1
|
Qiu F, Huang Y, Dziegielewska KM, Habgood MD, Saunders NR. Effects of co-administration of lamotrigine on valproate transfer across the placenta and its brain entry in developing Genetic Absence Epilepsy Rats from Strasbourg (GAERS). Eur J Neurosci 2024; 60:4536-4551. [PMID: 38978299 DOI: 10.1111/ejn.16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024]
Abstract
During development, embryos and foetuses may be exposed to maternally ingested antiseizure medications (ASM), valproate and lamotrigine, essential in some patients to control their epilepsy symptoms. Often, the two drugs are co-administered to reduce required doses of valproate, a known potential teratogen. This study used Genetic Absence Epilepsy Rat from Strasbourg to evaluate transfer of valproate and lamotrigine across late gestation placenta and their entry into cerebrospinal fluid (CSF) and brain of developing rats, in mono- and combination therapies. Animals at embryonic day (E) 19, postnatal day (P) 0, 4 and 21, and adults were administered valproate (30 mg/kg) or lamotrigine (6 mg/kg) with their respective [3H]-tracers, either alone or in combination. In chronic experiments, females consumed valproate-containing diet from 2 weeks prior to mating until offspring were used at E19 and P0. Drugs were injected 30 min before blood, CSF and brain samples were collected from terminally anaesthetised animals. Radioactivity in samples was measured. In acute monotherapy brain entry of valproate was higher in foetal than postnatal animals, correlating with its plasma protein binding. Brain entry of lamotrigine was not age-dependent. Combination therapy enhanced entry of lamotrigine into the adult brain but had no effects on brain and CSF entry of valproate. Following chronic valproate exposure, placental transfer of valproate decreased in combination therapy; however, foetal brain entry increased. Results suggest that during pregnancy, the use of combination therapy of valproate and lamotrigine may mitigate overall foetal exposure to valproate but potential risks to foetal brain development are less clear.
Collapse
Affiliation(s)
- Fiona Qiu
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Yifan Huang
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Katarzyna M Dziegielewska
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Mark D Habgood
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Norman R Saunders
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Rota E, Immovilli P, Pappalardo I, Risso R, Zuccotti G, Agosti S, Morelli N, Rovere ME, Costa I, D'Orsi ML. Direct Oral Anticoagulants and Concomitant Anti-seizure Medications: A Retrospective, Case-Control Study in a Real-World Setting. Clin Ther 2024; 46:e26-e30. [PMID: 38972763 DOI: 10.1016/j.clinthera.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE Although prescription of direct oral anticoagulants (DOACs) for epileptic patients on anti-seizure medications (ASMs) is on the increase, international guidelines pose strict restrictions because this may lead to pharmacologic interactions. However, current evidence on their clinical relevance remains scanty. This retrospective, case-control study assessed the frequency of ischemic/hemorrhagic events and epileptic seizures involving DOAC-ASM cotherapy in the real world, compared with DOAC and ASM monotherapy, in age- and gender-matched controls. METHODS Data on patients who had been prescribed a concomitant DOAC and ASM therapy for at least 6 months were extracted from the database of the Pharmaceutical Service of the Alessandria Province (Italy). After exclusions, the case group included 124 patients, 44 on valproic acid (VPA) and 80 on levetiracetam (LEV) concomitant with a DOAC, and it was compared with the DOAC-control and ASM-control groups. The clinical and laboratory data were extracted from the electronic archives of the hospitals in the same province. FINDINGS Two (1.6%) ischemic and 2 (1.6%) major hemorrhagic events were observed in the case group. Four (3.2%) ischemic and no hemorrhagic events occurred in the DOAC-control group. There were no statistically significant differences in the ischemic and hemorrhagic events between the case group (patients on concomitant LEV or VPA who were prescribed a DOAC) and the DOAC-control group, and there was no difference in the recurrence rate of epileptic seizures between the case group and the ASM-control group. IMPLICATIONS Although this study has some limits, mainly the small sample size, our findings indicate that neither LEV nor VPA concomitant treatment significantly affects the effects of DOACs in a real-world setting.
Collapse
Affiliation(s)
- Eugenia Rota
- The Neurology Unit, San Giacomo Hospital, ASL Alessandria, Novi Ligure, Italy.
| | - Paolo Immovilli
- The Neurology Unit, Guglielmo da Saliceto Hospital, AUSLPC, Piacenza, Italy
| | - Irene Pappalardo
- The Clinical Neurophysiology and Epilepsy Unit, IRCCS San Martino Hospital, Genova, Italy
| | - Roberta Risso
- The Internal Medicine Unit, M. Ferrero Hospital, ASLCN2, Verduno, Italy
| | | | - Sergio Agosti
- The Cardiology Unit, Micone Hospital, ASL3, Sestri Ponente, Italy
| | - Nicola Morelli
- The Neurology Unit, Guglielmo da Saliceto Hospital, AUSLPC, Piacenza, Italy
| | | | - Ilaria Costa
- The Hospital Pharmacy, ASL Alessandria, Alessandria, Italy
| | | |
Collapse
|
3
|
Stöllberger C, Finsterer J, Schneider B. Interactions between antiepileptic drugs and direct oral anticoagulants for primary and secondary stroke prevention. Expert Opin Drug Metab Toxicol 2024; 20:359-376. [PMID: 38712571 DOI: 10.1080/17425255.2024.2352466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Direct oral anticoagulants (DOAC) are the guideline-recommended therapy for prevention of stroke in atrial fibrillation (AF) and venous thromboembolism. Since approximately 10% of patients using antiepileptic drugs (AED) also receive DOAC, aim of this review is to summarize data about drug-drug interactions (DDI) of DOAC with AED by using data from PubMed until December 2023. AREAS COVERED Of 49 AED, only 16 have been investigated regarding DDI with DOAC by case reports or observational studies. No increased risk for stroke was reported only for topiramate, zonisamide, pregabalin, and gabapentin, whereas for the remaining 12 AED conflicting results regarding the risk for stroke and bleeding were found. Further 16 AED have the potential for pharmacodynamic or pharmacokinetic DDI, but no data regarding DOAC are available. For the remaining 17 AED it is unknown if they have DDI with DOAC. EXPERT OPINION Knowledge about pharmacokinetic and pharmacodynamic DDI of AED and DOAC is limited and frequently restricted to in vitro and in vivo findings. Since no data about DDI with DOAC are available for 67% of AED and an increasing number of patients have a combined medication of DOAC and AED, there is an urgent need for research on this topic.
Collapse
|
4
|
Goldstein R, Rabkin N, Buchman N, Jacobs AR, Sandouka K, Raccah B, Fisher Negev T, Matok I, Bialer M, Muszkat M. The Effect of Levetiracetam Compared with Enzyme-Inducing Antiseizure Medications on Apixaban and Rivaroxaban Peak Plasma Concentrations. CNS Drugs 2024; 38:399-408. [PMID: 38520503 PMCID: PMC11026229 DOI: 10.1007/s40263-024-01077-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND AND OBJECTIVE Post-stroke epilepsy represents an important clinical challenge as it often requires both treatment with direct oral anticoagulants (DOACs) and antiseizure medications (ASMs). Levetiracetam (LEV), an ASM not known to induce metabolizing enzymes, has been suggested as a safer alternative to enzyme-inducing (EI)-ASMs in patients treated with DOACs; however, current clinical guidelines suggest caution when LEV is used with DOACs because of possible P-glycoprotein induction and competition (based on preclinical studies). We investigated whether LEV affects apixaban and rivaroxaban concentrations compared with two control groups: (a) patients treated with EI-ASMs and (b) patients not treated with any ASM. METHODS In this retrospective observational study, we monitored apixaban and rivaroxaban peak plasma concentrations (Cmax) in 203 patients treated with LEV (n = 28) and with EI-ASM (n = 33), and in patients not treated with any ASM (n = 142). Enzyme-inducing ASMs included carbamazepine, phenytoin, phenobarbital, primidone, and oxcarbazepine. We collected clinical and laboratory data for analysis, and DOAC Cmax of patients taking LEV were compared with the other two groups. RESULTS In 203 patients, 55% were female and the mean age was 78 ± 0.8 years. One hundred and eighty-six patients received apixaban and 17 patients received rivaroxaban. The proportion of patients with DOAC Cmax below their therapeutic range was 7.1% in the LEV group, 10.6% in the non-ASM group, and 36.4% in the EI-ASM group (p < 0.001). The odds of having DOAC Cmax below the therapeutic range (compared with control groups) was not significantly different in patients taking LEV (adjusted odds ratio 0.70, 95% confidence interval 0.19-2.67, p = 0.61), but it was 12.7-fold higher in patients taking EI-ASM (p < 0.001). In an analysis in patients treated with apixaban, there was no difference in apixaban Cmax between patients treated with LEV and non-ASM controls, and LEV clinical use was not associated with variability in apixaban Cmax in a multivariate linear regression. CONCLUSIONS In this study, we show that unlike EI-ASMs, LEV clinical use was not significantly associated with lower apixaban Cmax and was similar to that in patients not treated with any ASM. Our findings suggest that the combination of LEV with apixaban and rivaroxaban may not be associated with decreased apixaban and rivaroxaban Cmax. Therefore, prospective controlled studies are required to examine the possible non-pharmacokinetic mechanism of the effect of the LEV-apixaban or LEV-rivaroxaban combination on patients' outcomes.
Collapse
Affiliation(s)
- Rachel Goldstein
- Department of Medicine, Faculty of Medicine, Hadassah Medical Center Mt. Scopus, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Clinical Pharmacy, Faculty of Medicine, Institute for Drug Research, School of Pharmacy, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Natalie Rabkin
- Department of Medicine, Faculty of Medicine, Hadassah Medical Center Mt. Scopus, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Clinical Pharmacy, Faculty of Medicine, Institute for Drug Research, School of Pharmacy, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Noa Buchman
- Department of Medicine, Faculty of Medicine, Hadassah Medical Center Mt. Scopus, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviya R Jacobs
- Department of Medicine, Faculty of Medicine, Hadassah Medical Center Mt. Scopus, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Khaled Sandouka
- Department of Medicine, Faculty of Medicine, Hadassah Medical Center Mt. Scopus, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bruria Raccah
- Department of Clinical Pharmacy, Faculty of Medicine, Institute for Drug Research, School of Pharmacy, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Cardiology, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Fisher Negev
- Department of Clinical Pharmacy, Faculty of Medicine, Institute for Drug Research, School of Pharmacy, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurology, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilan Matok
- Department of Clinical Pharmacy, Faculty of Medicine, Institute for Drug Research, School of Pharmacy, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Meir Bialer
- School of Pharmacy, Institute for Drug Research, Hebrew University of Jerusalem, Mt Scopus, 91905, Jerusalem, Israel.
- David R. Bloom Center for Pharmaceutical Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Mordechai Muszkat
- Department of Medicine, Faculty of Medicine, Hadassah Medical Center Mt. Scopus, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Mavri A, Ilc S. The efficacy of direct oral anticoagulants in patients on concomitant treatment with levetiracetam. Sci Rep 2023; 13:9257. [PMID: 37286616 DOI: 10.1038/s41598-023-33876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/20/2023] [Indexed: 06/09/2023] Open
Abstract
Guidelines do not support the combination of direct oral anticoagulants (DOACs) and the antiepileptic drug levetiracetam, due to potential relevant P-glycoprotein (P-gp) mediated interaction that might result in decreased DOACs concentrations and increased thromboembolic risk. However, there is no systematic data on the safety of this combination. The aim of this study was to find patients concurrently treated with levetiracetam and DOAC, assess their plasma concentrations of DOAC, and the incidence of thromboembolic events. From our registry of patients on anticoagulation drugs we identified 21 patients concomitantly treated with levetiracetam and DOAC, 19 patients with atrial fibrillation and two patients with venous thromboembolism. Eight patients received dabigatran, 9 apixaban and 4 rivaroxaban. For each subject blood samples were collected for determination of trough DOAC and trough levetiracetam concentrations. The average age was 75 ± 9 years, 84% were males, HAS-BLED score was 1.8 ± 0.8, and in patients with atrial fibrillation CHA2DS2-VASc score was 4.6 ± 2.0. The average trough concentration level of levetiracetam was 31.0 ± 34.5 mg/L. Median trough concentrations of DOACs were for dabigatran 72 (range 25-386) ng/mL, for rivaroxaban 47 (range 19-75) ng/mL, and for apixaban 139 (range 36-302) ng/mL. During the observation period of 1388 ± 994 days none of the patients suffered a thromboembolic event. Our results did not demonstrate a reduction in DOACs plasma levels during levetiracetam treatment, suggesting that levetiracetam could not be an important P-gp inducer in humans. DOAC in combination with levetiracetam remained effective therapy to protect against thromboembolic events.
Collapse
Affiliation(s)
- Alenka Mavri
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia.
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Sara Ilc
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Goldstein R, Jacobs AR, Zighan L, Gronich N, Bialer M, Muszkat M. Interactions Between Direct Oral Anticoagulants (DOACs) and Antiseizure Medications: Potential Implications on DOAC Treatment. CNS Drugs 2023; 37:203-214. [PMID: 36869199 DOI: 10.1007/s40263-023-00990-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 03/05/2023]
Abstract
The use of direct oral anticoagulants (DOACs) is increasing because of their superior efficacy and safety compared with vitamin K antagonists. Pharmacokinetic drug interactions, particularly those involving cytochrome P450- mediated metabolism and P-glycoprotein transport, significantly affect the efficacy and safety of DOACs. In this article, we assess the effects of cytochrome P450- and P-glycoprotein-inducing antiseizure medications on DOAC pharmacokinetics in comparison to rifampicin. Rifampicin decreases to a varying extent the plasma exposure (area under the concentration-time curve) and peak concentration of each DOAC, consistent with its specific absorption and elimination pathways. For apixaban and rivaroxaban, rifampicin had a greater effect on the area under the concentration-time curve than on peak concentration. Therefore, using peak concentration to monitor DOAC concentrations may underestimate the effect of rifampicin on DOAC exposure. Antiseizure medications that are cytochrome P450 and P-glycoprotein inducers are commonly used with DOACs. Several studies have observed a correlation between the concomitant use of DOACs and enzyme-inducing antiseizure medications and DOAC treatment failure, for example, ischemic and thrombotic events. The European Society of Cardiology recommends avoiding this combination, as well as the combination of DOACs with levetiracetam and valproic acid, owing to a risk of low DOAC concentrations. However, levetiracetam and valproic acid are not cytochrome P450 or P-glycoprotein inducers, and the implications of their use with DOACs remain to be elucidated. Our comparative analysis suggests DOAC plasma concentration monitoring as a possible strategy to guide dosing owing to the predictable correlation between DOACs' plasma concentration and effect. Patients taking concomitant enzyme-inducing antiseizure medications are at risk for low DOAC concentrations and subsequently, treatment failure and thus can benefit from DOAC concentration monitoring to prophylactically identify this risk.
Collapse
Affiliation(s)
- Rachel Goldstein
- Department of Medicine, Faculty of Medicine, Hadassah Medical Center Mt. Scopus, Hebrew University of Jerusalem, Jerusalem, Israel
- Division of Clinical Pharmacy, Faculty of Medicine, Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Pharmaceutics ,Faculty of Medicine, Ein Kerem, Institute for Drug Research, School of Pharmacy, Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Aviya R Jacobs
- Department of Medicine, Faculty of Medicine, Hadassah Medical Center Mt. Scopus, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lana Zighan
- Department of Medicine, Faculty of Medicine, Hadassah Medical Center Mt. Scopus, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naomi Gronich
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Clalit Health Services, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Meir Bialer
- Department of Pharmaceutics ,Faculty of Medicine, Ein Kerem, Institute for Drug Research, School of Pharmacy, Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
- David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Mordechai Muszkat
- Department of Medicine, Faculty of Medicine, Hadassah Medical Center Mt. Scopus, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
7
|
Wang Y, Li Y, Wang G, Lu J, Li Z. Overexpression of Homer1b/c induces valproic acid resistance in epilepsy. CNS Neurosci Ther 2023; 29:331-343. [PMID: 36353757 PMCID: PMC9804053 DOI: 10.1111/cns.14008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/23/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022] Open
Abstract
AIMS Resistance to valproic acid (VPA) is a major challenge for epilepsy treatment. We aimed to explore the mechanism underlying this resistance. METHODS Pentylenetetrazol-induced chronic epileptic rats were administered VPA (250 mg/Kg) for 14 days; rats with controlled seizure stages (seizure score14th-before ≤0) and latent time (latent time14th-before ≥0) were considered VPA-responsive, while the others were considered nonresponsive. Differentially expressed genes (DEGs) between the VPA-responsive and nonresponsive rat hippocampus transcriptomes were identified, and their functions were evaluated. The roles of postsynaptic density (PSD) and Homer1 were also determined. Furthermore, a subtype of Homer1 (Homer1b/c) was overexpressed or silenced in HT22 cells to determine its effect on VPA efficacy. Moreover, the membrane levels of mGluR1/5 directly bound to Homer1b/c were assessed. RESULTS Overall, 264 DEGs commonly enriched in the PSD between VPA-responsive and nonresponsive rats. Among them, Homer1 was more highly expressed in the hippocampus of nonresponses compared to that of responses. Overexpression of Homer1b/c interrupted VPA efficacy by increasing reactive oxygen species production, lactate dehydrogenase release, and calcium content. Furthermore, it induced the overexpression of mGluR1 and mGluR5. CONCLUSION Overexpression of Homer1b/c influenced VPA efficacy, revealing it could be a target to improve the efficacy of this treatment.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality MedicineSchool of Pharmacy, Hainan Medical UniversityHaikouChina
| | - Youbin Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality MedicineSchool of Pharmacy, Hainan Medical UniversityHaikouChina
| | - Guangfei Wang
- Department of PharmacyChildren's Hospital of Fudan UniversityShanghaiChina
| | - Jinmiao Lu
- Department of PharmacyChildren's Hospital of Fudan UniversityShanghaiChina
| | - Zhiping Li
- Department of PharmacyChildren's Hospital of Fudan UniversityShanghaiChina
| |
Collapse
|
8
|
Faria P, Pacheco C, Moura RP, Sarmento B, Martins C. Multifunctional nanomedicine strategies to manage brain diseases. Drug Deliv Transl Res 2022; 13:1322-1342. [PMID: 36344871 DOI: 10.1007/s13346-022-01256-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
Brain diseases represent a substantial social and economic burden, currently affecting one in six individuals worldwide. Brain research has been focus of great attention in order to unravel the pathogenesis and complexity of brain diseases at the cellular, molecular, and microenvironmental levels. Due to the intrinsic nature of the brain, the presence of the highly restrictive blood-brain barrier (BBB), and the pathophysiology of most diseases, therapies can hardly be considered successful purely by the administration of one drug to a patient. Apart from improving pharmacokinetic parameters, tailoring biodistribution, and reducing the number of side effects, nanomedicines are able to actively co-target the therapeutics to the brain parenchyma and brain lesions, as well as to achieve the delivery of multiple cargos with therapeutic, diagnostic, and theranostic properties. Among other multivalent effects that can be personalized according to the disease needs, this represents a promising class of novel nanosystems, termed multifunctional nanomedicines. Herein, we review the principal mechanisms of therapeutic resistance of the most prevalent brain diseases, how to overcome this therapeutic resistance through the use of multifunctional nanomedicines that tackle multiple fronts of the disease microenvironment, and the promising therapeutic responses achieved by some of the most cutting-edge multifunctional nanomedicines reported in literature.
Collapse
|
9
|
Gritsch D, Gonzalez Castro LN. Relevant pharmacologic interactions in the concurrent management of brain tumor-related epilepsy and venous thromboembolism: a systematic review. J Neurooncol 2022; 157:285-296. [PMID: 35312937 DOI: 10.1007/s11060-022-03984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/05/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Co-administration of direct oral anticoagulants (DOACs) with antiepileptic drugs (AEDs) is increasingly common in brain tumor patients. We therefore performed a systematic review of the current evidence for potential drug interactions between DOACs and AEDs in this patient population. METHODS We conducted a systematic review of the literature via PubMed according to PRISMA guidelines (last accessed December 15, 2021). Included were clinical studies and case reports, written in English language and published between 2010 and 2021, that investigated concurrent clinical use of AEDs with DOACs for any indication. Non-English articles, articles not related to our research question, review articles and commentaries were excluded. Full-text articles were evaluated for possible confounding factors and results were summarized using a data table highlighting the key characteristics of each article. RESULTS We identified a total of 122 unique articles, of which 27 were deemed relevant to our research question. Of these, 8 articles were clinical studies (n = 295,415 patients) and 19 were case reports (n = 25 patients). Only 3 clinical studies and 2 case reports reported interactions between AEDs and DOACs in patients with active cancer and none reported interactions in patients with brain tumors. CONCLUSION We have identified low (class IV) level evidence of potential drug interactions between DOACs and AEDs. Even though there is no current report of interactions in brain tumor patients, neuro-oncology providers should be aware of the emerging evidence regarding drug interactions between DOACs and AEDs and take this into consideration when concurrently prescribing these to patients.
Collapse
Affiliation(s)
- David Gritsch
- Mayo Clinic Scottsdale: Mayo Clinic Arizona, Phoenix, AZ, USA.
| | - L Nicolas Gonzalez Castro
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| |
Collapse
|
10
|
Ding X, Zhou J, Zhao L, Chen M, Wang S, Zhang M, Zhang X, Jiang G. Intestinal Flora Composition Determines Microglia Activation and Improves Epileptic Episode Progress. Front Cell Infect Microbiol 2022; 12:835217. [PMID: 35356535 PMCID: PMC8959590 DOI: 10.3389/fcimb.2022.835217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
In response to environmental stimuli, immune memory mediates the plasticity of myeloid cells. Immune training and immune tolerance are two aspects of plasticity. Microglia that are immunologically trained or immunologically tolerant are endowed with a tendency to differentiate into alternative dominant phenotypes (M1/M2). Male C57BL/6 mice (immune-training group, immune-tolerant group, and control group) were used to establish the kainic acid epilepsy model. The seizure grade, duration, latency, hippocampal potential, and energy density were used to evaluate seizures, and the changes in the polarization of microglia were detected by western blot. 16S rDNA sequencing showed that the abundance of Ruminococcus in the immune-tolerant group was the dominant flora. Our research connections Intestinal microorganisms, brain immune status, and epilepsy behavior together. Pro-inflammatory M1 phenotype and anti-inflammatory M2 phenotype mediate and enhance and suppress subsequent inflammation, respectively. We conclude that intestinal microorganisms influence the occurrence and development of epilepsy by regulating the polarization of microglia.
Collapse
|
11
|
Toll SJ, Qiu F, Huang Y, Habgood MD, Dziegielewska KM, Nie S, Saunders NR. Entry of antiepileptic drugs (valproate and lamotrigine) into the developing rat brain. F1000Res 2021; 10:384. [PMID: 34249340 PMCID: PMC8207807 DOI: 10.12688/f1000research.52607.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 10/15/2024] Open
Abstract
Background: Women with epilepsy face difficult choices whether to continue antiepileptic drug treatment during pregnancy, as uncontrolled seizures carry great risk to mother and fetus but continuing treatment may have adverse effects on baby's development. This study aimed at evaluating antiepileptic drug entry into developing brain. Methods: Anaesthetised pregnant, non-pregnant adult females, postnatal and fetal rats were injected intraperitoneally with different doses, single or in combinations, of valproate and lamotrigine, within clinical range. Injectate included 3H-labelled drug. After 30min, CSF, blood and brain samples were obtained; radioactivity measured using liquid scintillation counting. Some animals were also exposed to valproate in feed throughout pregnancy and into neonatal period. Drug levels measured by liquid chromatography coupled to mass spectrometry (LC-MS). Results given as CSF or tissue/plasma% as index of drug entry. Results: Entry of valproate into brain and CSF was higher at E19 and P4 compared to adult and was dose-dependent except at E19; placental transfer increased significantly at highest dose of 100mg/kg. Lamotrigine entry into the brain was dose dependent only at E19. Chronic valproate treatment, or combination of valproate and lamotrigine had little effect on either drug entry, except for reduced valproate brain entry in adult brain with chronic treatment. Placental transfer decreased significantly after chronic valproate treatment. LC-MS measurement of valproate in adults confirmed that rat plasma values were within the clinical range and CSF/plasma and brain/plasma ratios for LC-MS and 3H-valproate were similar. Conclusion: Results suggest that entry of valproate may be higher in developing brain, the capacity of barrier mechanism is mostly unaffected by doses within the clinical range, with or without addition of lamotrigine. Chronic valproate exposure may result in upregulation in cellular mechanisms restricting its entry into the brain. Entry of lamotrigine was little different at different ages and was not dose dependent.
Collapse
Affiliation(s)
- Samuel J. Toll
- Biochemistry & Pharmacology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Fiona Qiu
- Biochemistry & Pharmacology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yifan Huang
- Biochemistry & Pharmacology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Mark D. Habgood
- Biochemistry & Pharmacology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Norman R. Saunders
- Biochemistry & Pharmacology, University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
12
|
Toll SJ, Qiu F, Huang Y, Habgood MD, Dziegielewska KM, Nie S, Saunders NR. Entry of antiepileptic drugs (valproate and lamotrigine) into the developing rat brain. F1000Res 2021; 10:384. [PMID: 34249340 PMCID: PMC8207807 DOI: 10.12688/f1000research.52607.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Women with epilepsy face difficult choices whether to continue antiepileptic drug treatment during pregnancy, as uncontrolled seizures carry great risk to mother and fetus but continuing treatment may have adverse effects on baby’s development. This study aimed at evaluating antiepileptic drug entry into developing brain. Methods: Anaesthetised pregnant, non-pregnant adult females, postnatal and fetal rats were injected intraperitoneally with different doses, single or in combinations, of valproate and lamotrigine, within clinical range. Injectate included
3H-labelled drug. After 30min, CSF, blood and brain samples were obtained; radioactivity measured using liquid scintillation counting. Some animals were also exposed to valproate in feed throughout pregnancy and into neonatal period. Drug levels measured by liquid chromatography coupled to mass spectrometry (LC-MS). Results given as CSF or tissue/plasma% as index of drug entry. Results: Entry of valproate into brain and CSF was higher at E19 and P4 compared to adult and was dose-dependent except at E19; placental transfer increased significantly at highest dose of 100mg/kg. Lamotrigine entry into the brain was dose dependent only at E19. Chronic valproate treatment, or combination of valproate and lamotrigine had little effect on either drug entry, except for reduced valproate brain entry in adult brain with chronic treatment. Placental transfer decreased significantly after chronic valproate treatment. LC-MS measurement of valproate in adults confirmed that rat plasma values were within the clinical range and CSF/plasma and brain/plasma ratios for LC-MS and
3H-valproate were similar. Conclusion: Results suggest that entry of valproate may be higher in developing brain, the capacity of barrier mechanism is mostly unaffected by doses within the clinical range, with or without addition of lamotrigine. Chronic valproate exposure may result in upregulation in cellular mechanisms restricting its entry into the brain. Entry of lamotrigine was little different at different ages and was not dose dependent.
Collapse
Affiliation(s)
- Samuel J Toll
- Biochemistry & Pharmacology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Fiona Qiu
- Biochemistry & Pharmacology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yifan Huang
- Biochemistry & Pharmacology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Mark D Habgood
- Biochemistry & Pharmacology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Norman R Saunders
- Biochemistry & Pharmacology, University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
13
|
Corsini A, Ferri N, Proietti M, Boriani G. Edoxaban and the Issue of Drug-Drug Interactions: From Pharmacology to Clinical Practice. Drugs 2021; 80:1065-1083. [PMID: 32504376 DOI: 10.1007/s40265-020-01328-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Edoxaban, a direct factor Xa inhibitor, is the latest of the non-vitamin K antagonist oral anticoagulants (NOACs). Despite being marketed later than other NOACs, its use is now spreading in current clinical practice, being indicated for both thromboprophylaxis in patients with non-valvular atrial fibrillation (NVAF) and for the treatment and prevention of venous thromboembolism (VTE). In patients with multiple conditions, the contemporary administration of several drugs can cause relevant drug-drug interactions (DDIs), which can affect drugs' pharmacokinetics and pharmacodynamics. Usually, all the NOACs are considered to have significantly fewer DDIs than vitamin K antagonists; notwithstanding, this is actually not true, all of them are affected by DDIs with drugs that can influence the activity (induction or inhibition) of P-glycoprotein (P-gp) and cytochrome P450 3A4, both responsible for the disposition and metabolism of NOACs to a different extent. In this review/expert opinion, we focused on an extensive report of edoxaban DDIs. All the relevant drugs categories have been examined to report on significant DDIs, discussing the impact on edoxaban pharmacokinetics and pharmacodynamics, and the evidence for dose adjustment. Our analysis found that, despite a restrained number of interactions, some strong inhibitors/inducers of P-gp and drug-metabolising enzymes can affect edoxaban concentration, just as it happens with other NOACs, implying the need for a dose adjustment. However, our analysis of edoxaban DDIs suggests that given the small propensity for interactions of this agent, its use represents an acceptable clinical decision. Still, DDIs can be significant in certain clinical situations and a careful evaluation is always needed when prescribing NOACs.
Collapse
Affiliation(s)
- Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.,Multimedica IRCCS, Milan, Italy
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Marco Proietti
- Department of Clinical Sciences and Community Health, University of Milan, Via della Commenda 19, 20122, Milan, Italy. .,Geriatric Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy. .,Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK.
| | - Giuseppe Boriani
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico di Modena, Modena, Italy
| |
Collapse
|
14
|
Ho CJ, Chen SH, Lin CH, Lu YT, Hsu CW, Tsai MH. Non-vitamin K Oral Anticoagulants and Anti-seizure Medications: A Retrospective Cohort Study. Front Neurol 2021; 11:588053. [PMID: 33732201 PMCID: PMC7959808 DOI: 10.3389/fneur.2020.588053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/28/2020] [Indexed: 01/16/2023] Open
Abstract
Purpose: Concerns of drug-drug interactions (DDIs) between anti-seizure medications (ASMs) and non-vitamin K oral anticoagulants (NOACs) have emerged in recent case reports and guidelines. Theoretically, the induction of hepatic cytochrome P450 3A4 (CYP3A4) enzyme and permeability glycoprotein (P-GP) efflux transporter protein systems may reduce the effect of NOACs. We aimed to investigate whether such DDIs are clinically relevant in a real-world situation. Methods: We retrospectively reviewed 320 ischemic stroke patients with atrial fibrillation (Af) and grouped them according to different potential interactions with CYP3A4 and P-GP. Ischemic stroke events, transient ischemic attack (TIA) events, follow-up duration, baseline characteristics, concomitant ASMs, and stroke risk factors were collected. Statistical analysis included Kaplan-Meier survival curves and the log-rank test. Results: Overall, 320 ischemic stroke with Af patients received NOACs. Among the NOAC users, 75 also took ASMs, including 56 that have potential DDIs: 43 (13.4%) were categorized as potential CYP and P-GP DDIs and 13 (4.1%) as P-GP-only DDIs. The remaining 264 (82.5%) patients were used as controls including 19 exposed to nonsignificant DDI ASMs and 245 patients without ASM exposure. The incidence rates of recurrent stroke/TIA events in both CYP3A4 and P-GP DDIs, P-GP DDIs only, and no DDIs were 7.5, 2.1, and 8.4/100 person-years, respectively. Kaplan-Meier survival curves and the log-rank test did not show significant differences among the groups. Conclusions: The recurrent stroke rate of NOAC users with potential DDIs was not higher than in those without potential DDIs in this single-institute study. Our results suggest that theoretical interactions between ASMs and NOACs may not be as severe as previously thought in a real-world situation.
Collapse
Affiliation(s)
- Chen-Jui Ho
- Department of Neurology, College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung, Taiwan
| | - Shih-Hsuan Chen
- Department of Neurology, College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung, Taiwan
| | - Chih-Hsiang Lin
- Department of Neurology, College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung, Taiwan
| | - Che-Wei Hsu
- Department of Neurology, College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
15
|
Concomitant Use of Direct Oral Anticoagulants and Antiepileptic Drugs: A Prospective Cohort Study in Patients with Atrial Fibrillation. Clin Drug Investig 2020; 41:43-51. [PMID: 33284370 PMCID: PMC7815539 DOI: 10.1007/s40261-020-00982-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND European guidelines do not recommend the use of carbamazepine, levetiracetam, phenobarbital, phenytoin, topiramate and valproic acid in patients taking direct oral anticoagulants (DOACs). Little is known regarding the clinical relevance of the interaction between DOACs and antiepileptic drugs. OBJECTIVES To evaluate the incidence of thromboembolic and bleeding events in patients with non-valvular atrial fibrillation (AF) concurrently treated with DOACs and antiepileptic drugs. METHODS This is a prospective multicentre cohort study of patients with non-valvular AF concurrently treated with DOACs and antiepileptic drugs. The primary outcome was ischaemic stroke/transient ischaemic attack (TIA)/systemic embolism (SE). Secondary outcome was major bleeding (MB). Incidence rates (% patient-year) were evaluated for the study outcomes. RESULTS Overall, 91 patients were included. Mean age was 78 ± 9.5 years, 49.5% were female. Mean CHA2DS2-VASc score was 4.76 ± 1.59 and mean HAS-BLED was 2.67 ± 1.26. Overall, 41, 20, 11, 10 and 9 out of 91 patients were treated with levetiracetam, valproic acid, phenobarbital, carbamazepine and other antiepileptic drugs, respectively. During a median follow-up of 17.5 ± 14.5 months, stroke/TIA/SE occurred in 9 patients (5.7% patient-year) and MB in 3 patients (1.9% patient-year). Ischaemic stroke was fatal in 3 patients (1.9% patient-year) and MB in one patient (0.6% patient-year). CONCLUSION In this cohort, patients with non-valvular AF treated with DOACs and antiepileptic drugs appear to have a relatively high rate of thromboembolic events.
Collapse
|
16
|
Hellfritzsch M, Christensen J, Nielsen LP. Rivaroxaban Plasma Levels and Levetiracetam. Ann Intern Med 2020; 173:771. [PMID: 33137273 DOI: 10.7326/l20-1064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Wang Y, Wang G, Tao J, Li X, Hu L, Li Q, Lu J, Li Y, Li Z. Autophagy associated with the efficacy of valproic acid in PTZ-induced epileptic rats. Brain Res 2020; 1745:146923. [PMID: 32504548 DOI: 10.1016/j.brainres.2020.146923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
Valproic acid (VPA) is a widely used antiepileptic drugs. Patients who are non-responsive to VPA often present to the clinic; however, the mechanism of resistance is unclear. In this study, we found that responder and non-responder pentylenetetrazole-induced chronic epileptic rats had no significant differences in VPA concentrations in their plasma and brain tissues. Furthermore, through an RNA-sequence method, we identified 334 differentially expressed genes between VPA-responsive and non-responsive rats, while 21 pathways were enriched. Interestingly, 16 pathways, including the phagosome pathway, were commonly enriched compared to those in patients. We used transmission electron microscopy and immunofluorescence microscopy to further assess the level of autophagy in responder and non-responder rats. Non-responders had more autophagic vacuoles and an increased level of LC3B expression. Furthermore, epileptic rats that were previously administered 3-methyadenine (an inhibitor of autophagy) exhibited a slight increase in VPA efficacy. In conclusion, autophagy was associated with the efficacy of VPA.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 3 Xueyuan Road, Haikou, China; Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Guangfei Wang
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Jie Tao
- Central Laboratory, Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxia Li
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Lan Hu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 3 Xueyuan Road, Haikou, China
| | - Qin Li
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Jinmiao Lu
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Youbin Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 3 Xueyuan Road, Haikou, China.
| | - Zhiping Li
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China.
| |
Collapse
|
18
|
Paciullo F, Costa C, Gresele P. Rivaroxaban Plasma Levels and Levetiracetam: A Case Report. Ann Intern Med 2020; 173:71-72. [PMID: 32283551 DOI: 10.7326/l19-0712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Cinzia Costa
- University of Perugia, Perugia, Italy (F.P., C.C., P.G.)
| | - Paolo Gresele
- University of Perugia, Perugia, Italy (F.P., C.C., P.G.)
| |
Collapse
|
19
|
Taha M, Li W, Schmidt CM, Gonzalez-Castellon M, Taraschenko O. The interactions between anticonvulsants and non-vitamin K antagonist oral anticoagulant agents: A systematic review. Epilepsy Res 2020; 162:106304. [DOI: 10.1016/j.eplepsyres.2020.106304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/10/2020] [Accepted: 02/22/2020] [Indexed: 12/21/2022]
|
20
|
Gil-Martins E, Barbosa DJ, Silva V, Remião F, Silva R. Dysfunction of ABC transporters at the blood-brain barrier: Role in neurological disorders. Pharmacol Ther 2020; 213:107554. [PMID: 32320731 DOI: 10.1016/j.pharmthera.2020.107554] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
ABC (ATP-binding cassette) transporters represent one of the largest and most diverse superfamily of proteins in living species, playing an important role in many biological processes such as cell homeostasis, cell signaling, drug metabolism and nutrient uptake. Moreover, using the energy generated from ATP hydrolysis, they mediate the efflux of endogenous and exogenous substrates from inside the cells, thereby reducing their intracellular accumulation. At present, 48 ABC transporters have been identified in humans, which were classified into 7 different subfamilies (A to G) according to their phylogenetic analysis. Nevertheless, the most studied members with importance in drug therapeutic efficacy and toxicity include P-glycoprotein (P-gp), a member of the ABCB subfamily, the multidrug-associated proteins (MPRs), members of the ABCC subfamily, and breast cancer resistance protein (BCRP), a member of the ABCG subfamily. They exhibit ubiquitous expression throughout the human body, with a special relevance in barrier tissues like the blood-brain barrier (BBB). At this level, they play a physiological function in tissue protection by reducing or limiting the brain accumulation of neurotoxins. Furthermore, dysfunction of ABC transporters, at expression and/or activity level, has been associated with many neurological diseases, including epilepsy, multiple sclerosis, Alzheimer's disease, and amyotrophic lateral sclerosis. Additionally, these transporters are strikingly associated with the pharmacoresistance to central nervous system (CNS) acting drugs, because they contribute to the decrease in drug bioavailability. This article reviews the signaling pathways that regulate the expression and activity of P-gp, BCRP and MRPs subfamilies of transporters, with particular attention at the BBB level, and their mis-regulation in neurological disorders.
Collapse
Affiliation(s)
- Eva Gil-Martins
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.
| | - Vera Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
21
|
Wang CL, Wu VCC, Chang KH, Tu HT, Kuo CF, Huang YT, Chu PH, Kuo CC, Chang SH. Assessing major bleeding risk in atrial fibrillation patients concurrently taking non-vitamin K antagonist oral anticoagulants and antiepileptic drugs. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2019; 6:147-154. [DOI: 10.1093/ehjcvp/pvz035] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/12/2019] [Accepted: 08/01/2019] [Indexed: 01/16/2023]
Abstract
Abstract
Aims
This study compared the risk of major bleeding between atrial fibrillation (AF) patients who took non-vitamin K antagonist oral anticoagulants (NOACs) and antiepileptic drugs (AEDs) concurrently and those who took only NOACs.
Methods and results
We performed a retrospective cohort study using Taiwan National Health Insurance database and included AF patients who received NOAC prescriptions from 1 June 2012 to 31 December 2017. The major bleeding risks of person-quarters exposed to NOAC and 11 concurrent AEDs (carbamazepine, gabapentin, lamotrigine, levetiracetam, oxcarbazepine, phenobarbital, phenytoin, pregabalin, topiramate, valproic acid, and zonisamide) were compared with person-quarters exposed to NOAC alone. Adjusted incidence rate differences between NOAC with or without concurrent AEDs were estimated using Poisson regression models weighted by the inverse probability of treatment. Among 104 319 patients (age 75.0 ± 10.3 years; men, 56.2%), 8546 major bleeding events occurred during 731 723 person-quarters with NOAC prescriptions. Concurrent AED use was found in 15.3% of NOAC-treated patients. Concurrent use of NOAC with valproic acid, phenytoin, or levetiracetam increased adjusted incidence rates per 1000 person-years of major bleeding more significantly than NOAC alone: 153.49 for NOAC plus valproic acid vs. 55.06 for NOAC alone [difference 98.43, 95% confidence interval (CI) 82.37–114.49]; 135.83 for NOAC plus phenytoin vs. 54.43 for NOAC alone (difference 81.4, 95% CI 60.14–102.66); and 132.96 for NOAC plus levetiracetam vs. 53.08 for NOAC alone (difference 79.88, 95% CI 64.47–95.30).
Conclusion
For AF patients, the concurrent use of NOACs and valproic acid, phenytoin, or levetiracetam was associated with a higher risk of major bleeding.
Collapse
Affiliation(s)
- Chun-Li Wang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, No. 5, Fushin St. Kweishan District, 33305 Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Kweishan District, 33302 Taoyuan City, Taiwan
| | - Victor Chien-Chia Wu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, No. 5, Fushin St. Kweishan District, 33305 Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Kweishan District, 33302 Taoyuan City, Taiwan
| | - Kuo-Hsuan Chang
- College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Kweishan District, 33302 Taoyuan City, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, No. 5, Fushin St. Kweishan District, 33305 Taoyuan City, Taiwan
| | - Hui-Tzu Tu
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou Medical Center, No. 5, Fushin St. Kweishan District, 33305 Taoyuan City, Taiwan
| | - Chang-Fu Kuo
- College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Kweishan District, 33302 Taoyuan City, Taiwan
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, No. 5, Fushin St. Kweishan District, 33305 Taoyuan City, Taiwan
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Yu-Tung Huang
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou Medical Center, No. 5, Fushin St. Kweishan District, 33305 Taoyuan City, Taiwan
- Graduate Institute of Nursing, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Road, Kweishan District, 33302 Taoyuan City, Taiwan
| | - Pao-Hsien Chu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, No. 5, Fushin St. Kweishan District, 33305 Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Kweishan District, 33302 Taoyuan City, Taiwan
| | - Chi-Ching Kuo
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, No. 1, Section 3, Zhongxiao E Rd, Da-an District, 10607 Taipei, Taiwan
| | - Shang-Hung Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, No. 5, Fushin St. Kweishan District, 33305 Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Kweishan District, 33302 Taoyuan City, Taiwan
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou Medical Center, No. 5, Fushin St. Kweishan District, 33305 Taoyuan City, Taiwan
- Graduate Institute of Nursing, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Road, Kweishan District, 33302 Taoyuan City, Taiwan
| |
Collapse
|
22
|
Wang Y, Li Z. RNA-seq analysis of blood of valproic acid-responsive and non-responsive pediatric patients with epilepsy. Exp Ther Med 2019; 18:373-383. [PMID: 31258675 PMCID: PMC6566089 DOI: 10.3892/etm.2019.7538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is the most common chronic neurological disorder, affecting ~70 million individuals worldwide. However, approximately one-third of the patients are refractory to epilepsy medication. Of note, 100% of patients with genetic epilepsy who are resistant to the traditional drug, valproic acid (VPA), are also refractory to the other anti-epileptic drugs. The aim of the present study was to compare the transcriptomes in VPA responders and non-responders, to explore the mechanism of action of VPA and identify possible biomarkers to predict VPA resistance. Thus, RNA-seq was employed for transcriptomic analysis, differentially expressed genes (DEGs) were analyzed using Cuffdiff software and the DAVID database was used to infer the functions of the DEGs. A protein-protein interaction network was obtained using STRING and visualized with Cytoscape. A total of 389 DEGs between VPA-responsive and non-responsive pediatric patients were identified. Of these genes, 227 were upregulated and 162 were downregulated. The upregulated DEGs were largely associated with cytokines, chemokines and chemokine receptor-binding factors, whereas the downregulated DEGs were associated with cation channels, iron ion binding proteins, and immunoglobulin E receptors. In the pathway analysis, the toll-like receptor signaling pathway, pathways in cancer, and cytokine-cytokine receptor interaction were mostly enriched by the DEGs. Furthermore, three modules were identified by protein-protein interaction analysis, and the potential hub genes, chemokine (C-C motif) ligand 3 and 4, chemokine (C-X-C motif) ligand 9, tumor necrosis factor-α and interleukin-1β, which are known to be closely associated with epilepsy, were identified. These specific chemokines may participate in processes associated with VPA resistance and may be potential biomarkers for monitoring the efficacy of VPA.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai 201102, P.R. China.,Hainan Provincial Key Lab of R&D of Tropical Herbs, College of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Zhiping Li
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| |
Collapse
|
23
|
Kurt S, Sumbul O, Aksoy D. Combination of non-vitamin K antagonist oral anticoagulants and antiepileptic drugs. Eur Heart J 2019; 40:1572. [DOI: 10.1093/eurheartj/ehz091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Semiha Kurt
- Faculty of Medicine, Department of Neurology, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Orhan Sumbul
- Faculty of Medicine, Department of Neurology, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Durdane Aksoy
- Faculty of Medicine, Department of Neurology, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
24
|
Galgani A, Palleria C, Iannone LF, De Sarro G, Giorgi FS, Maschio M, Russo E. Pharmacokinetic Interactions of Clinical Interest Between Direct Oral Anticoagulants and Antiepileptic Drugs. Front Neurol 2018; 9:1067. [PMID: 30581412 PMCID: PMC6292857 DOI: 10.3389/fneur.2018.01067] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023] Open
Abstract
Direct oral anticoagulants (DOACs), namely apixaban, dabigatran, edoxaban, and rivaroxaban are being increasingly prescribed among the general population, as they are considered to be associated to lower bleeding risk than classical anticoagulants, and do not require coagulation monitoring. Likewise, DOACs are increasingly concomitantly prescribed in patients with epilepsy taking, therefore, antiepileptic drugs (AEDs), above all among the elderly. As a result, potential interactions may cause an increased risk of DOAC-related bleeding or a reduced antithrombotic efficacy. The objective of the present review is to describe the pharmacokinetic interactions between AEDs and DOACs of clinical relevance. We observed that there are only few clinical reports in which such interactions have been described in patients. More data are available on the pharmacokinetics of both drugs classes which allow speculating on their potential interactions. Older AEDs, acting on cytochrome P450 isoenzymes, and especially on CYP3A4, such as phenobarbital, phenytoin, and carbamazepine are more likely to significantly reduce the anticoagulant effect of DOACs (especially rivaroxaban, apixaban, and edoxaban). Newer AEDs not affecting significantly CYP or P-gp, such as lamotrigine, or pregabalin are not likely to affect DOACs efficacy. Zonisamide and lacosamide, which do not affect significantly CYP activity in vitro, might have a quite safe profile, even though their effects on P-gp are not well-known, yet. Levetiracetam exerts only a potential effect on P-gp activity, and thus it might be safe, as well. In conclusion, there are only few case reports and limited evidence on interactions between DOACs and AEDs in patients. However, the overall evidence suggests that the interaction between these drug classes might be of high clinical relevance and therefore further studies in larger patients' cohorts are warranted for the future in order to better clarify their pharmacokinetic and define the most appropriate clinical behavior.
Collapse
Affiliation(s)
| | - Caterina Palleria
- Department of Science of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | | | | | - Marta Maschio
- UOSD Neurology, Center for Tumor-related Epilepsy, Regina Elena National Cancer Institute, Rome, Italy
| | - Emilio Russo
- Department of Science of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
25
|
Population Pharmacokinetic Modeling of Levetiracetam in Pediatric and Adult Patients With Epilepsy by Using Routinely Monitored Data. Ther Drug Monit 2017; 38:371-8. [PMID: 26913593 DOI: 10.1097/ftd.0000000000000291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Levetiracetam, a second-generation antiepileptic drug, is frequently used for managing partial-onset seizures. About 70% of the administered dose is excreted in urine unchanged, and dosage adjustment is recommended based on the individual's renal function. In this study, a population pharmacokinetic model of levetiracetam was developed using routinely monitored serum concentration data for individualized levetiracetam therapy. METHODS Patients whose serum concentrations of levetiracetam at steady-state were routinely monitored at Kyoto University Hospital from April 2012 to March 2013 were enrolled. The influence of patient characteristics on levetiracetam pharmacokinetics was evaluated using the nonlinear mixed-effects modeling (NONMEM) program. RESULTS A total of 583 steady-state concentrations from 225 patients were used for the analysis. The median patient age and estimated glomerular filtration rate (eGFR) were 38 (range: 1-89) years and 98 (15-189) mL·min·1.73 m, respectively. Serum concentration-time data of levetiracetam were well described by a 1-compartment model with first-order absorption. Oral clearance was allometrically related to the individual body weight and eGFR. An increase in the dose significantly increased oral clearance. No improvement in model fit was observed by including the covariate of any concomitant antiepileptic drugs. The population mean clearance for an adult weighing 70 kg and with a normal renal function was 4.8 and 5.9 L/h for 500 mg bis in die (bid) and 1500 mg bid, respectively. CONCLUSIONS Oral clearance allometrically related with body weight and eGFR can well predict the routine therapeutic drug monitoring data from pediatric to aged patients with varying renal function. Dosage adjustments based on renal function are effective in controlling the trough and peak concentrations in similar ranges.
Collapse
|
26
|
Dideriksen D, Damkier P, Nybo M. Rivaroxaban non-responders: do plasma measurements have a place? Clin Chem Lab Med 2017; 56:e16-e18. [PMID: 28688225 DOI: 10.1515/cclm-2017-0473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 01/16/2023]
|
27
|
Hawkins NA, Anderson LL, Gertler TS, Laux L, George AL, Kearney JA. Screening of conventional anticonvulsants in a genetic mouse model of epilepsy. Ann Clin Transl Neurol 2017; 4:326-339. [PMID: 28491900 PMCID: PMC5420810 DOI: 10.1002/acn3.413] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Epilepsy is a common neurological disorder that affects 1% of the population. Approximately, 30% of individuals with epilepsy are refractory to treatment, highlighting the need for novel therapies. Conventional anticonvulsant screening relies predominantly on induced seizure models. However, these models may not be etiologically relevant for genetic epilepsies. Mutations in SCN1A are a common cause of Dravet Syndrome, a severe epileptic encephalopathy. Dravet syndrome typically begins in infancy with seizures provoked by fever and then progresses to include afebrile pleomorphic seizure types. Affected children respond poorly to available anticonvulsants. Scn1a+/- heterozygous knockout mice recapitulate features of Dravet syndrome and provide a potential screening platform to investigate novel therapeutics. In this study, we conducted a screening of conventional anticonvulsants in Scn1a+/- mice to establish assays that most closely correlate with human response data. METHODS On the basis of clinical response data from a large, single center, retrospective survey of Dravet syndrome case records, we selected nine drugs for screening in Scn1a+/- mice to determine which phenotypic measures correlate best with human therapeutic response. We evaluated several screening paradigms and incorporated pharmacokinetic monitoring to establish drug exposure levels. RESULTS Scn1a+/- mice exhibited responses to anticonvulsant treatment similar to those observed clinically. Sodium channel blockers were not effective or exacerbated seizures in Scn1a+/- mice. Overall, clobazam was the most effective anticonvulsant in Scn1a+/- mice, consistent with its effect in Dravet syndrome. INTERPRETATION Genetic models of spontaneous epilepsy provide alternative screening platforms and may augment the AED development process. In this study, we established an effective screening platform that pharmacologically validated Scn1a+/- mice for preclinical screening of potential Dravet syndrome therapeutics.
Collapse
Affiliation(s)
- Nicole A Hawkins
- Department of Pharmacology Northwestern University Feinberg School of Medicine Chicago Illinois
| | - Lyndsey L Anderson
- Department of Pharmacology Northwestern University Feinberg School of Medicine Chicago Illinois
| | - Tracy S Gertler
- Department of Pediatrics Northwestern University Feinberg School of Medicine Division of Neurology Ann & Robert H. Lurie Children's Hospital of Chicago Chicago Illinois
| | - Linda Laux
- Department of Pediatrics Northwestern University Feinberg School of Medicine Division of Neurology Ann & Robert H. Lurie Children's Hospital of Chicago Chicago Illinois
| | - Alfred L George
- Department of Pharmacology Northwestern University Feinberg School of Medicine Chicago Illinois
| | - Jennifer A Kearney
- Department of Pharmacology Northwestern University Feinberg School of Medicine Chicago Illinois
| |
Collapse
|
28
|
Interactions between non-vitamin K oral anticoagulants and antiepileptic drugs. Epilepsy Res 2016; 126:98-101. [DOI: 10.1016/j.eplepsyres.2016.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/01/2016] [Accepted: 06/24/2016] [Indexed: 01/16/2023]
|
29
|
Savolainen H, Meerlo P, Elsinga PH, Windhorst AD, Dierckx RA, Colabufo NA, van Waarde A, Luurtsema G. P-glycoprotein Function in the Rodent Brain Displays a Daily Rhythm, a Quantitative In Vivo PET Study. AAPS JOURNAL 2016; 18:1524-1531. [DOI: 10.1208/s12248-016-9973-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/08/2016] [Indexed: 12/21/2022]
|
30
|
Soares RV, Do TM, Mabondzo A, Pons G, Chhun S. Ontogeny of ABC and SLC transporters in the microvessels of developing rat brain. Fundam Clin Pharmacol 2016; 30:107-16. [PMID: 26662930 DOI: 10.1111/fcp.12175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/19/2015] [Accepted: 12/08/2015] [Indexed: 01/01/2023]
Abstract
The blood-brain barrier (BBB) is responsible for the control of solutes' concentration in the brain. Tight junctions and multiple ATP-binding cassette (ABC) and SoLute Carrier (SLC) efflux transporters protect brain cells from xenobiotics, therefore reducing brain exposure to intentionally administered drugs. In epilepsy, polymorphisms and overexpression of efflux transporters genes could be associated with pharmacoresistance. The ontogeny of these efflux transporters should also be addressed because their expression during development may be related to different brain exposure to antiepileptic drugs in the immature brain. We detected statistically significant higher expression of Abcb1b and Slc16a1 genes, and lower expression of Abcb1a and Abcg2 genes between the post-natal day 14 (P14) and the adult rat microvessels. P-gP efflux activity was also shown to be lower in P14 rats when compared with the adults. The P-gP proteins coded by rodent genes Abcb1a and Abcb1b are known to have different substrate affinities. The role of the Abcg2 gene is less clear in pharmacoresistance in epilepsy, nonetheless the coded protein Bcrp is frequently associated with drug resistance. Finally, we observed a higher expression of the Mct1 transporter gene in the P14 rat brain microvessels. Accordingly to our results, we suppose that age may be another factor influencing brain exposure to antiepileptics as a consequence of different expression patterns of efflux transporters between the adult and immature BBB.
Collapse
Affiliation(s)
- Ricardo V Soares
- Inserm U1129, Paris, France.,University Paris Descartes, Faculty of Medicine, Paris, France.,CEA, Direction des Sciences du Vivant, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Tuan M Do
- CEA, Direction des Sciences du Vivant, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Aloïse Mabondzo
- CEA, Direction des Sciences du Vivant, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Gérard Pons
- Inserm U1129, Paris, France.,University Paris Descartes, Faculty of Medicine, Paris, France
| | - Stéphanie Chhun
- University Paris Descartes, Faculty of Medicine, Paris, France.,Inserm U1151, INEM, Paris, France.,APHP, Hôpital Universitaire Necker-Enfants Malades, Laboratoire d'immunologie biologique, Paris, France
| |
Collapse
|
31
|
Abstract
Epilepsy is a serious neurological disorder that affects more than 60 million people worldwide. Intractable epilepsy (IE) refers to approximately 20%-30% of epileptic patients who fail to achieve seizure control with antiepileptic drug (AED) treatment. Although the mechanisms underlying IE are not well understood, it has been hypothesized that multidrug transporters such as P-glycoprotein (P-gp) play a major role in drug efflux at the blood-brain barrier, and may be the underlying factor in the variable responses of patients to AEDs. The main goal of the present review is to show evidence from different areas that support the idea that the overexpression of P-gp is associated with IE. We discuss here evidence from animal studies, pharmacology, clinical cases and genetic studies.
Collapse
Affiliation(s)
- Guang-Xin Wang
- a Medical Institute of Paediatrics , Qilu Children's Hospital of Shandong University , Jinan , P.R. China
| | - Da-Wei Wang
- b Department of Biochemistry and Molecular Biology , School of Medicine, Shandong University , Jinan , P.R. China
| | - Yong Liu
- a Medical Institute of Paediatrics , Qilu Children's Hospital of Shandong University , Jinan , P.R. China
| | - Yan-Hui Ma
- a Medical Institute of Paediatrics , Qilu Children's Hospital of Shandong University , Jinan , P.R. China
| |
Collapse
|
32
|
Zagaja M, Pyrka D, Skalicka-Wozniak K, Glowniak K, Florek-Luszczki M, Glensk M, Luszczki JJ. Effect of xanthotoxin (8-methoxypsoralen) on the anticonvulsant activity of classical antiepileptic drugs against maximal electroshock-induced seizures in mice. Fitoterapia 2015; 105:1-6. [PMID: 26026802 DOI: 10.1016/j.fitote.2015.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 01/16/2023]
Abstract
The effects of xanthotoxin (8-methoxypsoralen) on the anticonvulsant activity of four classical antiepileptic drugs (carbamazepine, phenobarbital, phenytoin and valproate) were studied in the mouse maximal electroshock seizure model. Tonic hind limb extension (seizure activity) was evoked in adult male albino Swiss mice by a current (25 mA, 500 V, 50 Hz, 0.2 s stimulus duration) delivered via auricular electrodes. Total brain concentrations of antiepileptic drugs were measured by fluorescence polarization immunoassay to ascertain any pharmacokinetic contribution to the observed anticonvulsant effects. Results indicate that xanthotoxin (50 and 100 mg/kg, i.p.) significantly potentiated the anticonvulsant activity of carbamazepine against maximal electroshock-induced seizures (P<0.05 and P<0.001, respectively). Similarly, xanthotoxin (100 mg/kg, i.p.) markedly enhanced the anticonvulsant action of valproate in the maximal electroshock seizure test (P<0.001). In contrast, xanthotoxin (100 mg/kg, i.p.) did not affect the protective action of phenobarbital and phenytoin against maximal electroshock-induced seizures in mice. Moreover, xanthotoxin (100 mg/kg, i.p.) significantly increased total brain concentrations of carbamazepine (P<0.001) and valproate (P<0.05), but not those of phenytoin and phenobarbital, indicating pharmacokinetic nature of interactions between drugs. In conclusion, the combinations of xanthotoxin with carbamazepine and valproate, despite their beneficial effects in terms of seizure suppression in mice, were probably due to a pharmacokinetic increase in total brain concentrations of these antiepileptic drugs in experimental animals.
Collapse
Affiliation(s)
- Miroslaw Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, PL 20-950 Lublin, Poland
| | - Daniel Pyrka
- Department of Pathophysiology, Medical University, Ceramiczna 1, PL 20-150 Lublin, Poland
| | - Krystyna Skalicka-Wozniak
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University, Chodzki 1, PL 20-093 Lublin, Poland
| | - Kazimierz Glowniak
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University, Chodzki 1, PL 20-093 Lublin, Poland
| | | | - Michał Glensk
- Department of Pharmacognosy, Medical University, Nankiera Square 1, PL 50-140 Wroclaw, Poland
| | - Jarogniew J Luszczki
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, PL 20-950 Lublin, Poland; Department of Pathophysiology, Medical University, Ceramiczna 1, PL 20-150 Lublin, Poland.
| |
Collapse
|
33
|
Ahmadzai H, Tee LBG, Crowe A. Pharmacological role of efflux transporters: Clinical implications for medication use during breastfeeding. World J Pharmacol 2014; 3:153-161. [DOI: 10.5497/wjp.v3.i4.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/03/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
The World Health Organisation recommends exclusive breastfeeding for the first six months of an infant’s life and in combination with solid food thereafter. This recommendation was introduced based on research showing numerous health benefits of breastfeeding for both the mother and the infant. However, there is always concern regarding the transfer of medications from mother to their breastfed baby via milk. Pharmacokinetic properties of a drug are usually used to predict its transferability into breast milk. Although most drugs are compatible with breastfeeding, cases of toxic drug exposure have been reported. This is thought to be due to active transport mechanisms whereby efflux transporter proteins expressed in the epithelial cells of the mammary gland actively secrete drugs into milk. An example of such efflux transporters including the breast cancer resistance protein which is strongly induced during lactation and this could result in contamination of milk with the substrates of this transporter which may place the suckling infant at risk of toxicity. Furthermore, there is little known about the substrate specificity of most efflux transporters as we have highlighted in this review. There also exists some degree of contradiction between in vivo and in vitro studies which makes it difficult to conclusively predict outcomes and drug-drug interactions.
Collapse
|
34
|
Escalante-Santiago D, Feria-Romero IA, Ribas-Aparicio RM, Rayo-Mares D, Fagiolino P, Vázquez M, Escamilla-Núñez C, Grijalva-Otero I, López-García MA, Orozco-Suárez S. MDR-1 and MRP2 Gene Polymorphisms in Mexican Epileptic Pediatric Patients with Complex Partial Seizures. Front Neurol 2014; 5:184. [PMID: 25346718 PMCID: PMC4191197 DOI: 10.3389/fneur.2014.00184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/09/2014] [Indexed: 12/18/2022] Open
Abstract
Although the Pgp efflux transport protein is overexpressed in resected tissue of patients with epilepsy, the presence of polymorphisms in MDR1/ABCB1 and MRP2/ABCC2 in patients with antiepileptic-drugs resistant epilepsy (ADR) is controversial. The aim of this study was to perform an exploratory study to identify nucleotide changes and search new and reported mutations in patients with ADR and patients with good response (CTR) to antiepileptic drugs (AEDs) in a rigorously selected population. We analyzed 22 samples In Material and Methods, from drug-resistant patients with epilepsy and 7 samples from patients with good response to AEDs. Genomic DNA was obtained from leukocytes. Eleven exons in both genes were genotyped. The concentration of drugs in saliva and plasma was determined. The concentration of valproic acid in saliva was lower in ADR than in CRT. In ABCB1, five reported SNPs and five unreported nucleotide changes were identified; rs2229109 (GA) and rs2032582 (AT and AG) were found only in the ADR. Of six SNPs associated with the ABCC2 that were found in the study population, rs3740066 (TT) and 66744T > A (TG) were found only in the ADR. The strongest risk factor in the ABCB1 gene was identified as the TA genotype of rs2032582, whereas for the ABCC2 gene the strongest risk factor was the T allele of rs3740066. The screening of SNPs in ACBC1 and ABCC2 indicates that the Mexican patients with epilepsy in this study display frequently reported ABCC1 polymorphisms; however, in the study subjects with a higher risk factor for drug resistance, new nucleotide changes were found in the ABCC2 gene. Thus, the population of Mexican patients with AED-resistant epilepsy (ADR) used in this study exhibits genetic variability with respect to those reported in other study populations; however, it is necessary to explore this polymorphism in a larger population of patients with ADR.
Collapse
Affiliation(s)
- David Escalante-Santiago
- Programa de Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional , Mexico City , Mexico ; Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social , Mexico City , Mexico
| | - Iris Angélica Feria-Romero
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social , Mexico City , Mexico
| | - Rosa María Ribas-Aparicio
- Programa de Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional , Mexico City , Mexico
| | - Dario Rayo-Mares
- Neurología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social , Mexico City , Mexico
| | - Pietro Fagiolino
- Departamento de Ciencias Farmacéuticas de la Facultad de Química, Universidad de la República , Montevideo , Uruguay
| | - Marta Vázquez
- Departamento de Ciencias Farmacéuticas de la Facultad de Química, Universidad de la República , Montevideo , Uruguay
| | | | - Israel Grijalva-Otero
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social , Mexico City , Mexico
| | - Miguel Angel López-García
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social , Mexico City , Mexico
| | - Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social , Mexico City , Mexico
| |
Collapse
|
35
|
Bankstahl JP. What does a picture tell? In vivo imaging of ABC transporter function. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 12:e113-9. [PMID: 25027369 DOI: 10.1016/j.ddtec.2014.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Activity of ABC transporters in tumor tissue or at the blood–brain barrier is believed to be responsible for treatment failure of substrate drugs. As this mechanism will not be present in every single patient, diagnostic tools to study transporter function are urgently needed. Many efforts were made over the past years to improve in vivo quantification of ABC transporter function by molecular imaging techniques. This includes development of new positron emitting tracers, but also the evaluation of modified experimental protocols using already existing tracers. In addition to imaging of transporter function in healthy animals or volunteers, results from disease models or human patients are covered in this review.
Collapse
|
36
|
Rojas A, Jiang J, Ganesh T, Yang MS, Lelutiu N, Gueorguieva P, Dingledine R. Cyclooxygenase-2 in epilepsy. Epilepsia 2013; 55:17-25. [PMID: 24446952 DOI: 10.1111/epi.12461] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2013] [Indexed: 12/14/2022]
Abstract
Epilepsy is one of the more prevalent neurologic disorders in the world, affecting approximately 50 million people of different ages and backgrounds. Epileptic seizures propagating through both lobes of the forebrain can have permanent debilitating effects on a patient's cognitive and somatosensory brain functions. Epilepsy, defined by the sporadic occurrence of spontaneous recurrent seizures (SRS), is often accompanied by inflammation of the brain. Pronounced increases in the expression of key inflammatory mediators (e.g., interleukin -1β [IL-1β], tumor necrosis factor alpha [TNFα], cyclooxygenase-2 [COX-2], and C-X-C motif chemokine 10 [CXCL10]) after seizures may cause secondary damage in the brain and increase the likelihood of repetitive seizures. The COX-2 enzyme is induced rapidly during seizures. The increased level of COX-2 in specific areas of the epileptic brain can help to identify regions of seizure-induced brain inflammation. A good deal of effort has been expended to determine whether COX-2 inhibition might be neuroprotective and represent an adjunct therapeutic strategy along with antiepileptic drugs used to treat epilepsy. However, the effectiveness of COX-2 inhibitors on epilepsy animal models appears to depend on the timing of administration. With all of the effort placed on making use of COX-2 inhibitors as therapeutic agents for the treatment of epilepsy, inflammation, and neurodegenerative diseases there has yet to be a selective and potent COX-2 inhibitor that has shown a clear therapeutic outcome with acceptable side effects.
Collapse
Affiliation(s)
- Asheebo Rojas
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | | | | | | | | | | | | |
Collapse
|
37
|
Stępień KM, Tomaszewski M, Tomaszewska J, Czuczwar SJ. The multidrug transporter P-glycoprotein in pharmacoresistance to antiepileptic drugs. Pharmacol Rep 2013; 64:1011-9. [PMID: 23238460 DOI: 10.1016/s1734-1140(12)70900-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/08/2012] [Indexed: 01/16/2023]
Abstract
This review provides an overview of the knowledge on P-glycoprotein (P-gp) and its role as a membrane transporter in drug resistance in epilepsy and drug interactions. Overexpression of P-gp, encoded by the ABCB1 gene, is involved in resistance to antiepileptic drugs (AEDs), limits gastrointestinal absorption and brain access of AEDs. Although several association studies on ABCB1 gene with drug disposition and disease susceptibility are completed to date, the data remain unclear and incongruous. Although the literature describes other multidrug resistance transporters, P-gp is the main extensively studied drug efflux transporter in epilepsy.
Collapse
Affiliation(s)
- Karolina M Stępień
- Clinical Biochemistry and Metabolic Medicine Department, Central Manchester Foundation Trust, Oxford Road, M13 9WL Manchester, UK
| | | | | | | |
Collapse
|
38
|
Rocha L. Interaction between electrical modulation of the brain and pharmacotherapy to control pharmacoresistant epilepsy. Pharmacol Ther 2013; 138:211-28. [DOI: 10.1016/j.pharmthera.2013.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 01/07/2013] [Indexed: 12/15/2022]
|
39
|
Imaging P-glycoprotein function in rats using [11C]-N-desmethyl-loperamide. Ann Nucl Med 2013; 27:618-24. [DOI: 10.1007/s12149-013-0725-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 04/01/2013] [Indexed: 01/16/2023]
|
40
|
Hoffmann C, Falzone E, Augé M, Dinanian S, Mercier FJ. Long QT syndrome, amiodarone use, and the mechanism underlying lidocaine toxicity. Anesth Analg 2013; 115:1253-4; author reply 1254. [PMID: 23093585 DOI: 10.1213/ane.0b013e31826b4789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Abstract
Multidrug resistance P-glycoprotein (P-gp; also known as MDR1 and ABCB1) is expressed in the luminal membrane of the small intestine and blood-brain barrier, and the apical membranes of excretory cells such as hepatocytes and kidney proximal tubule epithelia. P-gp regulates the absorption and elimination of a wide range of compounds, such as digoxin, paclitaxel, HIV protease inhibitors and psychotropic drugs. Its substrate specificity is as broad as that of cytochrome P450 (CYP) 3A4, which encompasses up to 50 % of the currently marketed drugs. There has been considerable interest in variations in the ABCB1 gene as predictors of the pharmacokinetics and/or treatment outcomes of several drug classes, including antidepressants and antipsychotics. Moreover, P-gp-mediated transport activity is saturable, and is subject to modulation by inhibition and induction, which can affect the pharmacokinetics, efficacy or safety of P-gp substrates. In addition, many of the P-gp substrates overlap with CYP3A4 substrates, and several psychotropic drugs that are P-gp substrates are also CYP3A4 substrates. Therefore, psychotropic drugs that are P-gp substrates may cause a drug interaction when P-gp inhibitors and inducers are coadministered, or when psychotropic drugs or other medicines that are P-gp substrates are added to a prescription. Hence, it is clinically important to accumulate data about drug interactions through studies on P-gp, in addition to CYP3A4, to assist in the selection of appropriate psychotropic medications and in avoiding inappropriate combinations of therapeutic agents. There is currently insufficient information available on the psychotropic drug interactions related to P-gp, and therefore we summarize the recent clinical data in this review.
Collapse
Affiliation(s)
- Yumiko Akamine
- Department of Hospital Pharmacy, University of the Ryukyus, Nishihara-cho, Okinawa, Japan
| | | | | | | |
Collapse
|
42
|
Aronica E, Sisodiya SM, Gorter JA. Cerebral expression of drug transporters in epilepsy. Adv Drug Deliv Rev 2012; 64:919-29. [PMID: 22138133 DOI: 10.1016/j.addr.2011.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 10/03/2011] [Accepted: 11/20/2011] [Indexed: 12/26/2022]
Abstract
Over-expression of drug efflux transporters at the level of the blood-brain barrier (BBB) has been proposed as a mechanism responsible for multidrug resistance. Drug transporters in epileptogenic tissue are not only expressed in endothelial cells at the BBB, but also in other brain parenchymal cells, such as astrocytes, microglia and neurons, suggesting a complex cell type-specific regulation under pathological conditions associated with epilepsy. This review focuses on the cerebral expression patterns of several classes of well-known membrane drug transporters such as P-glycoprotein (Pgp), and multidrug resistance-associated proteins (MRPs) in the epileptogenic brain. Both experimental and clinical evidence of epilepsy-associated cerebral drug transporter regulation and the possible mechanisms underlying drug transporter regulation are discussed. Knowledge of the cerebral expression patterns of drug transporters in normal and epileptogenic brain will provide relevant information to guide strategies attempting to overcome drug resistance by targeting specific transporters.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
43
|
Hsiao P, Unadkat JD. P-glycoprotein-based loperamide-cyclosporine drug interaction at the rat blood-brain barrier: prediction from in vitro studies and extrapolation to humans. Mol Pharm 2012; 9:629-33. [PMID: 22316009 DOI: 10.1021/mp200563a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have shown that the rat can quantitatively predict the verapamil-cyclopsorine A (CsA) drug-drug interaction (DDI) at the human blood-brain barrier (BBB). In addition, the potency (EC(50)) of CsA to inhibit rat BBB P-gp can be predicted from in vitro studies in MDRI-transfected cells. To assess if these excellent agreements extend to other substrates, we determined the magnitude of P-gp-based DDI at the rat BBB between loperamide (Lop) or its metabolite, N-desmethyl Lop (dLop), and escalating CsA blood concentrations. The percent increase in the brain:blood Lop concentration ratio was described by the Hill equation, E(max) = 2000%, EC(50) = 7.1 μM and γ = 3.7. The potency (EC(50)) of CsA to inhibit P-gp at the rat BBB was independent of the substrate used (verapamil, Lop, or dLop). Like the verapamil-CsA DDI, the potency (EC(50)) of CsA to inhibit rat BBB P-gp could be predicted from studies in MDRI-transfected cells. When (11)C-Lop was coadministered with a 10 mg/kg iv infusion of CsA (1) yielding ~5.6 uM CsA blood concentration to healthy volunteers, the brain distribution of (11)C-radioactivity was increased by 110%. (1) When corrected for diffusible Lop metabolite(s), this translates into an increase in (11)C-Lop brain distribution of 457%. Based on our rat data, we estimated a similar value at 5.6 μM blood CsA concentration, 588% increase in Lop brain distribution. These data support our conclusion that the rat is a promising model to predict P-gp based DDI at the human BBB.
Collapse
Affiliation(s)
- Peng Hsiao
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | | |
Collapse
|
44
|
Moerman L, Dumolyn C, Boon P, De Vos F. The influence of mass of [11C]-laniquidar and [11C]-N-desmethyl-loperamide on P-glycoprotein blockage at the blood-brain barrier. Nucl Med Biol 2011; 39:121-5. [PMID: 21958857 DOI: 10.1016/j.nucmedbio.2011.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/17/2011] [Accepted: 06/22/2011] [Indexed: 01/16/2023]
Abstract
INTRODUCTION An earlier report suggested that mass amount of PET tracers could be an important factor in brain uptake mediated by P-glycoprotein. Thereby, this study investigated the influence of mass dose of laniquidar, desmethyl-loperamide and loperamide on the P-glycoprotein-mediated brain uptake of, respectively, [(11)C]-laniquidar and [(11)C]-N-desmethyl-loperamide ([(11)C]-dLop). METHODS Wild-type (WT) mice were injected intravenously with solutions of 5.6 MBq [(11)C]-laniquidar (either no carrier added or 60 mg/kg laniquidar added) or with 5.0-7.4 MBq [(11)C]-dLop (either no carrier added or 3 mg/kg desmethyl loperamide). Mice were killed, and brain and blood were collected, weighted and counted for radioactivity. Mdr1a(-/-) knockout mice were incorporated as the control group. RESULTS Injection of (11)C-laniquidar (no carrier added) in WT mice resulted in a statistical significant lower brain uptake (0.7±0.2 %ID/g) compared to the carrier-added formulation (60 mg/kg laniquidar) (3.1±0.3 %ID/g) (P=.004), while no statistical difference could be observed between formulations of [(11)C]-dLop. The [(11)C]-laniquidar and [(11)C]-dLop blood concentrations were not significantly different between the tested formulations in WT mice. In control animals, no effect of mass amount on brain uptake of both tracers could be demonstrated. CONCLUSIONS These results demonstrate the bivalent character of laniquidar, acting as a substrate at low doses and as a blocking agent for P-glycoprotein transport in the brain at higher doses. In comparison, no difference was observed in [(11)C]-dLop uptake between carrier- and no-carrier-added formulations, which confirms that desmethyl-loperamide is a substrate of P-glycoprotein at the blood-brain barrier.
Collapse
|
45
|
Moerman L, De Naeyer D, Boon P, De Vos F. P-glycoprotein at the blood-brain barrier: kinetic modeling of 11C-desmethylloperamide in mice using a 18F-FDG μPET scan to determine the input function. EJNMMI Res 2011; 1:12. [PMID: 22214199 PMCID: PMC3250994 DOI: 10.1186/2191-219x-1-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 07/29/2011] [Indexed: 02/08/2023] Open
Abstract
Purpose The objective of this study is the implementation of a kinetic model for 11C-desmethylloperamide (11C-dLop) and the determination of a typical parameter for P-glycoprotein (P-gp) functionality in mice. Since arterial blood sampling in mice is difficult, an alternative method to obtain the arterial plasma input curve used in the kinetic model is proposed. Methods Wild-type (WT) mice (pre-injected with saline or cyclosporine) and P-gp knock-out (KO) mice were injected with 20 MBq of 11C-dLop, and a dynamic μPET scan was initiated. Afterwards, 18.5 MBq of 18F-FDG was injected, and a static μPET scan was started. An arterial input and brain tissue curve was obtained by delineation of an ROI on the left heart ventricle and the brain, respectively based on the 18F-FDG scan. Results A comparison between the arterial input curves obtained by the alternative and the blood sampling method showed an acceptable agreement. The one-tissue compartment model gives the best results for the brain. In WT mice, the K1/k2 ratio was 0.4 ± 0.1, while in KO mice and cyclosporine-pretreated mice the ratio was much higher (2.0 ± 0.4 and 1.9 ± 0.2, respectively). K1 can be considered as a pseudo value K1, representing a combination of passive influx of 11C-desmethylloperamide and a rapid washout by P-glycoprotein, while k2 corresponds to slow passive efflux out of the brain. Conclusions An easy to implement kinetic modeling for imaging P-glycoprotein function is presented in mice without arterial blood sampling. The ratio of K1/k2 obtained from a one-tissue compartment model can be considered as a good value for P-glycoprotein functionality.
Collapse
Affiliation(s)
- Lieselotte Moerman
- Laboratory of Radiopharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | | | | | | |
Collapse
|