/2018] [Indexed: 01/31/2023]
Abstract
Zinc is an abundant trace metal in the hippocampus nerve terminals. Previous studies demonstrate the ability of zinc to selectively block neurosteroid-sensitive, extrasynaptic GABA-A receptors in the hippocampus (Carver et al, 2016). Here we report that zinc prevents the seizure protective effects of the synthetic neurosteroid ganaxolone (GX) in an experimental model of epilepsy. GABA-gated and tonic currents were recorded from dissociated dentate gyrus granule cells (DGGCs), CA1 pyramidal cells (CA1PCs), and hippocampal slices from adult mice. Antiseizure effects of GX and the reversal of these effects by zinc were evaluated in fully-kindled mice expressing generalized (stage 5) seizures. In electrophysiological studies, zinc blocked the GABA-evoked and GX-potentiated GABA-gated chloride currents in DGGCs and CA1PCs in a concentration-dependent fashion similar to the competitive GABA-A receptor antagonists bicuculline and gabazine. Zinc completely blocked GX potentiation of extrasynaptic tonic currents, but not synaptic phasic currents. In hippocampus kindling studies, systemic administration of GX produced a dose-dependent suppression of behavioral and electrographic seizures in fully-kindled mice with complete seizure protection at the 10 mg/kg dose. However, the antiseizure effects of GX were significantly prevented by intrahippocampal administration of zinc (ED50, 150 μM). The zinc antagonistic response was reversible as animals responded normally to GX administration 24 h post-zinc blockade. These results demonstrate that zinc reduces the antiseizure effects of GX by selectively blocking extrasynaptic δGABA-A receptors in the hippocampus. These pharmacodynamic interactions have clinical implications in neurosteroid therapy for brain conditions associated with zinc fluctuations.
Collapse
Affiliation(s)
- Shu-Hui Chuang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA.
| |
Collapse
|
33
|
Greco M, Varriale G, Coppola G, Operto F, Verrotti A, Iezzi ML. Investigational small molecules in phase II clinical trials for the treatment of epilepsy. Expert Opin Investig Drugs 2018; 27:971-979. [DOI: 10.1080/13543784.2018.1543398] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Marco Greco
- Department of Pediatrics, University of L’Aquila, L’Aquila, Italy
| | - Gaia Varriale
- Department of Pediatrics, University of L’Aquila, L’Aquila, Italy
| | - Giangennaro Coppola
- Child and Adolescent Neuropsychiatry, Medical School, University of Salerno, Salerno, Italy
| | - Francesca Operto
- Child and Adolescent Neuropsychiatry, Medical School, University of Salerno, Salerno, Italy
| | - Alberto Verrotti
- Department of Pediatrics, University of L’Aquila, L’Aquila, Italy
| | | |
Collapse
|
34
|
Song H, Tufa U, Chow J, Sivanenthiran N, Cheng C, Lim S, Wu C, Feng J, Eubanks JH, Zhang L. Effects of Antiepileptic Drugs on Spontaneous Recurrent Seizures in a Novel Model of Extended Hippocampal Kindling in Mice. Front Pharmacol 2018; 9:451. [PMID: 29867462 PMCID: PMC5968120 DOI: 10.3389/fphar.2018.00451] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/18/2018] [Indexed: 01/23/2023] Open
Abstract
Epilepsy is a common neurological disorder characterized by naturally-occurring spontaneous recurrent seizures and comorbidities. Kindling has long been used to model epileptogenic mechanisms and to assess antiepileptic drugs. In particular, extended kindling can induce spontaneous recurrent seizures without gross brain lesions, as seen clinically. To date, the development of spontaneous recurrent seizures following extended kindling, and the effect of the antiepileptic drugs on these seizures are not well understood. In the present study we aim to develop a mouse model of extended hippocampal kindling for the first time. Once established, we plan to evaluate the effect of three different antiepileptic drugs on the development of the extended-hippocampal-kindled-induced spontaneous recurrent seizures. Male C57 black mice were used for chronic hippocampal stimulations or handling manipulations (twice daily for up to 70 days). Subsequently, animals underwent continuous video/EEG monitoring for seizure detection. Spontaneous recurrent seizures were consistently observed in extended kindled mice but no seizures were detected in the control animals. The aforementioned seizures were generalized events characterized by hippocampal ictal discharges and concurrent motor seizures. Incidence and severity of the seizures was relatively stable while monitored over a few months after termination of the hippocampal stimulation. Three antiepileptic drugs with distinct action mechanisms were tested: phenytoin, lorazepam and levetiracetam. They were applied via intra-peritoneal injections at anticonvulsive doses and their effects on the spontaneous recurrent seizures were analyzed 10-12 h post-injection. Phenytoin (25 mg/kg) and levetiracetam (400 mg/kg) abolished the spontaneous recurrent seizures. Lorazepam (1.5 mg/kg) decreased motor seizure severity but did not reduce the incidence and duration of corresponding hippocampal discharges, implicating its inhibitory effects on seizure spread. No gross brain lesions were observed in a set of extended hippocampal kindled mice submitted to histological evaluation. All these data suggests that our model could be considered as a novel mouse model of extended hippocampal kindling. Some limitations remain to be considered.
Collapse
Affiliation(s)
- Hongmei Song
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Uilki Tufa
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Jonathan Chow
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nila Sivanenthiran
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Chloe Cheng
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Stellar Lim
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Chiping Wu
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Jiachun Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - James H. Eubanks
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Epilepsy Program, University of Toronto, Toronto, ON, Canada
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Epilepsy Program, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Chuang SH, Reddy DS. 3 β-Methyl-Neurosteroid Analogs Are Preferential Positive Allosteric Modulators and Direct Activators of Extrasynaptic δ-Subunit γ-Aminobutyric Acid Type A Receptors in the Hippocampus Dentate Gyrus Subfield. J Pharmacol Exp Ther 2018; 365:583-601. [PMID: 29602830 DOI: 10.1124/jpet.117.246660] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/28/2018] [Indexed: 02/06/2023] Open
Abstract
Neurosteroids are powerful modulators of γ-aminobutyric acid (GABA)-A receptors. Ganaxolone (3α-hydroxy-3β-methyl-5α-pregnan-20-one, GX) and synthetic analogs of the neurosteroid allopregnanolone (AP) are designed to treat epilepsy and related conditions. However, their precise mechanism of action in native neurons remains unclear. Here, we sought to determine the mode of action of GX and its analogs at GABA-A receptors in native hippocampal neurons by analyzing extrasynaptic receptor-mediated tonic currents and synaptic receptor-mediated phasic currents. Concentration-response profiles of GX were determined in two cell types: δ-containing dentate gyrus granule cells (DGGCs) and γ2-containing CA1 pyramidal cells (CA1PCs). GX produced significantly greater potentiation of the GABA-A receptor-activated chloride currents in DGGCs (500%) than CA1PCs (200%). In the absence of GABA, GX evoked 2-fold greater inward currents in DGGCs than CA1PCs, which were 2-fold greater than AP within DGGCs. In hippocampus slices, GX potentiated and directly activated tonic currents in DGGCs. These responses were significantly diminished in DGGCs from δ-subunit knockout (δKO) mice, confirming GX's selectivity for δGABA-A receptors. Like AP, GX potentiation of tonic currents was prevented by protein kinase C inhibition. Furthermore, GX's protection against hippocampus-kindled seizures was significantly diminished in δKO mice. GX analogs exhibited greater potency and efficacy than GX on δGABA-A receptor-mediated tonic inhibition. In summary, these results provide strong evidence that GX and its analogs are preferential allosteric modulators and direct activators of extrasynaptic δGABA-A receptors regulating network inhibition and seizures in the dentate gyrus. Therefore, these findings provide a mechanistic rationale for the clinical use of synthetic neurosteroids in epilepsy and seizure disorders.
Collapse
Affiliation(s)
- Shu-Hui Chuang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
36
|
Zolkowska D, Wu CY, Rogawski MA. Intramuscular allopregnanolone and ganaxolone in a mouse model of treatment-resistant status epilepticus. Epilepsia 2018; 59 Suppl 2:220-227. [PMID: 29453777 DOI: 10.1111/epi.13999] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2017] [Indexed: 11/28/2022]
Abstract
Allopregnanolone (5α-pregnan-3α-ol-20-one) and its synthetic 3β-methyl analog, ganaxolone, are positive allosteric modulators of synaptic and extrasynaptic γ-aminobutyric acid (GABA)A receptors that exhibit antiseizure activity in diverse animal seizure models, including models of status epilepticus (SE). The 2 neuroactive steroids are being investigated as treatments for SE, including as a treatment for SE induced by chemical threat agents. Intramuscular injection is the preferred route of administration in the prehospital treatment of SE. The objective of this study was to assess the efficacy of intramuscular allopregnanolone and ganaxolone in the treatment of SE induced by the chemical threat agent tetramethylenedisulfotetramine (TETS). The test agents were administered 40 minutes after the onset of SE when mice are refractory to treatment. Allopregnanolone and ganaxolone (each at 3 mg/kg) terminated SE in, respectively, 92% and 75% of animals, and prevented mortality in 85% and 50% of animals; the mean times to termination of behavioral seizures were, respectively, 172 ± 16 and 447 ± 52 seconds. In a separate series of experiments, mice were dosed with the neuroactive steroids by intramuscular injection, and plasma and brain levels were sampled at various time points following injection to estimate pharmacokinetic parameters. Plasma Cmax (maximum concentration) values for allopregnanolone and ganaxolone were 645 and 550 ng/mL, respectively. Brain exposure of both steroids was approximately 3-fold the plasma exposure. Two-compartment pharmacokinetic analysis revealed that the central compartment Vd (volume of distribution), CL (clearance), t½ (terminal half-life), and F (intramuscular bioavailability) values for allopregnanolone and ganaxolone were, respectively, 4.95 L/kg 12.88 L/kg/h,16 minutes, 97%, and 5.07 L/kg, 8.35 L/kg/h, 25 minutes, 95%. Allopregnanolone and ganaxolone are effective in the treatment of TETS-induced SE when administered by the intramuscular route. Allopregnanolone is more rapidly acting and modestly more effective, possibly because it has greater potency on GABAA receptors.
Collapse
Affiliation(s)
- Dorota Zolkowska
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Chun-Yi Wu
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA.,Bioanalysis and Pharmacokinetics Core Facility, UC Davis Medical Center, Sacramento, CA, USA
| | - Michael A Rogawski
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA.,Department of Pharmacology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
37
|
Stover KR, Lim S, Zhou TL, Stafford PM, Chow J, Li H, Sivanenthiran N, Mylvaganam S, Wu C, Weaver DF, Eubanks J, Zhang L. Susceptibility to hippocampal kindling seizures is increased in aging C57 black mice. IBRO Rep 2017; 3:33-44. [PMID: 30135940 PMCID: PMC6084868 DOI: 10.1016/j.ibror.2017.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/19/2017] [Accepted: 08/20/2017] [Indexed: 11/23/2022] Open
Abstract
The incidence of seizures increases with old age. Stroke, dementia and brain tumors are recognized risk factors for new-onset seizures in the aging populations and the incidence of these conditions also increased with age. Whether aging is associated with higher seizure susceptibility in the absence of the above pathologies remains unclear. We used classic kindling to explore this issue as the kindling model is highly reproducible and allows close monitoring of electrographic and motor seizure activities in individual animals. We kindled male young and aging mice (C57BL/6 strain, 2-3 and 18-22 months of age) via daily hippocampal CA3 stimulation and monitored seizure activity via video and electroencephalographic recordings. The aging mice needed fewer stimuli to evoke stage-5 motor seizures and exhibited longer hippocampal afterdischarges and more frequent hippocampal spikes relative to the young mice, but afterdischarge thresholds and cumulative afterdischarge durations to stage 5 motor seizures were not different between the two age groups. While hippocampal injury and structural alterations at cellular and micro-circuitry levels remain to be examined in the kindled mice, our present observations suggest that susceptibility to hippocampal CA3 kindling seizures is increased with aging in male C57 black mice.
Collapse
Affiliation(s)
- Kurt R. Stover
- Krembil Research Institute, University Health Network, Canada
| | - Stellar Lim
- Krembil Research Institute, University Health Network, Canada
| | - Terri-Lin Zhou
- Krembil Research Institute, University Health Network, Canada
| | | | - Jonathan Chow
- Krembil Research Institute, University Health Network, Canada
| | - Haoyuan Li
- Krembil Research Institute, University Health Network, Canada
| | | | | | - Chiping Wu
- Krembil Research Institute, University Health Network, Canada
| | - Donald F. Weaver
- Krembil Research Institute, University Health Network, Canada
- Departments of Chemistry, University of Toronto, Canada
- Departments of Medicine, University of Toronto, Canada
| | - James Eubanks
- Krembil Research Institute, University Health Network, Canada
- Departments of Surgery, University of Toronto, Canada
- University of Toronto Epilepsy Program, Canada
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Canada
- Departments of Medicine, University of Toronto, Canada
- University of Toronto Epilepsy Program, Canada
| |
Collapse
|
38
|
Chuang SH, Reddy DS. Genetic and Molecular Regulation of Extrasynaptic GABA-A Receptors in the Brain: Therapeutic Insights for Epilepsy. J Pharmacol Exp Ther 2017; 364:180-197. [PMID: 29142081 DOI: 10.1124/jpet.117.244673] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
GABA-A receptors play a pivotal role in many brain diseases. Epilepsy is caused by acquired conditions and genetic defects in GABA receptor channels regulating neuronal excitability in the brain. The latter is referred to as GABA channelopathies. In the last two decades, major advances have been made in the genetics of epilepsy. The presence of specific GABAergic genetic abnormalities leading to some of the classic epileptic syndromes has been identified. Advances in molecular cloning and recombinant systems have helped characterize mutations in GABA-A receptor subunit genes in clinical neurology. GABA-A receptors are the prime targets for neurosteroids (NSs). However, GABA-A receptors are not static but undergo rapid changes in their number or composition in response to the neuroendocrine milieu. This review describes the recent advances in the genetic and neuroendocrine control of extrasynaptic and synaptic GABA-A receptors in epilepsy and its impact on neurologic conditions. It highlights the current knowledge of GABA genetics in epilepsy, with an emphasis on the neuroendocrine regulation of extrasynaptic GABA-A receptors in network excitability and seizure susceptibility. Recent advances in molecular regulation of extrasynaptic GABA-A receptor-mediated tonic inhibition are providing unique new therapeutic approaches for epilepsy, status epilepticus, and certain brain disorders. The discovery of an extrasynaptic molecular mechanism represents a milestone for developing novel therapies such as NS replacement therapy for catamenial epilepsy.
Collapse
Affiliation(s)
- Shu-Hui Chuang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
39
|
Reddy SD, Clossen BL, Reddy DS. Epigenetic Histone Deacetylation Inhibition Prevents the Development and Persistence of Temporal Lobe Epilepsy. J Pharmacol Exp Ther 2017; 364:97-109. [DOI: 10.1124/jpet.117.244939] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/31/2017] [Indexed: 11/22/2022] Open
|
40
|
Abstract
INTRODUCTION Epilepsy is one of the most common neurological diseases affecting approximately 50 million people worldwide. Despite many advances in epilepsy research, nearly a third of patients with epilepsy have refractory or pharmacoresistant epilepsy. Despite the approval of a dozen antiepileptic drugs (AEDs) over the past decade, there are no agents that halt the development of epilepsy. Thus, newer and better AEDs that can prevent refractory seizures and modify the disease are needed for curing epilepsy. Areas covered: In this article, we highlight the recent advances and emerging trends in new and innovative drugs for epilepsy and seizure disorders. We review in detail top new drugs that are currently in clinical trials or agents that are under development and have novel mechanisms of action. Expert commentary: Among the new agents under clinical investigation, the majority were originally developed for treating other neurological diseases (everolimus, fenfluramine, nalutozan, bumetanide, and valnoctamide); several have mechanisms of action similar to those of conventional AEDs (AP, ganaxolone, and YKP3089); and some new agents represent novel mechanisms of actions (huperzine-A, cannabidiol, tonabersat, and VX-765).
Collapse
Affiliation(s)
- Iyan Younus
- a Department of Neuroscience and Experimental Therapeutics, College of Medicine , Texas A&M Health Science Center , Bryan , TX , USA
| | - Doodipala Samba Reddy
- a Department of Neuroscience and Experimental Therapeutics, College of Medicine , Texas A&M Health Science Center , Bryan , TX , USA
| |
Collapse
|
41
|
Bin NR, Song H, Wu C, Lau M, Sugita S, Eubanks JH, Zhang L. Continuous Monitoring via Tethered Electroencephalography of Spontaneous Recurrent Seizures in Mice. Front Behav Neurosci 2017; 11:172. [PMID: 28959196 PMCID: PMC5603658 DOI: 10.3389/fnbeh.2017.00172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022] Open
Abstract
We describe here a simple, cost-effective apparatus for continuous tethered electroencephalographic (EEG) monitoring of spontaneous recurrent seizures in mice. We used a small, low torque slip ring as an EEG commutator, mounted the slip ring onto a standard mouse cage and connected rotary wires of the slip ring directly to animal's implanted headset. Modifications were made in the cage to allow for a convenient installation of the slip ring and accommodation of animal ambient activity. We tested the apparatus for hippocampal EEG recordings in adult C57 black mice. Spontaneous recurrent seizures were induced using extended hippocampal kindling (≥95 daily stimulation). Control animals underwent similar hippocampal electrode implantations but no stimulations were given. Combined EEG and webcam monitoring were performed for 24 h daily for 5–9 consecutive days. During the monitoring periods, the animals moved and accessed water and food freely and showed no apparent restriction in ambient cage activities. Ictal-like hippocampal EEG discharges and concurrent convulsive behaviors that are characteristics of spontaneous recurrent seizures were reliably recorded in a majority of the monitoring experiments in extendedly kindled but not in control animals. However, 1–2 rotary wires were disconnected from the implanted headset in some animals after continuous recordings for ≥5 days. The key features and main limitations of our recording apparatus are discussed.
Collapse
Affiliation(s)
- Na-Ryum Bin
- Krembil Research Institute, University Health NetworkToronto, ON, Canada.,Department of Physiology, University of TorontoToronto, ON, Canada
| | - Hongmei Song
- Krembil Research Institute, University Health NetworkToronto, ON, Canada.,Department of Neurosurgery, The First Hospital of Jilin UniversityJilin, China
| | - Chiping Wu
- Krembil Research Institute, University Health NetworkToronto, ON, Canada
| | - Marcus Lau
- Krembil Research Institute, University Health NetworkToronto, ON, Canada
| | - Shuzo Sugita
- Krembil Research Institute, University Health NetworkToronto, ON, Canada.,Department of Physiology, University of TorontoToronto, ON, Canada
| | - James H Eubanks
- Krembil Research Institute, University Health NetworkToronto, ON, Canada.,Department of Physiology, University of TorontoToronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of TorontoToronto, ON, Canada.,The Epilepsy Research Program of Ontario Brain InstituteToronto, ON, Canada
| | - Liang Zhang
- Krembil Research Institute, University Health NetworkToronto, ON, Canada.,The Epilepsy Research Program of Ontario Brain InstituteToronto, ON, Canada.,Division of Neurology, Department of Medicine, University of TorontoToronto, ON, Canada
| |
Collapse
|
42
|
Yawno T, Miller SL, Bennet L, Wong F, Hirst JJ, Fahey M, Walker DW. Ganaxolone: A New Treatment for Neonatal Seizures. Front Cell Neurosci 2017; 11:246. [PMID: 28878622 PMCID: PMC5572234 DOI: 10.3389/fncel.2017.00246] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
Neonatal seizures are amongst the most common neurologic conditions managed by a neonatal care service. Seizures can exacerbate existing brain injury, induce “de novo” injury, and are associated with neurodevelopmental disabilities in post-neonatal life. In this mini-review, we present evidence in support of the use of ganaxolone, a GABAA agonist neurosteroid, as a novel neonatal therapy. We discuss evidence that ganaxolone can provide both seizure control and neuroprotection with a high safety profile when administered early following birth-related hypoxia, and show evidence that it is likely to prevent or reduce the incidence of the enduring disabilities associated with preterm birth, cerebral palsy, and epilepsy. We suggest that ganaxolone is an ideal anti-seizure treatment because it can be safely used prospectively, with minimal or no adverse effects on the neonatal brain.
Collapse
Affiliation(s)
- Tamara Yawno
- Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash UniversityClayton, VIC, Australia
| | - Suzie L Miller
- Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash UniversityClayton, VIC, Australia
| | - Laura Bennet
- Department of Physiology, The University of AucklandAuckland, New Zealand
| | - Flora Wong
- Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,Department of Paediatrics, Monash UniversityClayton, VIC, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of NewcastleCallaghan, NSW, Australia
| | - Michael Fahey
- Department of Paediatrics, Monash UniversityClayton, VIC, Australia
| | - David W Walker
- Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,School of Health and Biomedical Sciences, RMIT UniversityBundoora, VIC, Australia
| |
Collapse
|
43
|
Simonsen C, Boddum K, von Schoubye NL, Kloppenburg A, Sønderskov K, Hansen SL, Kristiansen U. Anticonvulsive evaluation of THIP in the murine pentylenetetrazole kindling model: lack of anticonvulsive effect of THIP despite functional δ-subunit-containing GABA A receptors in dentate gyrus granule cells. Pharmacol Res Perspect 2017; 5. [PMID: 28805971 PMCID: PMC5684853 DOI: 10.1002/prp2.322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/29/2022] Open
Abstract
THIP (4,5,6,7‐tetrahydroisoxazolo[5,4‐c]pyridin‐3‐ol) is a GABAA receptor agonist with varying potencies and efficacies at γ‐subunit‐containing receptors. More importantly, THIP acts as a selective superagonist at δ‐subunit‐containing receptors (δ‐GABAARs) at clinically relevant concentrations. Evaluation of THIP as a potential anticonvulsant has given contradictory results in different animal models and for this reason, we reevaluated the anticonvulsive properties of THIP in the murine pentylenetetrazole (PTZ) kindling model. As loss of δ‐GABAAR in the dentate gyrus has been associated with several animal models of epilepsy, we first investigated the presence of functional δ‐GABAA receptors. Both immunohistochemistry and Western blot data demonstrated that δ‐GABAAR expression is not only present in the dentate gyrus, but also the expression level was enhanced in the early phase after PTZ kindling. Whole‐cell patch‐clamp studies in acute hippocampal brain slices revealed that THIP was indeed able to induce a tonic inhibition in dentate gyrus granule cells. However, THIP induced a tonic current of similar magnitude in the PTZ‐kindled mice compared to saline‐treated animals despite the observed upregulation of δ‐GABAARs. Even in the demonstrated presence of functional δ‐GABAARs, THIP (0.5–4 mg/kg) showed no anticonvulsive effect in the PTZ kindling model using a comprehensive in vivo evaluation of the anticonvulsive properties.
Collapse
Affiliation(s)
- Charlotte Simonsen
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Boddum
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadia L von Schoubye
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alissa Kloppenburg
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Sønderskov
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Suzanne L Hansen
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Uffe Kristiansen
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Clossen BL, Reddy DS. Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1519-1538. [PMID: 28179120 PMCID: PMC5474195 DOI: 10.1016/j.bbadis.2017.02.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 11/16/2022]
Abstract
This article describes the recent advances in epileptogenesis and novel therapeutic approaches for the prevention of epilepsy, with a special emphasis on the pharmacological basis of disease-modification of epileptogenesis for curing epilepsy. Here we assess animal studies and human clinical trials of epilepsy spanning 1982-2016. Epilepsy arises from a number of neuronal factors that trigger epileptogenesis, which is the process by which a brain shifts from a normal physiologic state to an epileptic condition. The events precipitating these changes can be of diverse origin, including traumatic brain injury, cerebrovascular damage, infections, chemical neurotoxicity, and emergency seizure conditions such as status epilepticus. Expectedly, the molecular and system mechanisms responsible for epileptogenesis are not well defined or understood. To date, there is no approved therapy for the prevention of epilepsy. Epigenetic dysregulation, neuroinflammation, and neurodegeneration appear to trigger epileptogenesis. Targeted drugs are being identified that can truly prevent the development of epilepsy in at-risk people. The promising agents include rapamycin, COX-2 inhibitors, TRK inhibitors, epigenetic modulators, JAK-STAT inhibitors, and neurosteroids. Recent evidence suggests that neurosteroids may play a role in modulating epileptogenesis. A number of promising drugs are under investigation for the prevention or modification of epileptogenesis to halt the development of epilepsy. Some drugs in development appear rational for preventing epilepsy because they target the initial trigger or related signaling pathways as the brain becomes progressively more prone to seizures. Additional research into the target validity and clinical investigation is essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Bryan L Clossen
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
45
|
Ciarlone SL, Wang X, Rogawski MA, Weeber EJ. Effects of the synthetic neurosteroid ganaxolone on seizure activity and behavioral deficits in an Angelman syndrome mouse model. Neuropharmacology 2016; 116:142-150. [PMID: 27986596 DOI: 10.1016/j.neuropharm.2016.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/02/2016] [Accepted: 12/12/2016] [Indexed: 11/25/2022]
Abstract
Angelman syndrome (AS) is a rare neurogenetic disorder characterized by severe developmental delay, motor impairments, and epilepsy. GABAergic dysfunction is believed to contribute to many of the phenotypic deficits seen in AS. We hypothesized that restoration of inhibitory tone mediated by extrasynaptic GABAA receptors could provide therapeutic benefit. Here, we report that ganaxolone, a synthetic neurosteroid that acts as a positive allosteric modulator of synaptic and extrasynaptic GABAA receptors, was anxiolytic, anticonvulsant, and improved motor deficits in the Ube3a-deficient mouse model of AS when administered by implanted mini-pump for 3 days or 4 weeks. Treatment for 4 weeks also led to recovery of spatial working memory and hippocampal synaptic plasticity deficits. This study demonstrates that ganaxolone ameliorates many of the behavioral abnormalities in the adult AS mouse, and tolerance did not occur to the therapeutic effects of the drug. The results support clinical studies to investigate ganaxolone as a symptomatic treatment for AS.
Collapse
Affiliation(s)
- Stephanie L Ciarlone
- USF Health Byrd Alzheimer's Institute, Tampa, FL, USA; Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Xinming Wang
- USF Health Byrd Alzheimer's Institute, Tampa, FL, USA
| | - Michael A Rogawski
- Departments of Neurology and Pharmacology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Edwin J Weeber
- USF Health Byrd Alzheimer's Institute, Tampa, FL, USA; Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
46
|
Humble SR. Neurosteroids are reduced in diabetic neuropathy and may be associated with the development of neuropathic pain. F1000Res 2016; 5:1923. [PMID: 28357038 PMCID: PMC5345788 DOI: 10.12688/f1000research.9034.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2016] [Indexed: 01/10/2023] Open
Abstract
Introduction: Peripheral and central sensitisation are implicated in the development of neuropathic pain. Hypersensitivity of pain pathway neurons has been described in animal models of diabetic neuropathy, which is postulated to be related to an imbalance between inhibitory and excitatory signals within the spinal cord. GABAergic neurons within the pain pathway are vital for the transmission of painful stimuli to higher centres. A developmental change in the rate of exponential decay of GABAergic synaptic events has been observed in other types of neurons and this may be associated with fluctuations in endogenous neurosteroid tone. Methods: The whole-cell patch-clamp technique was used on slices of neural tissue. Electrophysiological recordings were obtained from wild type mice between the ages of 6 and 80 days in the spinal cord, the nucleus reticularis of the thalamus and the cerebral cortex. Recordings were also obtained from mice with diabetic neuropathy (ob/ob and db/db) between the ages of 60 and 80 days. Behavioural experiments were performed to examine mechanical and thermal nociception. Results: Electrophysiological recordings from cortical pain pathway neurons from mature type-2 diabetic mice revealed that the endogenous neurosteroid tone is reduced compared to control. However, selected neurosteroid compounds had a more pronounced effect on the GABA
A receptors of these diabetic mice. ob/ob mice exhibit mechanical hyperalgesia and allodynia, which was reduced by neurosteroids applied exogenously. Conclusions: The reduced endogenous neurosteroid tone in ob/ob mice may be linked to their hypersensitivity. Neurosteroids may exert analgesic effects in pathological pain states by attempting to restore the physiological GABAergic inhibitory tone.
Collapse
Affiliation(s)
- Stephen R Humble
- Department of Anaesthetics and Pain Management, Charing Cross Hospital, Imperial College NHS Healthcare Trust London, London, W6 8RF, UK
| |
Collapse
|
47
|
Reddy DS. Neurosteroids for the potential protection of humans against organophosphate toxicity. Ann N Y Acad Sci 2016; 1378:25-32. [PMID: 27450921 DOI: 10.1111/nyas.13160] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/29/2016] [Accepted: 06/01/2016] [Indexed: 12/18/2022]
Abstract
This article describes the therapeutic potential of neurosteroids as anticonvulsant antidotes for chemical intoxication caused by organophosphate pesticides and nerve agents or gases like sarin and soman. Toxic manifestations following nerve agent exposure, as evident in chemical attacks in Japan and Syria, include hypersecretion, respiratory distress, tremors, convulsions leading to status epilepticus (SE), and death. Benzodiazepines, such as diazepam, are the current anticonvulsants of choice for controlling nerve agent-induced life-threatening seizures, SE, and brain injury. Benzodiazepines can control acute seizures when given early, but they are less effective for delayed treatment of SE, which is characterized by rapid desensitization of synaptic GABAA receptors, benzodiazepine resistance, and brain injury. Neurosteroid-sensitive extrasynaptic GABAA receptors, however, remain unaffected by such events. Thus, anticonvulsant neurosteroids may produce more effective protection than benzodiazepines against a broad spectrum of chemical agents, even when given late after nerve agent exposure.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas.
| |
Collapse
|
48
|
Reddy DS. The neuroendocrine basis of sex differences in epilepsy. Pharmacol Biochem Behav 2016; 152:97-104. [PMID: 27424276 DOI: 10.1016/j.pbb.2016.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/25/2016] [Accepted: 07/12/2016] [Indexed: 01/22/2023]
Abstract
Epilepsy affects people of all ages and both genders. Sex differences are well known in epilepsy. Seizure susceptibility and the incidence of epilepsy are generally higher in men than women. In addition, there are gender-specific epilepsies such as catamenial epilepsy, a neuroendocrine condition in which seizures are most often clustered around the perimenstrual or periovulatory period in adult women with epilepsy. Changes in seizure sensitivity are also evident at puberty, pregnancy, and menopause. Sex differences in seizure susceptibility and resistance to antiseizure drugs can be studied in experimental models. An improved understanding of the neuroendocrine basis of sex differences or resistance to protective drugs is essential to develop targeted therapies for sex-specific seizure conditions. This article provides a brief overview of the current status of sex differences in seizure susceptibility and the potential mechanisms underlying the gender differences in seizure sensitivity.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
49
|
Reddy DS, Estes WA. Clinical Potential of Neurosteroids for CNS Disorders. Trends Pharmacol Sci 2016; 37:543-561. [PMID: 27156439 DOI: 10.1016/j.tips.2016.04.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/02/2016] [Accepted: 04/05/2016] [Indexed: 11/27/2022]
Abstract
Neurosteroids are key endogenous molecules in the brain that affect many neural functions. We describe here recent advances in US National Institutes of Health (NIH)-sponsored and other clinical studies of neurosteroids for CNS disorders. The neuronal GABA-A receptor chloride channel is one of the prime molecular targets of neurosteroids. Allopregnanolone-like neurosteroids are potent allosteric agonists as well as direct activators of both synaptic and extrasynaptic GABA-A receptors. Hence, neurosteroids can maximally enhance synaptic phasic and extrasynaptic tonic inhibition. The resulting chloride current conductance generates a form of shunting inhibition that controls network excitability, seizures, and behavior. Such mechanisms of neurosteroids are providing innovative therapies for epilepsy, status epilepticus (SE), traumatic brain injury (TBI), fragile X syndrome (FXS), and chemical neurotoxicity. The neurosteroid field has entered a new era, and many compounds have reached advanced clinical trials. Synthetic analogs have several advantages over natural neurosteroids for clinical use because of their superior bioavailability and safety trends.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| | - William A Estes
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
50
|
Reddy DS. Catamenial Epilepsy: Discovery of an Extrasynaptic Molecular Mechanism for Targeted Therapy. Front Cell Neurosci 2016; 10:101. [PMID: 27147973 PMCID: PMC4840555 DOI: 10.3389/fncel.2016.00101] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/04/2016] [Indexed: 01/22/2023] Open
Abstract
Catamenial epilepsy is a type of refractory epilepsy characterized by seizure clusters around perimenstrual or periovulatory period. The pathophysiology of catamenial epilepsy still remains unclear, yet there are few animal models to study this gender-specific disorder. The pathophysiology of perimenstrual catamenial epilepsy involves the withdrawal of the progesterone-derived GABAergic neurosteroids due to the decline in progesterone level at the time of menstruation. These manifestations can be faithfully reproduced in rodents by specific neuroendocrine manipulations. Since mice and rats, like humans, have ovarian cycles with circulating hormones, they appear to be suitable animal models for studies of perimenstrual seizures. Recently, we created specific experimental models to mimic perimenstrual seizures. Studies in rat and mouse models of catamenial epilepsy show enhanced susceptibility to seizures or increased seizure exacerbations following neurosteroid withdrawal. During such a seizure exacerbation period, there is a striking decrease in the anticonvulsant effect of commonly prescribed antiepileptics, such as benzodiazepines, but an increase in the anticonvulsant potency of exogenous neurosteroids. We discovered an extrasynaptic molecular mechanism of catamenial epilepsy. In essence, extrasynaptic δGABA-A receptors are upregulated during perimenstrual-like neuroendocrine milieu. Consequently, there is enhanced antiseizure efficacy of neurosteroids in catamenial models because δGABA-A receptors confer neurosteroid sensitivity and greater seizure protection. Molecular mechanisms such as these offer a strong rationale for the clinical development of a neurosteroid replacement therapy for catamenial epilepsy.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine Bryan, TX, USA
| |
Collapse
|