1
|
Stanojević M, Djuricic N, Parezanovic M, Biorac M, Pathak D, Spasic S, Lopicic S, Kovacevic S, Nesovic Ostojic J. The Impact of Chronic Magnesium Deficiency on Excitable Tissues-Translational Aspects. Biol Trace Elem Res 2024:10.1007/s12011-024-04216-2. [PMID: 38709369 DOI: 10.1007/s12011-024-04216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
Neuromuscular excitability is a vital body function, and Mg2+ is an essential regulatory cation for the function of excitable membranes. Loss of Mg2+ homeostasis disturbs fluxes of other cations across cell membranes, leading to pathophysiological electrogenesis, which can eventually cause vital threat to the patient. Chronic subclinical Mg2+ deficiency is an increasingly prevalent condition in the general population. It is associated with an elevated risk of cardiovascular, respiratory and neurological conditions and an increased mortality. Magnesium favours bronchodilation (by antagonizing Ca2+ channels on airway smooth muscle and inhibiting the release of endogenous bronchoconstrictors). Magnesium exerts antihypertensive effects by reducing peripheral vascular resistance (increasing endothelial NO and PgI2 release and inhibiting Ca2+ influx into vascular smooth muscle). Magnesium deficiency disturbs heart impulse generation and propagation by prolonging cell depolarization (due to Na+/K+ pump and Kir channel dysfunction) and dysregulating cardiac gap junctions, causing arrhythmias, while prolonged diastolic Ca2+ release (through leaky RyRs) disturbs cardiac excitation-contraction coupling, compromising diastolic relaxation and systolic contraction. In the brain, Mg2+ regulates the function of ion channels and neurotransmitters (blocks voltage-gated Ca2+ channel-mediated transmitter release, antagonizes NMDARs, activates GABAARs, suppresses nAChR ion current and modulates gap junction channels) and blocks ACh release at neuromuscular junctions. Magnesium exerts multiple therapeutic neuroactive effects (antiepileptic, antimigraine, analgesic, neuroprotective, antidepressant, anxiolytic, etc.). This review focuses on the effects of Mg2+ on excitable tissues in health and disease. As a natural membrane stabilizer, Mg2+ opposes the development of many conditions of hyperexcitability. Its beneficial recompensation and supplementation help treat hyperexcitability and should therefore be considered wherever needed.
Collapse
Affiliation(s)
- Marija Stanojević
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia.
| | - Nadezda Djuricic
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
| | - Miro Parezanovic
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
- Institute for Mother and Child Healthcare of Serbia "Dr Vukan Čupić", Belgrade, Serbia
| | - Marko Biorac
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
| | - Dhruba Pathak
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
| | - Svetolik Spasic
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
| | - Srdjan Lopicic
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
| | - Sanjin Kovacevic
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
| | - Jelena Nesovic Ostojic
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
| |
Collapse
|
2
|
Kumar A, Mehan S, Tiwari A, Khan Z, Gupta GD, Narula AS, Samant R. Magnesium (Mg 2+): Essential Mineral for Neuronal Health: From Cellular Biochemistry to Cognitive Health and Behavior Regulation. Curr Pharm Des 2024; 30:3074-3107. [PMID: 39253923 DOI: 10.2174/0113816128321466240816075041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 09/11/2024]
Abstract
Magnesium (Mg2+) is a crucial mineral involved in numerous cellular processes critical for neuronal health and function. This review explores the multifaceted roles of Mg2+, from its biochemical interactions at the cellular level to its impact on cognitive health and behavioral regulation. Mg2+ acts as a cofactor for over 300 enzymatic reactions, including those involved in ATP synthesis, nucleic acid stability, and neurotransmitter release. It regulates ion channels, modulates synaptic plasticity, and maintains the structural integrity of cell membranes, which are essential for proper neuronal signaling and synaptic transmission. Recent studies have highlighted the significance of Mg2+ in neuroprotection, showing its ability to attenuate oxidative stress, reduce inflammation, and mitigate excitotoxicity, thereby safeguarding neuronal health. Furthermore, Mg2+ deficiency has been linked to a range of neuropsychiatric disorders, including depression, anxiety, and cognitive decline. Supplementation with Mg2+, particularly in the form of bioavailable compounds such as Magnesium-L-Threonate (MgLT), Magnesium-Acetyl-Taurate (MgAT), and other Magnesium salts, has shown some promising results in enhancing synaptic density, improving memory function, and alleviating symptoms of mental health disorders. This review highlights significant current findings on the cellular mechanisms by which Mg2+ exerts its neuroprotective effects and evaluates clinical and preclinical evidence supporting its therapeutic potential. By elucidating the comprehensive role of Mg2+ in neuronal health, this review aims to underscore the importance of maintaining optimal Mg2+ levels for cognitive function and behavioral regulation, advocating for further research into Mg2+ supplementation as a viable intervention for neuropsychiatric and neurodegenerative conditions.
Collapse
Affiliation(s)
- Aakash Kumar
- Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Sidharth Mehan
- 1Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Aarti Tiwari
- Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Zuber Khan
- Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Rajaram Samant
- Department of Research and Development, Celagenex Research, Thane, Maharashtra, India
| |
Collapse
|
3
|
Guo X, Zhu Y, Ying C, Xu K, Hong Y. The impact of serum magnesium and calcium on the risk of epilepsy: A mendelian randomization study. CNS Neurosci Ther 2023; 29:3062-3067. [PMID: 37144591 PMCID: PMC10493656 DOI: 10.1111/cns.14248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/18/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023] Open
Abstract
AIMS To investigate the causal role of serum magnesium and calcium in epilepsy or any of its subtypes through Mendelian randomization (MR) approach. METHODS Single nucleotide polymorphisms (SNPs) associated with serum magnesium and calcium were used as the instrumental variables. MR analyses were performed using the summary-level data for epilepsy extracted from International League Against Epilepsy Consortium (15,212 cases and 29,677 controls) to obtain the causal estimates. The analyses were replicated using FinnGen data (7224 epilepsy cases and 208,845 controls), and a meta-analysis was then conducted. RESULTS The result of combined analyses showed that higher serum magnesium concentrations was associated with a reduced risk of overall epilepsy (odds ratios [OR] = 0.28, 95% confidence interval [CI], 0.12-0.62, p = 0.002). In ILAE, higher serum magnesium was suggestively associated with reduced risks of focal epilepsy (OR = 0.25, 95% CI 0.10-0.62, p = 0.003). However, the results cannot be repeated in sensitivity analyses. As for serum calcium, the results did not reach statistical significance with overall epilepsy (OR = 0.60, 95% CI, 0.31-1.17, p = 0.134). However, genetically predicted serum calcium concentrations showed an inverse association with risk of generalized epilepsy (OR = 0.35, 95% CI, 0.17-0.74, p = 0.006). CONCLUSION The current MR analysis did not support a causal relationship between serum magnesium and epilepsy, but showed a causally negative association between genetically determined serum calcium and generalized epilepsy.
Collapse
Affiliation(s)
- Xiaoming Guo
- Department of NeurosurgeryThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Department of NeurosurgeryTongde Hospital of Zhejiang ProvinceHangzhouChina
| | - Yueli Zhu
- Department of GeriatricsThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Caidi Ying
- Department of NeurosurgeryThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Ke Xu
- Department of NeurosurgeryThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yuan Hong
- Department of NeurosurgeryThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
4
|
Madireddy S, Madireddy S. Therapeutic Strategies to Ameliorate Neuronal Damage in Epilepsy by Regulating Oxidative Stress, Mitochondrial Dysfunction, and Neuroinflammation. Brain Sci 2023; 13:brainsci13050784. [PMID: 37239256 DOI: 10.3390/brainsci13050784] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Epilepsy is a central nervous system disorder involving spontaneous and recurring seizures that affects 50 million individuals globally. Because approximately one-third of patients with epilepsy do not respond to drug therapy, the development of new therapeutic strategies against epilepsy could be beneficial. Oxidative stress and mitochondrial dysfunction are frequently observed in epilepsy. Additionally, neuroinflammation is increasingly understood to contribute to the pathogenesis of epilepsy. Mitochondrial dysfunction is also recognized for its contributions to neuronal excitability and apoptosis, which can lead to neuronal loss in epilepsy. This review focuses on the roles of oxidative damage, mitochondrial dysfunction, NAPDH oxidase, the blood-brain barrier, excitotoxicity, and neuroinflammation in the development of epilepsy. We also review the therapies used to treat epilepsy and prevent seizures, including anti-seizure medications, anti-epileptic drugs, anti-inflammatory therapies, and antioxidant therapies. In addition, we review the use of neuromodulation and surgery in the treatment of epilepsy. Finally, we present the role of dietary and nutritional strategies in the management of epilepsy, including the ketogenic diet and the intake of vitamins, polyphenols, and flavonoids. By reviewing available interventions and research on the pathophysiology of epilepsy, this review points to areas of further development for therapies that can manage epilepsy.
Collapse
Affiliation(s)
- Sahithi Madireddy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
5
|
Sande R, Doshi G, Godad A. Deciphering the role of metal and non-metals in the treatment of epilepsy. Neurochem Int 2023; 167:105536. [PMID: 37178926 DOI: 10.1016/j.neuint.2023.105536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Metals and non-metals have known to play a significant role in various physiological roles in the body including the central nervous system (CNS). The alterations in their concentration in the CNS leads to abnormalities in the normal functions which may lead to various neurological conditions including epilepsy. Manganese is a cofactor required for antioxidant enzymes such as Superoxide dismutase, Glutamine synthetase, etc. The accumulation of iron leads to formation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) which have the potential to cause ferroptosis, one of the reasons for epileptogenesis. Zinc has biphasic response, both neurotoxic and neuroprotective, based on concentration levels in the CNS. Selenium is a main element for selenoproteins which is responsible for the regulation of oxidative state and antioxidant defence mechanism. The reduction in the phosphorous levels in the CNS is widely observed after generalised tonic clonic seizures (GTC), which can be a potential diagnostic biomarker. Copper acts in the CNS in an identical manner, i.e., by blocking both AMPA mediated and GABA mediated neuronal transmission. Magnesium blocks calcium channels in the NMDA receptor and prevents glutamatergic transmission, thus inhibiting excitotoxicity. Lithium acts as a proconvulsive agent and is used in combination with pilocarpine to induce seizures. The identified potential of metals and non-metals in epilepsy can be utilised in order to devise new adjuvant therapies for the management of epilepsy. The article summaries in depth the role of metals and non-metals in the treatment of epilepsy supported with special paragraph on author perspective on to the topic. Furthermore, an update of preclinical and clinical evidences are discussed in the review to give evidence on metal and non-metal based therapies in epilepsy.
Collapse
Affiliation(s)
- Ruksar Sande
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Angel Godad
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India.
| |
Collapse
|
6
|
Wang Q, He W, Wang Y, Liu L, Zhang M, Yang X, Zou L. Response to magnesium sulfate and adrenocorticotropic hormone combination therapy for infantile spasms with failed first-line treatments. Pediatr Investig 2023; 7:29-35. [PMID: 36967744 PMCID: PMC10030695 DOI: 10.1002/ped4.12368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 06/07/2022] [Indexed: 03/11/2023] Open
Abstract
Importance Infantile spasm (IS) is a kind of refractory epilepsy. The first-line treatments for IS are adrenocorticotropic hormone (ACTH), oral corticosteroids, and vigabatrin. Objective This study aimed to evaluate the efficacy of magnesium sulfate and ACTH (MgSO4+ACTH) combination therapy in patients with IS who failed first-line treatments. Methods In this retrospective study, the clinical data of patients with IS who failed first-line treatments were collected in the Chinese PLA General Hospital. Patients received MgSO4+ACTH combination therapy after first-line treatments failed. The course of treatments was 2 weeks. The therapeutic dose of ACTH and MgSO4 was 2.5 U·kg-1·d-1 and 0.25 g·kg-1·d-1, respectively. Results A total of 229 patients with IS who failed the first-line treatments were collected. At the end of the MgSO4+ACTH combination treatment, the seizure-free rate was 48.5% (111/229), and the resolution of hypsarrhythmia on electroencephalogram (EEG) was 72.1% (165/229). About 21.4% (49/229) of patients showed side effects, including infectious diseases, hypokalemia, and diarrhea. Interpretation For patients with IS who failed first-line treatments, in terms of the seizure-free rate and resolution of hypsarrhythmia on EEG, MgSO4+ACTH combination therapy can be considered.
Collapse
Affiliation(s)
- Qiuhong Wang
- Department of PediatricsChinese PLA General HospitalThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Wen He
- Department of PediatricsChinese PLA General HospitalThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Yangyang Wang
- Department of PediatricsChinese PLA General HospitalThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Liying Liu
- Department of PediatricsChinese PLA General HospitalThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Mengna Zhang
- Department of PediatricsChinese PLA General HospitalThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Xiaoyan Yang
- Department of PediatricsChinese PLA General HospitalThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Liping Zou
- Department of PediatricsChinese PLA General HospitalThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Pediatrics, Beijing Institute for Brain Disorders, Center for Brain Disorders ResearchCapital Medical UniversityBeijingChina
| |
Collapse
|
7
|
Rosenow F, Mann C. Status epilepticus in pregnancy. Epilepsy Behav 2023; 138:109034. [PMID: 36525922 DOI: 10.1016/j.yebeh.2022.109034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Status epilepticus is a frequent neurological emergency associated with a case fatality of about 10-15% depending on age, cause, and other factors, and a high burden for patients, caregivers, and society. In pregnancy, it can occur in two different clinical constellations: (1) In women with a history of epilepsy and (2) as new onset status epilepticus in pregnancy (NOSEP). Both entities are relatively rare but differ in terms of etiology. Here we describe the epidemiology, etiologies, diagnosis, clinical course with the maternal and fetal outcome, and the suggested management strategies for either manifestation. This paper was presented at the 8th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures held in September 2022.
Collapse
Affiliation(s)
- Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Catrin Mann
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Mathew AA, Panonnummal R. A Mini Review on the Various Facets Effecting Brain Delivery of Magnesium and Its Role in Neurological Disorders. Biol Trace Elem Res 2022:10.1007/s12011-022-03517-8. [PMID: 36534337 DOI: 10.1007/s12011-022-03517-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Magnesium is an essential cation present in the body that participates in the regulation of various vital body functions. Maintaining normal level of magnesium is essential for proper brain functions by regulating the activities of numerous neurotransmitters and their receptors. Various studies have been reported that magnesium level is found to be declined in both neurological and psychiatric diseases. Declined magnesium level in the brain initiates various cumbersome effects like excitotoxicity, altered blood-brain permeability, oxidative stress, and inflammation, which may further worsen the disease condition. Shreds of evidence from the experimental and clinical studies proved that exogenous administration of magnesium is useful for correcting disease-induced alterations in the brain. But one of the major limiting factors in the use of magnesium for treatment purposes is its poor blood-brain barrier permeability. Various approaches like the administration of its organic salts as pidolate and threonate forms, and the combination with polyethylene glycol or mannitol have been tried to improve its permeability to make magnesium as a suitable drug for different neurological disorders. These results have shown their experimental efficacy in diseased animal models, but studies regarding the safety and efficacy in human subjects are currently underway. We present a comprehensive review on the role of magnesium in the maintenance of normal functioning of the brain and various approaches for improving its BBB permeability.
Collapse
Affiliation(s)
- Aparna Ann Mathew
- Amrita School of Pharmacy, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Rajitha Panonnummal
- Amrita School of Pharmacy, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| |
Collapse
|
9
|
Butler MG, Cowen N, Bhatnagar A. Prader-Willi syndrome, deletion subtypes, and magnesium: Potential impact on clinical findings. Am J Med Genet A 2022; 188:3278-3286. [PMID: 36190479 PMCID: PMC9548494 DOI: 10.1002/ajmg.a.62928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 01/31/2023]
Abstract
Prader-Willi syndrome is a complex neurodevelopmental genetic imprinting disorder with severe congenital hypotonia, failure to thrive with learning and behavioral problems, and hyperphagia with obesity developing in early childhood. Those with the typical 15q11-q13 Type I deletion compared with the smaller Type II deletion have more severe neurobehavioral problems and differ by the absence of four genes in the 15q11.2 BP1-BP2 region. Two of the genes encode magnesium transporters supporting brain and neurological function and we report on magnesium levels in the two deletion groups of PWS participants. We measured baseline plasma magnesium and analyzed data from a PWS cohort with and without the Type I or Type II deletion. Significantly lower plasma magnesium levels were found in PWS participants with the larger Type I deletion and more so with females with Type I deletion compared with females having the Type II deletion, although magnesium levels remained within normal range in both subgroups. Those with PWS and the larger 15q11-q13 Type I deletion were more clinically affected than those with the smaller Type II deletion. Two of the four genes missing in those with the larger deletion code for magnesium transporters and may impact magnesium levels. Our study showed lower magnesium levels in those with the larger deletion which could contribute to neurobehavioral differences seen in the two separate 15q11-q13 deletion subtypes and in addition affect both glucose and insulin metabolism impacting comorbidities but will require more research.
Collapse
Affiliation(s)
- Merlin G Butler
- Department of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Neil Cowen
- Soleno Therapeutics, Inc., Redwood City, California, USA
| | | |
Collapse
|
10
|
Al Dera H. Cellular and molecular mechanisms underlying autism spectrum disorders and associated comorbidities: A pathophysiological review. Biomed Pharmacother 2022; 148:112688. [PMID: 35149383 DOI: 10.1016/j.biopha.2022.112688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders that develop in early life due to interaction between several genetic and environmental factors and lead to alterations in brain function and structure. During the last decades, several mechanisms have been placed to explain the pathogenesis of autism. Unfortunately, these are reported in several studies and reviews which make it difficult to follow by the reader. In addition, some recent molecular mechanisms related to ASD have been unrevealed. This paper revises and highlights the major common molecular mechanisms responsible for the clinical symptoms seen in people with ASD, including the roles of common genetic factors and disorders, neuroinflammation, GABAergic signaling, and alterations in Ca+2 signaling. Besides, it covers the major molecular mechanisms and signaling pathways involved in initiating the epileptic seizure, including the alterations in the GABAergic and glutamate signaling, vitamin and mineral deficiency, disorders of metabolism, and autoimmunity. Finally, this review also discusses sleep disorder patterns and the molecular mechanisms underlying them.
Collapse
Affiliation(s)
- Hussain Al Dera
- Department of Basic Medical Sciences, College of Medicine at King Saud, Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.
| |
Collapse
|
11
|
Ismail RS, Kishk NA, Rizk HI, El-Kholy T, Abd El-Maoula LM, Ibrahim El-Desoky O, Shaheen S, El-Sawy E. Nutritional intake and its impact on patients with epilepsy: an analytical cross-sectional study. Nutr Neurosci 2021; 25:1813-1822. [PMID: 33779528 DOI: 10.1080/1028415x.2021.1905371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Anecdotal reports have proposed that diet might influence the occurrence of seizures. OBJECTIVES Our objectives were to assess nutritional status in a sample of patients with epilepsy and to investigate the impact of nutrition on epilepsy control. PATIENTS AND METHODS One hundred and fifty patients with epilepsy participated in the study. To assess nutritional status, sociodemographic characteristics, anthropometric measurements, dietary food intake, and 24-hour food intake were evaluated. Patients answered questions using a food frequency questionnaire. RESULTS In patients with epilepsy, there was insufficient intake of water, fiber, potassium, magnesium and some vitamins (C, E, B12, folate and niacin); suboptimal intake of calories, zinc, calcium, and some vitamins (A, B1 and B6); optimal intake of total fats; and over-intake of proteins, carbohydrates, phosphorus, iron, sodium, and vitamins D and B2. Moreover, there was a statistically significant difference between patients with controlled versus uncontrolled seizures regarding frequency of vegetable intake and percentage of caloric intake from the recommended dietary allowance. Stepwise logistic regression indicated that those with low intake of vegetables had a 2.3 times higher likelihood of uncontrolled seizure occurrence compared to those with a high intake of vegetables per week. Also, those with optimal caloric intake were 80% less likely to have uncontrolled seizures than those with too much caloric intake. CONCLUSION Macro- and micronutrient intake were unbalanced in patients with epilepsy. Patients who consumed too many calories and too few vegetables were more likely to have improper seizure control.
Collapse
Affiliation(s)
| | - Nirmeen Adel Kishk
- Neurology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hoda Ibrahim Rizk
- Public Health and Community Medicine Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Thanaa El-Kholy
- Nutrition and Food Science Department, Faculty of Home Economics, Al-Azhar University, Tanta, Cairo, Egypt
| | - Lamiaa M Abd El-Maoula
- Nutrition and Food Science Department, Faculty of Home Economics, Al-Azhar University, Tanta, Cairo, Egypt
| | - Ola Ibrahim El-Desoky
- Nutrition and Food Science Department, Faculty of Home Economics, Al-Azhar University, Tanta, Cairo, Egypt
| | - Shaimaa Shaheen
- Neurology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Enji El-Sawy
- Neurology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
12
|
Mathew AA, Panonnummal R. 'Magnesium'-the master cation-as a drug-possibilities and evidences. Biometals 2021; 34:955-986. [PMID: 34213669 PMCID: PMC8249833 DOI: 10.1007/s10534-021-00328-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 06/19/2021] [Indexed: 02/06/2023]
Abstract
Magnesium (Mg2+) is the 2nd most abundant intracellular cation, which participates in various enzymatic reactions; there by regulating vital biological functions. Magnesium (Mg2+) can regulate several cations, including sodium, potassium, and calcium; it consequently maintains physiological functions like impulse conduction, blood pressure, heart rhythm, and muscle contraction. But, it doesn't get much attention in account with its functions, making it a "Forgotten cation". Like other cations, maintenance of the normal physiological level of Mg2+ is important. Its deficiency is associated with various diseases, which point out to the importance of Mg2+ as a drug. The roles of Mg2+ such as natural calcium antagonist, glutamate NMDA receptor blocker, vasodilator, antioxidant and anti-inflammatory agent are responsible for its therapeutic benefits. Various salts of Mg2+ are currently in clinical use, but their application is limited. This review collates all the possible mechanisms behind the behavior of magnesium as a drug at different disease conditions with clinical shreds of evidence.
Collapse
Affiliation(s)
- Aparna Ann Mathew
- Amrita School of Pharmacy, Amrita Institute of Medical Science & Research Centre, Amrita VishwaVidyapeetham, Kochi, 682041, India
| | - Rajitha Panonnummal
- Amrita School of Pharmacy, Amrita Institute of Medical Science & Research Centre, Amrita VishwaVidyapeetham, Kochi, 682041, India.
| |
Collapse
|
13
|
Rodrigues AM, Silva DB, Miranda MF, Braga da Silva SC, Canton Santos LE, Scorza FA, Scorza CA, Moret MA, Guimarães de Almeida AC. The Effect of Low Magnesium Concentration on Ictal Discharges In A Non-Synaptic Model. Int J Neural Syst 2020; 31:2050070. [PMID: 33357154 DOI: 10.1142/s0129065720500707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Magnesium (Mg[Formula: see text] is an essential mineral for several cellular functions. The concentration of this ion below the physiological concentration induces recurrent neuronal discharges both in slices of the hippocampus and in neuronal cultures. These epileptiform discharges are initially sensitive to the application of [Formula: see text]-methyl-D-aspartate (NMDA) receptor antagonists, but these antagonists may lose their effectiveness with prolonged exposure to low [Mg[Formula: see text]], when extracellular Ca[Formula: see text] reduction occurs, typical of ictal periods, indicating the absence of synaptic connections. The study herein presented aimed at investigating the effect of reducing the [Mg[Formula: see text]] during the induction of Nonsynaptic Epileptiform Activities (NSEA). As an experimental protocol, NSEA were induced in rat hippocampal dentate gyrus (DG), using a bath solution containing high-K[Formula: see text] and zero-added-Ca[Formula: see text]. Additionally, computer simulations were performed using a mathematical model that represents electrochemical characteristics of the tissue of the DG granular layer. The experimental results show that the reduction of [Mg[Formula: see text]] causes an increase in the duration of the ictal period and a reduction in the interictal period, intensifying epileptiform discharges. The computer simulations suggest that the reduction of the Mg[Formula: see text] level intensifies the epileptiform discharges by a joint effect of reducing the surface charge screening and reducing the activity of the Na/K pump.
Collapse
Affiliation(s)
- Antônio Márcio Rodrigues
- Laboratório de Neurociência, Experimental e Computacional, Departamento de Engenharia de, Biossistemas Universidade Federal de São João del-Rei, Pr. Dom Helvécio, 74, 36.301-160 São João del-Rei, MG, Brazil
| | - Delmo Benedito Silva
- Laboratório de Neurociência, Experimental e Computacional, Departamento de Engenharia de, Biossistemas Universidade Federal de São João del-Rei, Pr. Dom Helvécio, 74, 36.301-160 São João del-Rei, MG, Brazil
| | - Maísa Ferreira Miranda
- Laboratório de Neurociência, Experimental e Computacional, Departamento de Engenharia de, Biossistemas Universidade Federal de São João del-Rei, Pr. Dom Helvécio, 74, 36.301-160 São João del-Rei, MG, Brazil
| | - Silvia Cristina Braga da Silva
- Laboratório de Neurociência, Experimental e Computacional, Departamento de Engenharia de, Biossistemas Universidade Federal de São João del-Rei, Pr. Dom Helvécio, 74, 36.301-160 São João del-Rei, MG, Brazil
| | - Luiz Eduardo Canton Santos
- Laboratório de Neurociência, Experimental e Computacional, Departamento de Engenharia de, Biossistemas Universidade Federal de São João del-Rei, Pr. Dom Helvécio, 74, 36.301-160 São João del-Rei, MG, Brazil
| | - Fulvio Alexandre Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carla Alessandra Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcelo A Moret
- UNEB - Rua Silveira Martins, 2555, Cabula 41150-000 Salvador, Bahia, Brazil
| | - Antônio-Carlos Guimarães de Almeida
- Laboratório de Neurociência, Experimental e Computacional, Departamento de Engenharia de, Biossistemas Universidade Federal de São João del-Rei, Pr. Dom Helvécio, 74, 36.301-160 São João del-Rei, MG, Brazil
| |
Collapse
|
14
|
Jia W, Song Y, Yang L, Kong J, Boczek T, He Z, Wang Y, Zhang X, Hu H, Shao D, Tang H, Xia L, Xu X, Guo F. The changes of serum zinc, copper, and selenium levels in epileptic patients: a systematic review and meta-analysis. Expert Rev Clin Pharmacol 2020; 13:1047-1058. [PMID: 32856976 DOI: 10.1080/17512433.2020.1816821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION It is widely accepted that trace elements have been implicated in various metabolic processes. Valproic acid (VPA) is a remarkably safe and effective antiepileptic drug. There is no consensus option regarding the fluctuations in serum zinc (Zn), copper (Cu), and selenium (Se) in epileptic patients treated with VPA. We applied a meta-analysis to systematically assess the effects of VPA on serum ions in these patients. AREAS COVERED In this study, we performed a meta-analysis of the changes in serum Zn, Cu, and Se levels in human samples of healthy controls, epileptic patients, and patients treated with VPA. Twenty-two published analyzable studies were selected by searching the databases of PubMed, China National Knowledge Infrastructure (CNKI), Google Scholar, Web of Science, EMBASE, WAN FANG and Vip. EXPERT OPINION Serum Se levels in epileptic patients were decreased compared to healthy controls. Serum Zn levels in patients with VPA treatment were significantly lower than those in epileptic patients. The results of this meta-analysis are instructive for the intake of trace elements such as Zn, Cu, and Se in the diet balance of patients with epilepsy treated with VPA. Meanwhile, this study provides a theoretical basis for the combined use of other drugs that affect the intake and absorption of trace elements and VPA.
Collapse
Affiliation(s)
- Wanying Jia
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University , Shenyang, China
| | - Yang Song
- School of Humanities and Social Sciences, China Medical University , Shenyang, China
| | - Lei Yang
- Tianjin Customs, Technical Center for Safety of Industrial Products , Tianjin, China
| | - Jingjing Kong
- Department of Gerontology, The First Affiliated Hospital of Dalian Medical University , Dalian, China
| | - Tomasz Boczek
- Department of Ophthalmology, Stanford University School of Medicine , Palo Alto, CA, USA
| | - Zhenwei He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University , Shenyang, China
| | - Yuting Wang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University , Shenyang, China
| | - Xiaohong Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University , Shenyang, China
| | - Huiyuan Hu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University , Shenyang, China
| | - Dongxue Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University , Shenyang, China
| | - Hong Tang
- School of Public Health, China Medical University , Shenyang, China
| | - Liguang Xia
- Department of Pediatric Surgery, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, China
| | - Xiaoxue Xu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University , Shenyang, China
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University , Shenyang, China
| |
Collapse
|
15
|
DZHAFAR S, DALAR A, MÜKEMRE M, EKİN S, YILDIZ D, YUNUSOĞLU O. Phytochemical Profile and in vitro and in vivo Anticonvulsant and Antioxidant Activities of Epilobium hirsutum. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2020. [DOI: 10.21448/ijsm.669451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Saft C, Speckmann EJ. Antiepileptic effects of cobalt, manganese and magnesium on bicuculline-induced epileptiform activity in hippocampal neurons. Brain Res 2020; 1732:146684. [PMID: 32001242 DOI: 10.1016/j.brainres.2020.146684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Calcium signaling is described as a relevant factor in synchronization of neurons and increased excitability in epileptogenesis. Aim of the present investigations was to test the antiepileptic effect of the classical inorganic calcium channel blockers cobalt (Co2+), manganese (Mn2+) and magnesium (Mg2+). METHODS Experiments were carried out on hippocampal slices of guinea pigs. Epileptiform field potentials (EFP) were elicited by adding bicuculline (10 µmol/l) to the artificial cerebrospinal fluid (CSF). Kalium was elevated from normal (4 mmol/l) to 8 mmol/l. Co2+ (CoCl2; 2, 1, 0.5 and 0.1 mmol/l), Mn2+ (MnCl2; 2, 1, 0.5 and 0.1 mmol/l) and Mg2+ (MgCl2; 8, 6, 5, 4 and 2 mmol/l) were added to the superfusate. RESULTS Concentrations of 2, 1 and 0.5 mmol/l Co2+, 2 and 1 mmol/l Mn2+ and 8 respectively 6 mmol/l Mg2+ were able to suppress EFP sufficient in a dose dependent manner. In concentrations of 0.1 mmol/l Co2+, 0.5 mmol/l and 0.1 mmol/l Mn2+ and 5 respectively 4 and 2 mmol/l Mg2+ suppression was incomplete. With washout of the inorganic calcium channel blockers the EFP reappeared. DISCUSSION All tree inorganic calcium channel blockers were able to suppress EFP in a dosage dependent and reversible manner. Weak reappearance of EFP after washout of Co2+ might be due to additional cytotoxic effects. The following mechanisms may contribute: i) blockade of voltage-activated calcium channels in the postsynaptic membrane, ii) changes in the activation of voltage-dependent sodium channels, iii) blockade of synaptic transmission.
Collapse
Affiliation(s)
- Carsten Saft
- Department of Neurology, St. Josef Hospital, Gudrunstraße 56, 44791 Bochum, Germany.
| | - Erwin-Josef Speckmann
- Institut für Physiology I, Westfälische Wilhelms Universität, Robert-Koch Str. 27a, 48149 Münster, Germany
| |
Collapse
|
17
|
Zhang Q, Ma R, Li Z, Liu Z. A multi-responsive crown ether-based colorimetric/fluorescent chemosensor for highly selective detection of Al 3+, Cu 2+ and Mg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117857. [PMID: 31784224 DOI: 10.1016/j.saa.2019.117857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
A novel multi-response chemosensor L based on coumarin-chalcone-crown ether was designed and synthesized, which exhibited a high selectivity for the colorimetric detecting Al3+ and Cu2+ and fluorescent recognizing Al3+ and Mg2+ in ethanol. L can monitor Al3+ and Cu2+ via distinct color changes from a slight yellow to pink and to orange, respectively. The sensor L can also monitor Al3+ and Mg2+ by fluorescence emission responses at 592 nm and 547 nm with low detection limits of 0.31 μM and 0.23 μM, respectively. The selectivity of L toward Al3+, Cu2+ and Mg2+ was not interfered by a large number of coexisting ions and was found to be reversible. By means of spectrometric titration, Job's plot, mass spectrometry, 1H NMR titration and IR spectroscopy analysis, it was unanimously confirmed that the sensor L had a stoichiometric ratio of 1:1 with Cu2+ and Mg2+, and 1:2 with Al3+. The order of the stability of the complexes formed by L and Al3+, Cu2+, Mg2+ was as follows: L-Al3+ > L-Cu2+ > L-Mg2+. At the same time, some possible bonding modes and sensing mechanisms were further proposed, and the optimized structure of the sensor L and its sensing mechanism for Al3+, Cu2+ and Mg2+ were confirmed by the calculations of DFT/B3LYP and TD-DFT methods in a suite of Gaussian 09 programs.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Chemical and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, PR China.
| | - Ruifang Ma
- College of Chemical and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, PR China
| | - Zhuying Li
- College of Chemical and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, PR China
| | - Zizhong Liu
- College of Chemical and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, PR China
| |
Collapse
|
18
|
Peng X, Yan Y, Chen R, Wang X, Xu X. Long-term safety, tolerability, and efficacy of magnesium valproate versus sodium valproate in acute seizures. Curr Med Res Opin 2020; 36:271-276. [PMID: 31775535 DOI: 10.1080/03007995.2019.1699520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objectives: To evaluate the safety, tolerability and efficacy of magnesium valproate and sodium valproate as monotherapies in patients with epilepsy in China.Methods: We recruited patients admitted with seizures over a two-year period. All patients underwent early neurological assessments, electroencephalogram testing, and neuroimaging. The treatments received at baseline and at one year of follow-up were compared.Results: In total, 175 patients were included. The retention rates of the magnesium valproate and sodium valproate treatments were 73.1% and 64.2%, respectively. The main cause of discontinuation was the development of intolerable adverse events. The retention rate and total effective rate in the magnesium valproate group were significantly higher than those in the sodium valproate group (73.1% and 70.2% versus 64.2% and 47.2%, respectively). The safety endpoints included 120 patients (magnesium valproate: n = 67; sodium valproate: n = 53). The incidence of adverse events in the magnesium valproate group was significantly lower than that in the sodium valproate group (30% versus 51%).Conclusions: Magnesium valproate treatment shows favorable safety and tolerability and is associated with markedly improved seizure control. Ideally, future large, prospective, randomized, and double-blind studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Xiaoyan Peng
- Chongqing Key Laboratory of Neurology, Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yin Yan
- Chongqing Key Laboratory of Neurology, Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Chen
- Chongqing Key Laboratory of Neurology, Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuefeng Wang
- Chongqing Key Laboratory of Neurology, Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Xu
- Chongqing Key Laboratory of Neurology, Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Magnesium Supplement and the 15q11.2 BP1-BP2 Microdeletion (Burnside-Butler) Syndrome: A Potential Treatment? Int J Mol Sci 2019; 20:ijms20122914. [PMID: 31207912 PMCID: PMC6627575 DOI: 10.3390/ijms20122914] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022] Open
Abstract
The 15q11.2 BP1–BP2 microdeletion (Burnside–Butler) syndrome is an emerging disorder that encompasses four genes (NIPA1, NIPA2, CYFIP1, and TUBGCP5). When disturbed, these four genes can lead to cognitive impairment, language and/or motor delay, psychiatric/behavioral problems (attention-deficit hyperactivity, autism, dyslexia, schizophrenia/paranoid psychosis), ataxia, seizures, poor coordination, congenital anomalies, and abnormal brain imaging. This microdeletion was reported as the most common cytogenetic finding when using ultra-high- resolution chromosomal microarrays in patients presenting for genetic services due to autism with or without additional clinical features. Additionally, those individuals with Prader–Willi or Angelman syndromes having the larger typical 15q11–q13 type I deletion which includes the 15q11.2 BP1–BP2 region containing the four genes, show higher clinical severity than those having the smaller 15q11–q13 deletion where these four genes are intact. Two of the four genes (i.e., NIPA1 and NIPA2) are expressed in the brain and encode magnesium transporters. Magnesium is required in over 300 enzyme systems that are critical for multiple cellular functions, energy expenditure, protein synthesis, DNA transcription, and muscle and nerve function. Low levels of magnesium are found in those with seizures, depression, and acute or chronic brain diseases. Anecdotally, parents have administered magnesium supplements to their children with the 15q11.2 BP1–BP2 microdeletion and have observed improvement in behavior and clinical presentation. These observations require more attention from the medical community and should include controlled studies to determine if magnesium supplements could be a treatment option for this microdeletion syndrome and also for a subset of individuals with Prader–Willi and Angelman syndromes.
Collapse
|
20
|
Abstract
Cerebral palsy occurs more often in preterm than in term deliveries and is one of the major neurologic injuries seen in preterm infants. Magnesium sulfate has been found to reduce the risk of cerebral palsy in patients at risk of delivery before 32 weeks' gestational age. Multiple large clinical trials have shown this effect. The authors recommend magnesium sulfate bolus followed by continuous dosing of magnesium sulfate in those at risk of delivery before 32 weeks' gestation until delivery occurs or is no longer imminent. This article also discusses novel and emerging therapies for the prevention of cerebral palsy.
Collapse
Affiliation(s)
- Rebecca A Jameson
- Department of Obstetrics and Gynecology, The State University of New York Upstate Medical University, 750 East Adams Street, 2204 Weiskotten Hall, Syracuse, NY 13210, USA
| | - Helene B Bernstein
- Department of Obstetrics and Gynecology, The State University of New York Upstate Medical University, 750 East Adams Street, 2204 Weiskotten Hall, Syracuse, NY 13210, USA; Department of Microbiology and Immunology, The State University of New York Upstate Medical University, 750 East Adams Street, 2204 Weiskotten Hall, Syracuse, NY 13210, USA.
| |
Collapse
|
21
|
Investigating owner use of dietary supplements in dogs with idiopathic epilepsy. Res Vet Sci 2018; 119:276-284. [PMID: 30064067 DOI: 10.1016/j.rvsc.2018.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/01/2018] [Accepted: 07/21/2018] [Indexed: 12/29/2022]
Abstract
Epilepsy is the most common chronic neurological disorder in dogs. Some diets have been shown to have a positive impact upon the seizure activity in dogs with idiopathic epilepsy (IE), while other diets and dietary supplements (DS), although marketed as providing health benefits, lack conclusive scientific evidence on their actual beneficial effects. A web-based owner questionnaire was designed to assess how and why owners of dogs with IE use different dietary regimes and DS. The study cohort, with 297 valid responses, consisted mainly of pure-breed (82.5%) male neutered (52.9%) dogs. Over two-thirds of owners (67.7%) changed their dog's diet after their dog received a diagnosis of IE. Nearly half of the owners (45.8%) reported giving DS, the most common being coconut oil or derived medium-chain triglyceride oil (71.3%). Some owner justifications of DS use included improvement of seizure frequency (88.2%), seizure severity (61.8%) and protection from potential drug side effects (62.5%). Many owners give DS to their dog with IE. The pharmacokinetic properties of anti-epileptic drugs, such as efficacy, absorption and clearance can be influenced by other medications, diets and possibly by DS. We propose that use of DS should be considered and monitored by veterinary surgeons in epilepsy management.
Collapse
|
22
|
Kirkland AE, Sarlo GL, Holton KF. The Role of Magnesium in Neurological Disorders. Nutrients 2018; 10:E730. [PMID: 29882776 PMCID: PMC6024559 DOI: 10.3390/nu10060730] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
Magnesium is well known for its diverse actions within the human body. From a neurological standpoint, magnesium plays an essential role in nerve transmission and neuromuscular conduction. It also functions in a protective role against excessive excitation that can lead to neuronal cell death (excitotoxicity), and has been implicated in multiple neurological disorders. Due to these important functions within the nervous system, magnesium is a mineral of intense interest for the potential prevention and treatment of neurological disorders. Current literature is reviewed for migraine, chronic pain, epilepsy, Alzheimer’s, Parkinson’s, and stroke, as well as the commonly comorbid conditions of anxiety and depression. Previous reviews and meta-analyses are used to set the scene for magnesium research across neurological conditions, while current research is reviewed in greater detail to update the literature and demonstrate the progress (or lack thereof) in the field. There is strong data to suggest a role for magnesium in migraine and depression, and emerging data to suggest a protective effect of magnesium for chronic pain, anxiety, and stroke. More research is needed on magnesium as an adjunct treatment in epilepsy, and to further clarify its role in Alzheimer’s and Parkinson’s. Overall, the mechanistic attributes of magnesium in neurological diseases connote the macromineral as a potential target for neurological disease prevention and treatment.
Collapse
Affiliation(s)
- Anna E Kirkland
- Department of Psychology, Behavior, Cognition and Neuroscience Program, American University, Washington, DC 20016, USA.
| | - Gabrielle L Sarlo
- Department of Psychology, Behavior, Cognition and Neuroscience Program, American University, Washington, DC 20016, USA.
| | - Kathleen F Holton
- Department of Health Studies, American University, Washington, DC 20016, USA.
- Center for Behavioral Neuroscience, American University, Washington, DC 20016, USA.
| |
Collapse
|
23
|
Jiao Y, Liu X, Zhou L, He H, Zhou P, Duan C, Peng X. A fluorescein derivative-based fluorescent sensor for selective recognition of copper(II) ions. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.10.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Yuen AWC, Walcutt IA, Sander JW. An acidosis-sparing ketogenic (ASK) diet to improve efficacy and reduce adverse effects in the treatment of refractory epilepsy. Epilepsy Behav 2017; 74:15-21. [PMID: 28667864 DOI: 10.1016/j.yebeh.2017.05.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/11/2017] [Accepted: 05/13/2017] [Indexed: 12/13/2022]
Abstract
Diets that increase production of ketone bodies to provide alternative fuel for the brain are evolving from the classic ketogenic diet for epilepsy devised nearly a century ago. The classic ketogenic diet and its more recent variants all appear to have similar efficacy with approximately 50% of users showing a greater than 50% seizure reduction. They all require significant medical and dietetic support, and there are tolerability issues. A review suggests that low-grade chronic metabolic acidosis associated with ketosis is likely to be an important contributor to the short term and long term adverse effects of ketogenic diets. Recent studies, particularly with the characterization of the acid sensing ion channels, suggest that chronic metabolic acidosis may increase the propensity for seizures. It is also known that low-grade chronic metabolic acidosis has a broad range of negative health effects and an increased risk of early mortality in the general population. The modified ketogenic dietary treatment we propose is formulated to limit acidosis by measures that include monitoring protein intake and maximizing consumption of alkaline mineral-rich, low carbohydrate green vegetables. We hypothesize that this acidosis-sparing ketogenic diet is expected to be associated with less adverse effects and improved efficacy. A case history of life-long intractable epilepsy shows this diet to be a successful long-term strategy but, clearly, clinical studies are needed.
Collapse
Affiliation(s)
- Alan W C Yuen
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, WC1N 3BG London, UK; Chalfont Centre for Epilepsy, Chalfont St Peter, UK.
| | | | - Josemir W Sander
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, WC1N 3BG London, UK; Chalfont Centre for Epilepsy, Chalfont St Peter, UK; Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, The Netherlands
| |
Collapse
|
25
|
Recognition of Mg²⁺ by a new fluorescent "turn-on" chemosensor based on pyridyl-hydrazono-coumarin. Talanta 2016; 152:432-7. [PMID: 26992539 DOI: 10.1016/j.talanta.2016.02.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 01/19/2023]
Abstract
A new fluoroionophore PyHC bearing 2-pyridylhydrazone and 7-hydroxycoumarin moieties for selective detection of Mg(2+) was synthesized and characterized. This chemosensor exhibited "turn-on" fluorescence behavior and was sensitive to Mg(2+) concentrations as low as 105 nmol L(-1) in ethanol-water solution. Detailed spectroscopic studies revealed the binding mode of a 1:1 complex between PyHC and Mg(2+) that leads to a fluorescence enhancement.
Collapse
|
26
|
Osborn KE, Shytle RD, Frontera AT, Soble JR, Schoenberg MR. Addressing potential role of magnesium dyshomeostasis to improve treatment efficacy for epilepsy: A reexamination of the literature. J Clin Pharmacol 2015; 56:260-5. [PMID: 26313363 DOI: 10.1002/jcph.626] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/25/2015] [Indexed: 01/08/2023]
Abstract
Magnesium (Mg(2+) ) is an abundant mineral in the body serving many biochemical functions. Magnesium supplementation has been shown to raise seizure threshold in animal and human studies, but the etiological contribution of magnesium deficiency to the onset and maintenance of epilepsy, as well as the degree to which it impacts antiepileptic drug efficacy, remains poorly understood. This may be due, at least in part, to the inherent limitations of commonly used serum levels as a measure of functional magnesium status, as well as insufficient data regarding relative bioavailabilities of various magnesium salts and chelates for use with humans. To date, 1 randomized clinical trial has been conducted assessing Mg(2+) supplementation in epilepsy, and findings yielded promising results. Yet a notable dearth in the literature remains, and more studies are needed. To better understand the potential role of magnesium deficiency as a causal factor in epilepsy, more convenient and accurate measurement methods should to be developed and employed in randomized, controlled trials of oral magnesium supplementation in epilepsy. Findings from such studies have the potential to facilitate far-reaching clinical and economic improvements in epilepsy treatment standards.
Collapse
Affiliation(s)
- Katie E Osborn
- Department of Psychiatry & Behavioral Neurosciences, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - R Douglas Shytle
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery & Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Alfred T Frontera
- Department of Neurology, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Jason R Soble
- Psychology Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Mike R Schoenberg
- Department of Psychiatry & Behavioral Neurosciences, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,Center for Excellence in Aging and Brain Repair, Department of Neurosurgery & Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,Department of Neurology, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
27
|
Lei M, Xu H, Li Z, Wang Z, O'Malley TT, Zhang D, Walsh DM, Xu P, Selkoe DJ, Li S. Soluble Aβ oligomers impair hippocampal LTP by disrupting glutamatergic/GABAergic balance. Neurobiol Dis 2015; 85:111-121. [PMID: 26525100 DOI: 10.1016/j.nbd.2015.10.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/01/2015] [Accepted: 10/21/2015] [Indexed: 02/06/2023] Open
Abstract
Epileptic activity may be more prevalent in early stage Alzheimer's disease (AD) than previously believed. Several studies report spontaneous seizures and interictal discharges in mouse models of AD undergoing age-related Aβ accumulation. The mechanism by which Aβ-induced neuronal excitability can trigger epileptiform activity remains unknown. Here, we systematically examined field excitatory postsynaptic potentials (fEPSP) in stratum radiatum and population spikes (PSs) in the adjacent stratum pyramidale of CA1 in wild-type mouse hippocampal slices. Soluble Aβ oligomers (oAβ) blocked hippocampal LTP and EPSP-spike (E-S) potentiation, and these effects were occluded by prior treatment with the glutamate uptake inhibitor TBOA. In accord, oAβ elevated glutamate levels in the hippocampal slice medium. Recording the PS revealed that oAβ increased PS frequency and reduced LTP, and this LTP deficit was occluded by pretreatment with the GABAA antagonist picrotoxin. Whole-cell recordings showed that oAβ significantly increased spontaneous EPSC frequency. Decreasing neuronal activity by increasing GABA tone or partially blocking NMDAR activity prevented oAβ impairment of hippocampal LTP. Finally, treating slices with two antiepileptic drugs rescued the LTP inhibition induced by oAβ. We conclude that soluble Aβ oligomers at the low nanomolar levels present in AD brain increase neuronal excitability by disrupting glutamatergic/GABAergic balance, thereby impairing synaptic plasticity.
Collapse
Affiliation(s)
- Ming Lei
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Huixin Xu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhangyuan Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zemin Wang
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tiernan T O'Malley
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dainan Zhang
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dominic M Walsh
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong 510120, China.
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Saghazadeh A, Mahmoudi M, Meysamie A, Gharedaghi M, Zamponi GW, Rezaei N. Possible role of trace elements in epilepsy and febrile seizures: a meta-analysis. Nutr Rev 2015; 73:760-79. [DOI: 10.1093/nutrit/nuv026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
29
|
Zeiler FA, Matuszczak M, Teitelbaum J, Gillman LM, Kazina CJ. Magnesium sulfate for non-eclamptic status epilepticus. Seizure 2015; 32:100-8. [PMID: 26552572 DOI: 10.1016/j.seizure.2015.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/10/2015] [Accepted: 09/22/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Our goal was to perform a systematic review of the literature on the use of intravenous magnesium sulfate (MgSO4) for non-eclamptic status epilepticus (SE) and refractory status epilepticus (RSE). METHODS Articles from MEDLINE, BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library, the International Clinical Trials Registry Platform, clinicaltrials.gov (inception to June 2015), reference lists of relevant articles, and gray literature were searched. The strength of evidence was adjudicated using both the Oxford and GRADE methodology by two independent reviewers. RESULTS We identified 19 original articles. A total of 28 patients were described in these articles with 11 being adult, 9 being pediatric, and 8 of unknown age. Seizure reduction/control with IV MgSO4 occurred in 14 of the 28 patients (50.0%), with 2 (7.1%) and 12 (42.9%) displaying partial and complete responses respectively. Seizures recurred upon withdrawal of MgSO4 therapy in 50% of the patients whom had reduction/control of their SE/RSE. Three patients had recorded adverse events related to MgSO4 therapy. CONCLUSIONS Oxford level 4, GRADE D evidence exists to suggest a trend towards improved seizure control with the use of intravenous MgSO4 for non-eclamptic RSE. Routine use of IV MgSO4 in non-eclamptic SE/RSE cannot be recommended at this time. Further prospective study of this drug is required in order to determine its efficacy as an anti-epileptic in this setting.
Collapse
Affiliation(s)
- F A Zeiler
- Section of Neurosurgery, Dept. of Surgery, University of Manitoba, Winnipeg, Canada.
| | - M Matuszczak
- Undergraduate Medicine, University of Manitoba, Winnipeg, Canada.
| | - J Teitelbaum
- Section of Neurology, Montreal Neurological Institute, McGill, Montreal, Canada.
| | - L M Gillman
- Section of Critical Care Medicine, Dept. of Medicine, University of Manitoba, Winnipeg, Canada; Section of General Surgery, Dept. of Surgery, University of Manitoba, Winnipeg, Canada.
| | - C J Kazina
- Section of Neurosurgery, Dept. of Surgery, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
30
|
Abstract
Febrile seizures can arise in response to fevers induced by viral infection or as an adverse reaction to live-virus vaccines such as measles, mumps and rubella (MMR) vaccination. A new study has now identified common genetic variants influencing susceptibility to febrile seizures, including two loci specifically associated with MMR-related events.
Collapse
|
31
|
Feenstra B, Pasternak B, Geller F, Carstensen L, Wang T, Huang F, Eitson JL, Hollegaard MV, Svanström H, Vestergaard M, Hougaard DM, Schoggins JW, Jan LY, Melbye M, Hviid A. Common variants associated with general and MMR vaccine-related febrile seizures. Nat Genet 2014; 46:1274-82. [PMID: 25344690 PMCID: PMC4244308 DOI: 10.1038/ng.3129] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/03/2014] [Indexed: 12/28/2022]
Abstract
Febrile seizures represent a recognized serious adverse event following measles, mumps, and rubella (MMR) vaccination. We conducted a series of genome-wide association scans comparing children with MMR-related febrile seizures, children with febrile seizures unrelated to vaccination, and controls with no history of febrile seizures. Two loci were distinctly associated with MMR-related febrile seizures, harboring the interferon-stimulated gene IFI44L (rs273259; P = 5.9×10−12 vs. controls; P =1.2×10−9 vs. MMR-unrelated febrile seizures) and the measles virus receptor CD46 (rs1318653; P = 9.6×10−11 vs. controls; P = 1.6×10−9 vs. MMR-unrelated febrile seizures). Furthermore, four loci were associated with febrile seizures in general implicating the sodium channel genes SCN1A (rs6432860; P = 2.2×10−16) and SCN2A (rs3769955; P = 3.1×10−10), a TMEM16 family gene (TMEM16C; rs114444506; P = 3.7×10−20), and a region associated with magnesium levels (12q21.33; rs11105468; P = 3.4×10−11). Finally, functional relevance of TMEM16C was demonstrated with electrophysiological experiments in wild-type and knockout rats.
Collapse
Affiliation(s)
- Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Björn Pasternak
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Lisbeth Carstensen
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Tongfei Wang
- 1] Department of Physiology, University of California, San Francisco, San Francisco, California, USA. [2] Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA. [3] Howard Hughes Medical Institute, San Francisco, California, USA
| | - Fen Huang
- 1] Department of Physiology, University of California, San Francisco, San Francisco, California, USA. [2] Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA. [3] Howard Hughes Medical Institute, San Francisco, California, USA
| | - Jennifer L Eitson
- Department of Microbiology, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Mads V Hollegaard
- Danish Centre for Neonatal Screening, Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, Denmark
| | - Henrik Svanström
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Mogens Vestergaard
- Research Unit and Section for General Practice, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - David M Hougaard
- Danish Centre for Neonatal Screening, Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, Denmark
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Lily Yeh Jan
- 1] Department of Physiology, University of California, San Francisco, San Francisco, California, USA. [2] Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA. [3] Howard Hughes Medical Institute, San Francisco, California, USA
| | - Mads Melbye
- 1] Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark. [2] Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark. [3] Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Anders Hviid
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
32
|
Association of Serum Trace Elements and Minerals with Genetic Generalized Epilepsy and Idiopathic Intractable Epilepsy. Neurochem Res 2014; 39:2370-6. [DOI: 10.1007/s11064-014-1439-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/13/2014] [Accepted: 09/16/2014] [Indexed: 11/08/2022]
|
33
|
Serum magnesium and sudden unexpected death in epilepsy: A curious clinical sign or a necessity of life. Epilepsy Res 2012; 101:293-4. [DOI: 10.1016/j.eplepsyres.2012.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 04/04/2012] [Accepted: 04/08/2012] [Indexed: 11/19/2022]
|