1
|
Zhai SR, Sarma SV, Gunnarsdottir K, Crone NE, Rouse AG, Cheng JJ, Kinsman MJ, Landazuri P, Uysal U, Ulloa CM, Cameron N, Inati S, Zaghloul KA, Boerwinkle VL, Wyckoff S, Barot N, González-Martínez JA, Kang JY, Smith RJ. Virtual stimulation of the interictal EEG network localizes the EZ as a measure of cortical excitability. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1425625. [PMID: 39229346 PMCID: PMC11368849 DOI: 10.3389/fnetp.2024.1425625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/24/2024] [Indexed: 09/05/2024]
Abstract
Introduction: For patients with drug-resistant epilepsy, successful localization and surgical treatment of the epileptogenic zone (EZ) can bring seizure freedom. However, surgical success rates vary widely because there are currently no clinically validated biomarkers of the EZ. Highly epileptogenic regions often display increased levels of cortical excitability, which can be probed using single-pulse electrical stimulation (SPES), where brief pulses of electrical current are delivered to brain tissue. It has been shown that high-amplitude responses to SPES can localize EZ regions, indicating a decreased threshold of excitability. However, performing extensive SPES in the epilepsy monitoring unit (EMU) is time-consuming. Thus, we built patient-specific in silico dynamical network models from interictal intracranial EEG (iEEG) to test whether virtual stimulation could reveal information about the underlying network to identify highly excitable brain regions similar to physical stimulation of the brain. Methods: We performed virtual stimulation in 69 patients that were evaluated at five centers and assessed for clinical outcome 1 year post surgery. We further investigated differences in observed SPES iEEG responses of 14 patients stratified by surgical outcome. Results: Clinically-labeled EZ cortical regions exhibited higher excitability from virtual stimulation than non-EZ regions with most significant differences in successful patients and little difference in failure patients. These trends were also observed in responses to extensive SPES performed in the EMU. Finally, when excitability was used to predict whether a channel is in the EZ or not, the classifier achieved an accuracy of 91%. Discussion: This study demonstrates how excitability determined via virtual stimulation can capture valuable information about the EZ from interictal intracranial EEG.
Collapse
Affiliation(s)
- Sophia R. Zhai
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Sridevi V. Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Kristin Gunnarsdottir
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Nathan E. Crone
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Adam G. Rouse
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jennifer J. Cheng
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Michael J. Kinsman
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Patrick Landazuri
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Utku Uysal
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Carol M. Ulloa
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Nathaniel Cameron
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sara Inati
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Kareem A. Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Varina L. Boerwinkle
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ, United States
| | - Sarah Wyckoff
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ, United States
| | - Niravkumar Barot
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Joon Y. Kang
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Rachel June Smith
- Department of Electrical and Computer Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
2
|
Hajnal B, Szabó JP, Tóth E, Keller CJ, Wittner L, Mehta AD, Erőss L, Ulbert I, Fabó D, Entz L. Intracortical mechanisms of single pulse electrical stimulation (SPES) evoked excitations and inhibitions in humans. Sci Rep 2024; 14:13784. [PMID: 38877093 PMCID: PMC11178858 DOI: 10.1038/s41598-024-62433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/16/2024] [Indexed: 06/16/2024] Open
Abstract
Cortico-cortical evoked potentials (CCEPs) elicited by single-pulse electric stimulation (SPES) are widely used to assess effective connectivity between cortical areas and are also implemented in the presurgical evaluation of epileptic patients. Nevertheless, the cortical generators underlying the various components of CCEPs in humans have not yet been elucidated. Our aim was to describe the laminar pattern arising under SPES evoked CCEP components (P1, N1, P2, N2, P3) and to evaluate the similarities between N2 and the downstate of sleep slow waves. We used intra-cortical laminar microelectrodes (LMEs) to record CCEPs evoked by 10 mA bipolar 0.5 Hz electric pulses in seven patients with medically intractable epilepsy implanted with subdural grids. Based on the laminar profile of CCEPs, the latency of components is not layer-dependent, however their rate of appearance varies across cortical depth and stimulation distance, while the seizure onset zone does not seem to affect the emergence of components. Early neural excitation primarily engages middle and deep layers, propagating to the superficial layers, followed by mainly superficial inhibition, concluding in a sleep slow wave-like inhibition and excitation sequence.
Collapse
Affiliation(s)
- Boglárka Hajnal
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
- János Szentágothai Neurosciences Program, Semmelweis University School of PhD Studies, Budapest, 1083, Hungary
| | - Johanna Petra Szabó
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
- János Szentágothai Neurosciences Program, Semmelweis University School of PhD Studies, Budapest, 1083, Hungary
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Emília Tóth
- Epilepsy and Cognitive Neurophysiology Laboratory, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Corey J Keller
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine and Feinstein Institute of Medical Research, 300 Community Drive, Manhasset, NY, 11030, USA
- Department of Neuroscience, Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, 94304, USA
| | - Lucia Wittner
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, HUN-REN, Budapest, 1117, Hungary
- Department of Information Technology and Bionics, Péter Pázmány Catholic University, Budapest, 1083, Hungary
| | - Ashesh D Mehta
- Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine and Feinstein Institute of Medical Research, 300 Community Drive, Manhasset, NY, 11030, USA
| | - Loránd Erőss
- Department of Functional Neurosurgery, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
| | - István Ulbert
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, HUN-REN, Budapest, 1117, Hungary
- Department of Information Technology and Bionics, Péter Pázmány Catholic University, Budapest, 1083, Hungary
| | - Dániel Fabó
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary.
| | - László Entz
- Department of Functional Neurosurgery, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
| |
Collapse
|
3
|
Kobayashi K, Taylor KN, Shahabi H, Krishnan B, Joshi A, Mackow MJ, Feldman L, Zamzam O, Medani T, Bulacio J, Alexopoulos AV, Najm I, Bingaman W, Leahy RM, Nair DR. Effective connectivity relates seizure outcome to electrode placement in responsive neurostimulation. Brain Commun 2024; 6:fcae035. [PMID: 38390255 PMCID: PMC10882982 DOI: 10.1093/braincomms/fcae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/06/2023] [Accepted: 02/19/2024] [Indexed: 02/24/2024] Open
Abstract
Responsive neurostimulation is a closed-loop neuromodulation therapy for drug resistant focal epilepsy. Responsive neurostimulation electrodes are placed near ictal onset zones so as to enable detection of epileptiform activity and deliver electrical stimulation. There is no standard approach for determining the optimal placement of responsive neurostimulation electrodes. Clinicians make this determination based on presurgical tests, such as MRI, EEG, magnetoencephalography, ictal single-photon emission computed tomography and intracranial EEG. Currently functional connectivity measures are not being used in determining the placement of responsive neurostimulation electrodes. Cortico-cortical evoked potentials are a measure of effective functional connectivity. Cortico-cortical evoked potentials are generated by direct single-pulse electrical stimulation and can be used to investigate cortico-cortical connections in vivo. We hypothesized that the presence of high amplitude cortico-cortical evoked potentials, recorded during intracranial EEG monitoring, near the eventual responsive neurostimulation contact sites is predictive of better outcomes from its therapy. We retrospectively reviewed 12 patients in whom cortico-cortical evoked potentials were obtained during stereoelectroencephalography evaluation and subsequently underwent responsive neurostimulation therapy. We studied the relationship between cortico-cortical evoked potentials, the eventual responsive neurostimulation electrode locations and seizure reduction. Directional connectivity indicated by cortico-cortical evoked potentials can categorize stereoelectroencephalography electrodes as either receiver nodes/in-degree (an area of greater inward connectivity) or projection nodes/out-degree (greater outward connectivity). The follow-up period for seizure reduction ranged from 1.3-4.8 years (median 2.7) after responsive neurostimulation therapy started. Stereoelectroencephalography electrodes closest to the eventual responsive neurostimulation contact site tended to show larger in-degree cortico-cortical evoked potentials, especially for the early latency cortico-cortical evoked potentials period (10-60 ms period) in six out of 12 patients. Stereoelectroencephalography electrodes closest to the responsive neurostimulation contacts (≤5 mm) also had greater significant out-degree in the early cortico-cortical evoked potentials latency period than those further away (≥10 mm) (P < 0.05). Additionally, significant correlation was noted between in-degree cortico-cortical evoked potentials and greater seizure reduction with responsive neurostimulation therapy at its most effective period (P < 0.05). These findings suggest that functional connectivity determined by cortico-cortical evoked potentials may provide additional information that could help guide the optimal placement of responsive neurostimulation electrodes.
Collapse
Affiliation(s)
- Katsuya Kobayashi
- Charles Shor Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Kenneth N Taylor
- Charles Shor Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Hossein Shahabi
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90007, USA
| | - Balu Krishnan
- Charles Shor Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Anand Joshi
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90007, USA
| | - Michael J Mackow
- Charles Shor Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Lauren Feldman
- Charles Shor Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Omar Zamzam
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90007, USA
| | - Takfarinas Medani
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90007, USA
| | - Juan Bulacio
- Charles Shor Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | - Imad Najm
- Charles Shor Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - William Bingaman
- Charles Shor Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Richard M Leahy
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90007, USA
| | - Dileep R Nair
- Charles Shor Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
4
|
Yang B, Zhao B, Li C, Mo J, Guo Z, Li Z, Yao Y, Fan X, Cai D, Sang L, Zheng Z, Gao D, Zhao X, Wang X, Zhang C, Hu W, Shao X, Zhang J, Zhang K. Localizing seizure onset zone by a cortico-cortical evoked potentials-based machine learning approach in focal epilepsy. Clin Neurophysiol 2024; 158:103-113. [PMID: 38218076 DOI: 10.1016/j.clinph.2023.12.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
OBJECTIVE We aimed to develop a new approach for identifying the localization of the seizure onset zone (SOZ) based on corticocortical evoked potentials (CCEPs) and to compare the connectivity patterns in patients with different clinical phenotypes. METHODS Fifty patients who underwent stereoelectroencephalography and CCEP procedures were included. Logistic regression was used in the model, and six CCEP metrics were input as features: root mean square of the first peak (N1RMS) and second peak (N2RMS), peak latency, onset latency, width duration, and area. RESULTS The area under the curve (AUC) for localizing the SOZ ranged from 0.88 to 0.93. The N1RMS values in the hippocampus sclerosis (HS) group were greater than that of the focal cortical dysplasia (FCD) IIa group (p < 0.001), independent of the distance between the recorded and stimulated sites. The sensitivity of localization was higher in the seizure-free group than in the non-seizure-free group (p = 0.036). CONCLUSIONS This new method can be used to predict the SOZ localization in various focal epilepsy phenotypes. SIGNIFICANCE This study proposed a machine-learning approach for localizing the SOZ. Moreover, we examined how clinical phenotypes impact large-scale abnormality of the epileptogenic networks.
Collapse
Affiliation(s)
- Bowen Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chao Li
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhihao Guo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zilin Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuan Yao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiuliang Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Du Cai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Sang
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Zhong Zheng
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Dongmei Gao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuemin Zhao
- Department of Neurophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
van den Boom MA, Gregg NM, Valencia GO, Lundstrom BN, Miller KJ, van Blooijs D, Huiskamp GJ, Leijten FS, Worrell GA, Hermes D. ER-detect: a pipeline for robust detection of early evoked responses in BIDS-iEEG electrical stimulation data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574915. [PMID: 38260687 PMCID: PMC10802406 DOI: 10.1101/2024.01.09.574915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Human brain connectivity can be measured in different ways. Intracranial EEG (iEEG) measurements during single pulse electrical stimulation provide a unique way to assess the spread of electrical information with millisecond precision. To provide a robust workflow to process these cortico-cortical evoked potential (CCEP) data and detect early evoked responses in a fully automated and reproducible fashion, we developed Early Response (ER)-detect. ER-detect is an open-source Python package and Docker application to preprocess BIDS structured iEEG data and detect early evoked CCEP responses. ER-detect can use three response detection methods, which were validated against 14-manually annotated CCEP datasets from two different sites by four independent raters. Results showed that ER-detect's automated detection performed on par with the inter-rater reliability (Cohen's Kappa of ~0.6). Moreover, ER-detect was optimized for processing large CCEP datasets, to be used in conjunction with other connectomic investigations. ER-detect provides a highly efficient standardized workflow such that iEEG-BIDS data can be processed in a consistent manner and enhance the reproducibility of CCEP based connectivity results.
Collapse
Affiliation(s)
- Max A. van den Boom
- Department of Physiology and Biomedical Engineering, Mayo Clinic; Rochester, MN, USA
- Department of Neurosurgery, Mayo Clinic; Rochester, MN, USA
| | | | | | | | - Kai J. Miller
- Department of Neurosurgery, Mayo Clinic; Rochester, MN, USA
| | - Dorien van Blooijs
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht; Utrecht, NL
- Stichting Epilepsie Instellingen Nederland (SEIN); Zwolle, The Netherlands
| | - Geertjan J.M. Huiskamp
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht; Utrecht, NL
| | - Frans S.S. Leijten
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht; Utrecht, NL
| | - Gregory A. Worrell
- Department of Physiology and Biomedical Engineering, Mayo Clinic; Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN; USA
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic; Rochester, MN, USA
| |
Collapse
|
6
|
Chang P, Xie H, Illapani VSP, You X, Anwar T, Pasupuleti A, Vu TA, Vezina LG, Gholipour T, Oluigbo CO, Zhang A, Gaillard WD, Cohen NT. Focal to bilateral tonic-clonic seizures predict pharmacoresistance in focal cortical dysplasia-related epilepsy. Epilepsia 2023; 64:2434-2442. [PMID: 37349955 PMCID: PMC10529443 DOI: 10.1111/epi.17700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
OBJECTIVE Focal cortical dysplasia (FCD) is the most common etiology of surgically-remediable epilepsy in children. Eighty-seven percent of patients with FCD develop epilepsy (75% is pharmacoresistant epilepsy [PRE]). Focal to bilateral tonic-clonic (FTBTC) seizures are associated with worse surgical outcomes. We hypothesized that children with FCD-related epilepsy with FTBTC seizures are more likely to develop PRE due to lesion interaction with restricted cortical neural networks. METHODS Patients were selected retrospectively from radiology and surgical databases from Children's National Hospital. INCLUSION CRITERIA 3T magnetic resonance imaging (MRI)-confirmed FCD from January 2011 to January 2020; ages 0 days to 22 years at MRI; and 18 months of documented follow-up. FCD dominant network (Yeo 7-network parcellation) was determined. Association of FTBTC seizures with epilepsy severity, surgical outcome, and dominant network was tested. Binomial regression was used to evaluate predictors (FTBTC seizures, age at seizure onset, pathology, hemisphere, lobe) of pharmacoresistance and Engel outcome. Regression was used to evaluate predictors (age at seizure onset, pathology, lobe, percentage default mode network [DMN] overlap) of FTBTC seizures. RESULTS One hundred seventeen patients had a median age at seizure onset of 3.00 years (interquartile range [IQR] .42-5.59 years). Eighty-three patients had PRE (71%); 34 had pharmacosensitive epilepsy (PSE) (29%). Twenty patients (17%) had FTBTC seizures. Seventy-three patients underwent epilepsy surgery. Multivariate regression showed that FTBTC seizures are associated with an increased risk of PRE (odds ratio [OR] 6.41, 95% confidence interval [CI] 1.21-33.98, p = .02). FCD hemisphere/lobe was not associated with PRE. Percentage DMN overlap predicts FTBTC seizures. Seventy-two percent (n = 52) overall and 53% (n = 9) of patients with FTBTC seizures achieved Engel class I outcome. SIGNIFICANCE In a heterogeneous population of surgical and non-operated patients with FCD-related epilepsy, the presence of FTBTC seizures is associated with a tremendous risk of PRE. This finding is a recognizable marker to help neurologists identify those children with FCD-related epilepsy at high risk of PRE and can flag patients for earlier consideration of potentially curative surgery. The FCD-dominant network also contributes to FTBTC seizure clinical expression.
Collapse
Affiliation(s)
- Phat Chang
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Hua Xie
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Venkata Sita Priyanka Illapani
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Xiaozhen You
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Tayyba Anwar
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Archana Pasupuleti
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Thuy-Anh Vu
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - L. Gilbert Vezina
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Taha Gholipour
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Chima O. Oluigbo
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Anqing Zhang
- Division of Biostatistics and Study Methodology, Children’s National Research Institute, Washington, DC
| | - William Davis Gaillard
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Nathan T. Cohen
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| |
Collapse
|
7
|
Hays MA, Smith RJ, Wang Y, Coogan C, Sarma SV, Crone NE, Kang JY. Cortico-cortical evoked potentials in response to varying stimulation intensity improves seizure localization. Clin Neurophysiol 2023; 145:119-128. [PMID: 36127246 PMCID: PMC9771930 DOI: 10.1016/j.clinph.2022.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/05/2022] [Accepted: 08/27/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE As single pulse electrical stimulation (SPES) is increasingly utilized to help localize the seizure onset zone (SOZ), it is important to understand how stimulation intensity can affect the ability to use cortico-cortical evoked potentials (CCEPs) to delineate epileptogenic regions. METHODS We studied 15 drug-resistant epilepsy patients undergoing intracranial EEG monitoring and SPES with titrations of stimulation intensity. The N1 amplitude and distribution of CCEPs elicited in the SOZ and non-seizure onset zone (nSOZ) were quantified at each intensity. The separability of the SOZ and nSOZ using N1 amplitudes was compared between models using responses to titrations, responses to one maximal intensity, or both. RESULTS At 2 mA and above, the increase in N1 amplitude with current intensity was greater for responses within the SOZ, and SOZ response distribution was maximized by 4-6 mA. Models incorporating titrations achieved better separability of SOZ and nSOZ compared to those using one maximal intensity. CONCLUSIONS We demonstrated that differences in CCEP amplitude over a range of current intensities can improve discriminability of SOZ regions. SIGNIFICANCE This study provides insight into the underlying excitability of the SOZ and how differences in current-dependent amplitudes of CCEPs may be used to help localize epileptogenic sites.
Collapse
Affiliation(s)
- Mark A Hays
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Rachel J Smith
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yujing Wang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Coogan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sridevi V Sarma
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joon Y Kang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Schroeder GM, Chowdhury FA, Cook MJ, Diehl B, Duncan JS, Karoly PJ, Taylor PN, Wang Y. Multiple mechanisms shape the relationship between pathway and duration of focal seizures. Brain Commun 2022; 4:fcac173. [PMID: 35855481 PMCID: PMC9280328 DOI: 10.1093/braincomms/fcac173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/18/2022] [Accepted: 06/30/2022] [Indexed: 12/22/2022] Open
Abstract
A seizure's electrographic dynamics are characterized by its spatiotemporal evolution, also termed dynamical 'pathway', and the time it takes to complete that pathway, which results in the seizure's duration. Both seizure pathways and durations have been shown to vary within the same patient. However, it is unclear whether seizures following the same pathway will have the same duration or if these features can vary independently. We compared within-subject variability in these seizure features using (i) epilepsy monitoring unit intracranial EEG (iEEG) recordings of 31 patients (mean: 6.7 days, 16.5 seizures/subject), (ii) NeuroVista chronic iEEG recordings of 10 patients (mean: 521.2 days, 252.6 seizures/subject) and (iii) chronic iEEG recordings of three dogs with focal-onset seizures (mean: 324.4 days, 62.3 seizures/subject). While the strength of the relationship between seizure pathways and durations was highly subject-specific, in most subjects, changes in seizure pathways were only weakly to moderately associated with differences in seizure durations. The relationship between seizure pathways and durations was strengthened by seizures that were 'truncated' versions, both in pathway and duration, of other seizures. However, the relationship was weakened by seizures that had a common pathway, but different durations ('elasticity'), or had similar durations, but followed different pathways ('semblance'). Even in subjects with distinct populations of short and long seizures, seizure durations were not a reliable indicator of different seizure pathways. These findings suggest that seizure pathways and durations are modulated by multiple different mechanisms. Uncovering such mechanisms may reveal novel therapeutic targets for reducing seizure duration and severity.
Collapse
Affiliation(s)
- Gabrielle M Schroeder
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Fahmida A Chowdhury
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Mark J Cook
- Graeme Clark Institute and St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
- Seer Medical Pty Ltd, Melbourne, VIC, Australia
| | - Beate Diehl
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - John S Duncan
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Philippa J Karoly
- Graeme Clark Institute and St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
- Seer Medical Pty Ltd, Melbourne, VIC, Australia
| | - Peter N Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Yujiang Wang
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| |
Collapse
|
9
|
Titov O, Bykanov A, Pitskhelauri D, Danilov G. Neuromonitoring of the language pathways using cortico-cortical evoked potentials: a systematic review and meta-analysis. Neurosurg Rev 2022; 45:1883-1894. [PMID: 35031897 DOI: 10.1007/s10143-021-01718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
Cortico-cortical evoked potentials (CCEPs) are a surge in activity of one cortical zone caused by stimulation of another cortical zone. Recording of CCEP may be a useful method of intraoperative monitoring of the brain pathways, particularly of the language-related tracts. We aimed to conduct a systematic review and meta-analysis, dedicated to the clinical question: Does the CCEP recording effectively predict the postoperative speech deficits in neurosurgical patients? We conducted language-restricted PubMed, Google Scholar, Scopus, and Cochrane database search for eligible studies of CCEP published until March 2021. There were 4 articles (3 case series and 1 case report), which met our inclusion/exclusion criteria. A total of 32 patients (30 cases of tumors and 2 cavernomas) included in the analysis were divided into two cohorts - quantitative and qualitative, in accordance with the method of evaluating changes in the amplitude of CCEP after the lesion resection and postoperative alterations in speech function. Quantitative variables were studied using the Spearman rank correlation coefficient. Categorical variables were compared in groups by Fisher's exact test. We found a strong positive correlation between the decrease in the N1 wave amplitude and the severity of postoperative speech deficits (quantitative cohort: r = 0.57, p = 0.01; qualitative cohort: p = 0.02). Thus, the CCEP method using the N1 wave amplitude as a marker enables to effectively predict postoperative speech outcomes. Nevertheless, the low level of evidence for the included works indicated the necessity for additional research on this issue.
Collapse
Affiliation(s)
- Oleg Titov
- Burdenko Neurosurgery Center, Moscow, Russia. .,OPEN BRAIN - Neurosurgical Laboratory of Open Access, Moscow, Russia.
| | | | | | | |
Collapse
|
10
|
Lemaréchal JD, Jedynak M, Trebaul L, Boyer A, Tadel F, Bhattacharjee M, Deman P, Tuyisenge V, Ayoubian L, Hugues E, Chanteloup-Forêt B, Saubat C, Zouglech R, Reyes Mejia GC, Tourbier S, Hagmann P, Adam C, Barba C, Bartolomei F, Blauwblomme T, Curot J, Dubeau F, Francione S, Garcés M, Hirsch E, Landré E, Liu S, Maillard L, Metsähonkala EL, Mindruta I, Nica A, Pail M, Petrescu AM, Rheims S, Rocamora R, Schulze-Bonhage A, Szurhaj W, Taussig D, Valentin A, Wang H, Kahane P, George N, David O. A brain atlas of axonal and synaptic delays based on modelling of cortico-cortical evoked potentials. Brain 2021; 145:1653-1667. [PMID: 35416942 PMCID: PMC9166555 DOI: 10.1093/brain/awab362] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/03/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022] Open
Abstract
Epilepsy presurgical investigation may include focal intracortical single-pulse electrical stimulations with depth electrodes, which induce cortico-cortical evoked potentials at distant sites because of white matter connectivity. Cortico-cortical evoked potentials provide a unique window on functional brain networks because they contain sufficient information to infer dynamical properties of large-scale brain connectivity, such as preferred directionality and propagation latencies. Here, we developed a biologically informed modelling approach to estimate the neural physiological parameters of brain functional networks from the cortico-cortical evoked potentials recorded in a large multicentric database. Specifically, we considered each cortico-cortical evoked potential as the output of a transient stimulus entering the stimulated region, which directly propagated to the recording region. Both regions were modelled as coupled neural mass models, the parameters of which were estimated from the first cortico-cortical evoked potential component, occurring before 80 ms, using dynamic causal modelling and Bayesian model inversion. This methodology was applied to the data of 780 patients with epilepsy from the F-TRACT database, providing a total of 34 354 bipolar stimulations and 774 445 cortico-cortical evoked potentials. The cortical mapping of the local excitatory and inhibitory synaptic time constants and of the axonal conduction delays between cortical regions was obtained at the population level using anatomy-based averaging procedures, based on the Lausanne2008 and the HCP-MMP1 parcellation schemes, containing 130 and 360 parcels, respectively. To rule out brain maturation effects, a separate analysis was performed for older (>15 years) and younger patients (<15 years). In the group of older subjects, we found that the cortico-cortical axonal conduction delays between parcels were globally short (median = 10.2 ms) and only 16% were larger than 20 ms. This was associated to a median velocity of 3.9 m/s. Although a general lengthening of these delays with the distance between the stimulating and recording contacts was observed across the cortex, some regions were less affected by this rule, such as the insula for which almost all efferent and afferent connections were faster than 10 ms. Synaptic time constants were found to be shorter in the sensorimotor, medial occipital and latero-temporal regions, than in other cortical areas. Finally, we found that axonal conduction delays were significantly larger in the group of subjects younger than 15 years, which corroborates that brain maturation increases the speed of brain dynamics. To our knowledge, this study is the first to provide a local estimation of axonal conduction delays and synaptic time constants across the whole human cortex in vivo, based on intracerebral electrophysiological recordings.
Collapse
Affiliation(s)
- Jean-Didier Lemaréchal
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Centre MEG-EEG and Experimental Neurosurgery Team, F-75013 Paris, France.,Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France.,Aix Marseille Université, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Maciej Jedynak
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Lena Trebaul
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Anthony Boyer
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - François Tadel
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Manik Bhattacharjee
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Pierre Deman
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Viateur Tuyisenge
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Leila Ayoubian
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Etienne Hugues
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | | | - Carole Saubat
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Raouf Zouglech
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | | | - Sébastien Tourbier
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Claude Adam
- Department of Neurology, Epilepsy Unit, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France
| | - Carmen Barba
- Neuroscience Department, Children's Hospital Meyer-University of Florence, Florence, Italy
| | - Fabrice Bartolomei
- Aix Marseille Université, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France.,Service de Neurophysiologie Clinique, APHM, Hôpitaux de la Timone, Marseille, France
| | - Thomas Blauwblomme
- Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, Université Paris V Descartes, Sorbonne Paris Cité, Paris, France
| | - Jonathan Curot
- Department of Neurophysiological Explorations, CerCo, CNRS, UMR5549, Centre Hospitalier Universitaire de Toulouse and University of Toulouse, Toulouse, France
| | - François Dubeau
- Montreal Neurological Institute and Hospital, Montreal, Canada
| | - Stefano Francione
- 'Claudio Munari' Centre for Epilepsy Surgery; Neuroscience Department, GOM, Niguarda, Milano, Italy
| | - Mercedes Garcés
- Multidisciplinary Epilepsy Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Edouard Hirsch
- University Hospital, Department of Neurology, Strasbourg, France
| | | | - Sinclair Liu
- Canton Sanjiu Brain Hospital Epilepsy Center, Jinan University, Guangzhou, China
| | - Louis Maillard
- Centre Hospitalier Universitaire de Nancy, Nancy, France
| | | | - Ioana Mindruta
- Neurology Department, University Emergency Hospital, Bucharest, Romania
| | - Anca Nica
- Neurology Department, CIC 1414, Rennes University Hospital; LTSI, INSERM U 1099, F-35000 Rennes, France
| | - Martin Pail
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
| | | | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and Lyon's Neurosciences Research Center, INSERM U1028/CNRS UMR5292/Lyon 1 University, Lyon, France
| | - Rodrigo Rocamora
- Epilepsy Monitoring Unit, Department of Neurology, Hospital del Mar-IMIM, Barcelona, Spain
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - William Szurhaj
- Epilepsy Unit, Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France
| | - Delphine Taussig
- Neurophysiology and Epilepsy Unit, Bicêtre Hospital, France.,Service de Neurochirurgie Pédiatrique, Fondation Rothschild, Paris, France
| | - Antonio Valentin
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), London, UK
| | - Haixiang Wang
- Yuquan Hospital Epilepsy Center, Tsinghua University, Beijing, China
| | - Philippe Kahane
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France.,Neurology Department, CHU Grenoble Alpes, Grenoble, France
| | - Nathalie George
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Centre MEG-EEG and Experimental Neurosurgery Team, F-75013 Paris, France
| | - Olivier David
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France.,Aix Marseille Université, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | | |
Collapse
|
11
|
Shahabi H, Taylor K, Hirfanoglu T, Koneru S, Bingaman W, Kobayashi K, Kobayashi M, Joshi A, Leahy RM, Mosher JC, Bulacio J, Nair D. Effective connectivity differs between focal cortical dysplasia types I and II. Epilepsia 2021; 62:2753-2765. [PMID: 34541666 DOI: 10.1111/epi.17064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine whether brain connectivity differs between focal cortical dysplasia (FCD) types I and II. METHODS We compared cortico-cortical evoked potentials (CCEPs) as measures of effective brain connectivity in 25 FCD patients with drug-resistant focal epilepsy who underwent intracranial evaluation with stereo-electroencephalography (SEEG). We analyzed the amplitude and latency of CCEP responses following ictal-onset single-pulse electrical stimulation (iSPES). RESULTS In comparison to FCD type II, patients with type I demonstrated significantly larger responses in the electrodes near the ictal-onset zone (<50 mm). These findings persisted when controlling for the location of the epileptogenic zone, as noted in patients with temporal lobe epilepsies, as well as controlling for seizure type, as noted in patients with focal to bilateral tonic-clonic seizures (FBTCS). In type II, the root mean square (RMS) of CCEP responses dropped substantially from the early segment (10-60 ms) to the middle and late segments (60-600 ms). The middle and late CCEP latency segments showed the largest differences between FCD types I and II. SIGNIFICANCE Focal cortical dysplasia type I may have a greater degree of cortical hyperexcitability as compared with FCD type II. In addition, FCD type II displays a more restrictive area of hyperexcitability in both temporal and spatial domains. In patients with FBTCS and type I FCD, the increased amplitudes of RMS in the middle and late CCEP periods appear consistent with the cortico-thalamo-cortical network involvement of FBTCS. The notable differences in degree and extent of hyperexcitability may contribute to the different postsurgical seizure outcomes noted between these two pathological substrates.
Collapse
Affiliation(s)
- Hossein Shahabi
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA
| | - Kenneth Taylor
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tugba Hirfanoglu
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Pediatric Neurology, School of Medicine, Gazi University, Ankara, Turkey
| | - Shreekanth Koneru
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - William Bingaman
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Katsuya Kobayashi
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Masako Kobayashi
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anand Joshi
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA
| | - Richard M Leahy
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA
| | - John C Mosher
- University of Texas Health Sciences Center, Houston, TX, USA
| | - Juan Bulacio
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dileep Nair
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
12
|
Hays MA, Coogan C, Crone NE, Kang JY. Graph theoretical analysis of evoked potentials shows network influence of epileptogenic mesial temporal region. Hum Brain Mapp 2021; 42:4173-4186. [PMID: 34165233 PMCID: PMC8356982 DOI: 10.1002/hbm.25418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/08/2023] Open
Abstract
It is now widely accepted that seizures arise from the coordinated activity of epileptic networks, and as a result, traditional methods of analyzing seizures have been augmented by techniques like single-pulse electrical stimulation (SPES) that estimate effective connectivity in brain networks. We used SPES and graph analytics in 18 patients undergoing intracranial EEG monitoring to investigate effective connectivity between recording sites within and outside mesial temporal structures. We compared evoked potential amplitude, network density, and centrality measures inside and outside the mesial temporal region (MTR) across three patient groups: focal epileptogenic MTR, multifocal epileptogenic MTR, and non-epileptogenic MTR. Effective connectivity within the MTR had significantly greater magnitude (evoked potential amplitude) and network density, regardless of epileptogenicity. However, effective connectivity between MTR and surrounding non-epileptogenic regions was of greater magnitude and density in patients with focal epileptogenic MTR compared to patients with multifocal epileptogenic MTR and those with non-epileptogenic MTR. Moreover, electrodes within focal epileptogenic MTR had significantly greater outward network centrality compared to electrodes outside non-epileptogenic regions and to multifocal and non-epileptogenic MTR. Our results indicate that the MTR is a robustly connected subnetwork that can exert an overall elevated propagative influence over other brain regions when it is epileptogenic. Understanding the underlying effective connectivity and roles of epileptogenic regions within the larger network may provide insights that eventually lead to improved surgical outcomes.
Collapse
Affiliation(s)
- Mark A Hays
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher Coogan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joon Y Kang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Kobayashi K, Matsumoto R, Usami K, Matsuhashi M, Shimotake A, Kikuchi T, Yoshida K, Kunieda T, Miyamoto S, Takahashi R, Ikeda A. Cortico-cortical evoked potential by single-pulse electrical stimulation is a generally safe procedure. Clin Neurophysiol 2021; 132:1033-1040. [PMID: 33743298 DOI: 10.1016/j.clinph.2020.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Cortico-cortical evoked potential (CCEP) by single-pulse electrical stimulation (SPES) is useful to investigate effective connectivity and cortical excitability. We aimed to clarify the safety of CCEPs. METHODS We retrospectively analyzed 29 consecutive patients with intractable partial epilepsy undergoing chronic subdural grid implantation and CCEP recording. Repetitive SPES (1 Hz) was systematically applied to a pair of adjacent electrodes over almost all electrodes. We evaluated the incidences of afterdischarges (ADs) and clinical seizures. RESULTS Out of 1283 electrode pairs, ADs and clinical seizures were observed in 12 and 5 pairs (0.94% and 0.39%, per electrode pair) in 7 and 3 patients (23.3% and 10.0%, per patient), respectively. Of the 18-82 pairs per patient, ADs and clinical seizures were induced in 0-4 and 0-3 pairs, respectively. Stimulating 4 SOZ (seizure onset zone) (2.5%) and 8 non-SOZ pairs (0.75%) resulted in ADs. We observed clinical seizures in stimulating 4 SOZ (2.5%) and 1 non-SOZ pair (0.09%). The incidence of clinical seizures varied significantly between SOZ and non-SOZ stimulations (p = 0.001), while the difference in AD incidence tended towards significance (p = 0.058). CONCLUSION Although caution should be taken in stimulating SOZ, CCEP is a safe procedure for presurgical evaluation. SIGNIFICANCE CCEP is safe under the established protocol.
Collapse
Affiliation(s)
- Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan; Department of Epilepsy, Neurological Institute, Cleveland Clinic, USA.
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Japan.
| | - Kiyohide Usami
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan.
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Japan.
| | - Akihiro Shimotake
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Japan.
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan.
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan.
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Japan.
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan.
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan.
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Japan.
| |
Collapse
|
14
|
Sinha N, Peternell N, Schroeder GM, de Tisi J, Vos SB, Winston GP, Duncan JS, Wang Y, Taylor PN. Focal to bilateral tonic-clonic seizures are associated with widespread network abnormality in temporal lobe epilepsy. Epilepsia 2021; 62:729-741. [PMID: 33476430 PMCID: PMC8600951 DOI: 10.1111/epi.16819] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Our objective was to identify whether the whole-brain structural network alterations in patients with temporal lobe epilepsy (TLE) and focal to bilateral tonic-clonic seizures (FBTCS) differ from alterations in patients without FBTCS. METHODS We dichotomized a cohort of 83 drug-resistant patients with TLE into those with and without FBTCS and compared each group to 29 healthy controls. For each subject, we used diffusion-weighted magnetic resonance imaging to construct whole-brain structural networks. First, we measured the extent of alterations by performing FBTCS-negative (FBTCS-) versus control and FBTCS-positive (FBTCS+) versus control comparisons, thereby delineating altered subnetworks of the whole-brain structural network. Second, by standardizing each patient's networks using control networks, we measured the subject-specific abnormality at every brain region in the network, thereby quantifying the spatial localization and the amount of abnormality in every patient. RESULTS Both FBTCS+ and FBTCS- patient groups had altered subnetworks with reduced fractional anisotropy and increased mean diffusivity compared to controls. The altered subnetwork in FBTCS+ patients was more widespread than in FBTCS- patients (441 connections altered at t > 3, p < .001 in FBTCS+ compared to 21 connections altered at t > 3, p = .01 in FBTCS-). Significantly greater abnormalities-aggregated over the entire brain network as well as assessed at the resolution of individual brain areas-were present in FBTCS+ patients (p < .001, d = .82, 95% confidence interval = .32-1.3). In contrast, the fewer abnormalities present in FBTCS- patients were mainly localized to the temporal and frontal areas. SIGNIFICANCE The whole-brain structural network is altered to a greater and more widespread extent in patients with TLE and FBTCS. We suggest that these abnormal networks may serve as an underlying structural basis or consequence of the greater seizure spread observed in FBTCS.
Collapse
Affiliation(s)
- Nishant Sinha
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.,Computational Neuroscience, Neurology, and Psychiatry Lab, Interdisciplinary Computing and Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Natalie Peternell
- Computational Neuroscience, Neurology, and Psychiatry Lab, Interdisciplinary Computing and Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Gabrielle M Schroeder
- Computational Neuroscience, Neurology, and Psychiatry Lab, Interdisciplinary Computing and Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Jane de Tisi
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Sjoerd B Vos
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London Queen Square Institute of Neurology, London, UK.,Centre for Medical Image Computing, University College London, London, UK.,Neuroradiological Academic Unit, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Gavin P Winston
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London Queen Square Institute of Neurology, London, UK.,Epilepsy Society MRI Unit, Chalfont St Peter, UK.,Division of Neurology, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - John S Duncan
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London Queen Square Institute of Neurology, London, UK.,Epilepsy Society MRI Unit, Chalfont St Peter, UK
| | - Yujiang Wang
- Computational Neuroscience, Neurology, and Psychiatry Lab, Interdisciplinary Computing and Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK.,National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Peter N Taylor
- Computational Neuroscience, Neurology, and Psychiatry Lab, Interdisciplinary Computing and Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK.,National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London Queen Square Institute of Neurology, London, UK
| |
Collapse
|
15
|
Kamali G, Smith RJ, Hays M, Coogan C, Crone NE, Kang JY, Sarma SV. Transfer Function Models for the Localization of Seizure Onset Zone From Cortico-Cortical Evoked Potentials. Front Neurol 2020; 11:579961. [PMID: 33362689 PMCID: PMC7758451 DOI: 10.3389/fneur.2020.579961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/12/2020] [Indexed: 11/26/2022] Open
Abstract
Surgical resection of the seizure onset zone (SOZ) could potentially lead to seizure-freedom in medically refractory epilepsy patients. However, localizing the SOZ can be a time consuming and tedious process involving visual inspection of intracranial electroencephalographic (iEEG) recordings captured during passive patient monitoring. Cortical stimulation is currently performed on patients undergoing invasive EEG monitoring for the main purpose of mapping functional brain networks such as language and motor networks. We hypothesized that evoked responses from single pulse electrical stimulation (SPES) can also be used to localize the SOZ as they may express the natural frequencies and connectivity of the iEEG network. To test our hypothesis, we constructed patient specific transfer function models from the evoked responses recorded from 22 epilepsy patients that underwent SPES evaluation and iEEG monitoring. We then computed the frequency and connectivity dependent “peak gain” of the system as measured by the H∞ norm from systems theory. We found that in cases for which clinicians had high confidence in localizing the SOZ, the highest peak gain transfer functions with the smallest “floor gain” (gain at which the dipped H∞ 3dB below DC gain) corresponded to when the clinically annotated SOZ and early spread regions were stimulated. In more complex cases, there was a large spread of the peak-to-floor (PF) ratios when the clinically annotated SOZ was stimulated. Interestingly for patients who had successful surgeries, our ratio of gains, agreed with clinical localization, no matter the complexity of the case. For patients with failed surgeries, the PF ratio did not match clinical annotations. Our findings suggest that transfer function gains and their corresponding frequency responses computed from SPES evoked responses may improve SOZ localization and thus surgical outcomes.
Collapse
Affiliation(s)
- Golnoosh Kamali
- Neuromedical Control Systems Laboratory, Department of Electrical and Computer Engineering, Institute of Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Rachel June Smith
- Neuromedical Control Systems Laboratory, Department of Biomedical Engineering, Institute of Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Mark Hays
- Cognitive Research, Online Neuroengineering and Electrophysiology Laboratory, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Christopher Coogan
- Cognitive Research, Online Neuroengineering and Electrophysiology Laboratory, Department of Neurology-Epilepsy, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Nathan E Crone
- Cognitive Research, Online Neuroengineering and Electrophysiology Laboratory, Department of Neurology-Epilepsy, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Joon Y Kang
- Department of Neurology-Epilepsy, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Sridevi V Sarma
- Neuromedical Control Systems Laboratory, Department of Electrical and Computer Engineering, Institute of Computational Medicine, Johns Hopkins University, Baltimore, MD, United States.,Neuromedical Control Systems Laboratory, Department of Biomedical Engineering, Institute of Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
16
|
Guo ZH, Zhao BT, Toprani S, Hu WH, Zhang C, Wang X, Sang L, Ma YS, Shao XQ, Razavi B, Parvizi J, Fisher R, Zhang JG, Zhang K. Epileptogenic network of focal epilepsies mapped with cortico-cortical evoked potentials. Clin Neurophysiol 2020; 131:2657-2666. [PMID: 32957038 DOI: 10.1016/j.clinph.2020.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/23/2020] [Accepted: 08/05/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The goal of this study was to investigate the spatial extent and functional organization of the epileptogenic network through cortico-cortical evoked potentials (CCEPs) in patients being evaluated with intracranial stereoelectroencephalography. METHODS We retrospectively included 25 patients. We divided the recorded sites into three regions: epileptogenic zone (EZ); propagation zone (PZ); and noninvolved zone (NIZ). The root mean square of the amplitudes was calculated to reconstruct effective connectivity network. We also analyzed the N1/N2 amplitudes to explore the responsiveness influenced by epileptogenicity. Prognostic analysis was performed by comparing intra-region and inter-region connectivity between seizure-free and non-seizure-free groups. RESULTS Our results confirmed that stimulation of the EZ caused the strongest responses on other sites within and outside the EZ. Moreover, we found a hierarchical connectivity pattern showing the highest connectivity strength within EZ, and decreasing connectivity gradient from EZ, PZ to NIZ. Prognostic analysis indicated a stronger intra-EZ connection in the seizure-free group. CONCLUSION The EZ showed highest excitability and dominantly influenced other regions. Quantitative CCEPs can be useful in mapping epileptic networks and predicting surgical outcome. SIGNIFICANCE The generated computational connectivity model may enhance our understanding of epileptogenic networks and provide useful information for surgical planning and prognosis prediction.
Collapse
Affiliation(s)
- Zhi-Hao Guo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bao-Tian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sheela Toprani
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wen-Han Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Sang
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Yan-Shan Ma
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Xiao-Qiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Babak Razavi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Josef Parvizi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Robert Fisher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| |
Collapse
|
17
|
Abstract
Candidates for epilepsy surgery must undergo presurgical evaluation to establish whether and how surgical treatment can stop seizures without causing neurological deficits. Various techniques, including MRI, PET, single-photon emission CT, video-EEG, magnetoencephalography and invasive EEG, aim to identify the diseased brain tissue and the involved network. Recent technical and methodological developments, encompassing both advances in existing techniques and new combinations of technologies, are enhancing the ability to define the optimal resection strategy. Multimodal interpretation and predictive computer models are expected to aid surgical planning and patient counselling, and multimodal intraoperative guidance is likely to increase surgical precision. In this Review, we discuss how the knowledge derived from these new approaches is challenging our way of thinking about surgery to stop focal seizures. In particular, we highlight the importance of looking beyond the EEG seizure onset zone and considering focal epilepsy as a brain network disease in which long-range connections need to be taken into account. We also explore how new diagnostic techniques are revealing essential information in the brain that was previously hidden from view.
Collapse
|
18
|
Prime D, Woolfe M, Rowlands D, O'Keefe S, Dionisio S. Comparing connectivity metrics in cortico-cortical evoked potentials using synthetic cortical response patterns. J Neurosci Methods 2020; 334:108559. [PMID: 31927000 DOI: 10.1016/j.jneumeth.2019.108559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/06/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cortico-Cortical Evoked Potentials (CCEPs) are a novel low frequency stimulation method used for brain mapping during intracranial epilepsy investigations. Only a handful of metrics have been applied to CCEP data to infer connectivity, and no comparison as to which is best has been performed. NEW METHOD We implement a novel method which involved superimposing synthetic cortical responses onto stereoelectroencephalographic (SEEG) data, and use this to compare several metric's ability to detect the simulated patterns. In this we compare two commonly employed metrics currently used in CCEP analysis against eight time series similarity metrics (TSSMs), which have been widely used in machine learning and pattern matching applications. RESULTS Root Mean Square (RMS), a metric commonly employed in CCEP analysis, was sensitive to a wide variety of response patterns, but insensitive to simulated epileptiform patterns. Autoregressive (AR) coefficients calculated by Burg's method were also sensitive to a wide range of patterns, but were extremely sensitive to epileptiform patterns. Other metrics which employed elastic warping techniques were less sensitive to the simulated response patterns. COMPARISON WITH EXISTING METHODS Our study is the first to compare CCEP connectivity metrics against one-another. Our results found that RMS, which has been used in many CCEP studies previously, was the most sensitive metric across a wide range of patterns. CONCLUSIONS Our novel method showed that RMS is a robust and sensitive measure, validating much of the findings of the SEEG-CCEP literature to date. Autoregressive coefficients may also be a useful metric to investigate epileptic networks.
Collapse
Affiliation(s)
- David Prime
- Griffith University School of Engineering and Built Environment, Nathan, QLD, Australia; Mater Advanced Epilepsy Unit, Brisbane, QLD, Australia.
| | - Matthew Woolfe
- Griffith University School of Engineering and Built Environment, Nathan, QLD, Australia; Mater Advanced Epilepsy Unit, Brisbane, QLD, Australia
| | - David Rowlands
- Griffith University School of Engineering and Built Environment, Nathan, QLD, Australia
| | - Steven O'Keefe
- Griffith University School of Engineering and Built Environment, Nathan, QLD, Australia
| | | |
Collapse
|
19
|
File B, Nánási T, Tóth E, Bokodi V, Tóth B, Hajnal B, Kardos Z, Entz L, Erőss L, Ulbert I, Fabó D. Reorganization of Large-Scale Functional Networks During Low-Frequency Electrical Stimulation of the Cortical Surface. Int J Neural Syst 2019; 30:1950022. [DOI: 10.1142/s0129065719500229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We investigated the functional network reorganization caused by low-frequency electrical stimulation (LFES) of human brain cortical surface. Intracranial EEG data from subdural grid positions were analyzed in 16 pre-surgery epileptic patients. LFES was performed by injecting current pulses (10[Formula: see text]mA, 0.2[Formula: see text]ms pulse width, 0.5[Formula: see text]Hz, 25 trials) into all adjacent electrode contacts. Dynamic functional connectivity analysis was carried out on two frequency bands (low: 1–4[Formula: see text]Hz; high: 10–40[Formula: see text]Hz) to investigate the early, high frequency and late, low frequency responses elicited by the stimulation. The centralization increased in early compared to late responses, suggesting a more prominent role of direct neural links between primarily activated areas and distant brain regions. Injecting the current into the seizure onset zone (SOZ) evoked a more integrated functional topology during the early (N1) period of the response, whereas during the late (N2) period — regardless of the stimulation site — the connectedness of the SOZ was elevated compared to the non-SOZ tissue. The abnormal behavior of the epileptic sub-network during both part of the responses supports the idea of the pathogenic role of impaired inhibition and excitation mechanisms in epilepsy.
Collapse
Affiliation(s)
- Bálint File
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, H-1083, Hungary
- Computational Neuroscience Group, Wigner Research Centre for Physics, HAS, Budapest, H-1121, Hungary
| | - Tibor Nánási
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, H-1083, Hungary
- Institute of Cognitive Neuroscience and Psychology, RCNS, HAS, Budapest, H-1117, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, H-1085, Hungary
| | - Emília Tóth
- Department of Neurology, University of Alabama at Birmingham, AL 35233, USA
| | - Virág Bokodi
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, H-1083, Hungary
- Department of Functional Neurosurgery, National Institute of Clinical Neurosciences, Budapest, H-1145, Hungary
| | - Brigitta Tóth
- Institute of Cognitive Neuroscience and Psychology, RCNS, HAS, Budapest, H-1117, Hungary
| | - Boglárka Hajnal
- Juhász Pál Epilepsy Centrum, National Institute of Clinical Neuroscience, Budapest, H-1145, Hungary
| | - Zsófia Kardos
- Institute of Cognitive Neuroscience and Psychology, RCNS, HAS, Budapest, H-1117, Hungary
| | - László Entz
- Department of Functional Neurosurgery, National Institute of Clinical Neurosciences, Budapest, H-1145, Hungary
| | - Loránd Erőss
- Department of Functional Neurosurgery, National Institute of Clinical Neurosciences, Budapest, H-1145, Hungary
| | - István Ulbert
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, H-1083, Hungary
- Institute of Cognitive Neuroscience and Psychology, RCNS, HAS, Budapest, H-1117, Hungary
| | - Dániel Fabó
- Juhász Pál Epilepsy Centrum, National Institute of Clinical Neuroscience, Budapest, H-1145, Hungary
| |
Collapse
|
20
|
Hebbink J, Huiskamp G, van Gils SA, Leijten FSS, Meijer HGE. Pathological responses to single-pulse electrical stimuli in epilepsy: The role of feedforward inhibition. Eur J Neurosci 2019; 51:1122-1136. [PMID: 31454445 PMCID: PMC7079068 DOI: 10.1111/ejn.14562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 11/30/2022]
Abstract
Delineation of epileptogenic cortex in focal epilepsy patients may profit from single‐pulse electrical stimulation during intracranial EEG recordings. Single‐pulse electrical stimulation evokes early and delayed responses. Early responses represent connectivity. Delayed responses are a biomarker for epileptogenic cortex, but up till now, the precise mechanism generating delayed responses remains elusive. We used a data‐driven modelling approach to study early and delayed responses. We hypothesized that delayed responses represent indirect responses triggered by early response activity and investigated this for 11 patients. Using two coupled neural masses, we modelled early and delayed responses by combining simulations and bifurcation analysis. An important feature of the model is the inclusion of feedforward inhibitory connections. The waveform of early responses can be explained by feedforward inhibition. Delayed responses can be viewed as second‐order responses in the early response network which appear when input to a neural mass falls below a threshold forcing it temporarily to a spiking state. The combination of the threshold with noisy background input explains the typical stochastic appearance of delayed responses. The intrinsic excitability of a neural mass and the strength of its input influence the probability at which delayed responses to occur. Our work gives a theoretical basis for the use of delayed responses as a biomarker for the epileptogenic zone, confirming earlier clinical observations. The combination of early responses revealing effective connectivity, and delayed responses showing intrinsic excitability, makes single‐pulse electrical stimulation an interesting tool to obtain data for computational models of epilepsy surgery.
Collapse
Affiliation(s)
- Jurgen Hebbink
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands.,Department of Applied Mathematics and Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Geertjan Huiskamp
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Stephan A van Gils
- Department of Applied Mathematics and Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Frans S S Leijten
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hil G E Meijer
- Department of Applied Mathematics and Technical Medical Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
21
|
Hebbink J, van Blooijs D, Huiskamp G, Leijten FSS, van Gils SA, Meijer HGE. A Comparison of Evoked and Non-evoked Functional Networks. Brain Topogr 2018; 32:405-417. [PMID: 30523480 PMCID: PMC6476864 DOI: 10.1007/s10548-018-0692-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
The growing interest in brain networks to study the brain's function in cognition and diseases has produced an increase in methods to extract these networks. Typically, each method yields a different network. Therefore, one may ask what the resulting networks represent. To address this issue we consider electrocorticography (ECoG) data where we compare three methods. We derive networks from on-going ECoG data using two traditional methods: cross-correlation (CC) and Granger causality (GC). Next, connectivity is probed actively using single pulse electrical stimulation (SPES). We compare the overlap in connectivity between these three methods as well as their ability to reveal well-known anatomical connections in the language circuit. We find that strong connections in the CC network form more or less a subset of the SPES network. GC and SPES are related more weakly, although GC connections coincide more frequently with SPES connections compared to non-existing SPES connections. Connectivity between the two major hubs in the language circuit, Broca's and Wernicke's area, is only found in SPES networks. Our results are of interest for the use of patient-specific networks obtained from ECoG. In epilepsy research, such networks form the basis for methods that predict the effect of epilepsy surgery. For this application SPES networks are interesting as they disclose more physiological connections compared to CC and GC networks.
Collapse
Affiliation(s)
- Jurgen Hebbink
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
- Department of Applied Mathematics, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, Drienerlolaan 5, 7500 AE, Enschede, The Netherlands.
| | - Dorien van Blooijs
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Geertjan Huiskamp
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Frans S S Leijten
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Stephan A van Gils
- Department of Applied Mathematics, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, Drienerlolaan 5, 7500 AE, Enschede, The Netherlands
| | - Hil G E Meijer
- Department of Applied Mathematics, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, Drienerlolaan 5, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
22
|
Huiskamp G, van Blooijs D, van der Stoel M. Harvesting responses to single pulse electrical stimulation for presurgical evaluation in epilepsy. Clin Neurophysiol 2018; 129:2444-2445. [DOI: 10.1016/j.clinph.2018.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
|
23
|
Cvetkovska E, Martins WA, Gonzalez-Martinez J, Taylor K, Li J, Grinenko O, Mosher J, Leahy R, Chauvel P, Nair D. Heterotopia or overlaying cortex: What about in-between? EPILEPSY & BEHAVIOR CASE REPORTS 2018; 11:4-9. [PMID: 30456171 PMCID: PMC6232626 DOI: 10.1016/j.ebcr.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 11/28/2022]
Abstract
We describe a patient with unilateral periventricular nodular heterotopia (PNH) and drug-resistant epilepsy, whose SEEG revealed that seizures were arising from the PNH, with the almost simultaneous involvement of heterotopic neurons ("micronodules") scattered within the white matter, and subsequently the overlying cortex. Laser ablation of heterotopic nodules and the adjacent white matter rendered the patient seizure free. This case elucidates that "micronodules" scattered in white matter between heterotopic nodules and overlying cortex might be another contributor in complex epileptogenicity of heterotopia. Detecting patient-specific targets in the epileptic network of heterotopia creates the possibility to disrupt the pathological circuit by minimally invasive procedures.
Collapse
Affiliation(s)
- Emilija Cvetkovska
- Epilepsy Center, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA,University Clinic of Neurology, Medical Faculty, Ss. Cyril and Methodius University, Vodnjanska str. 17, MK-1000, Skopje, Macedonia,Corresponding author at: University Clinic of Neurology, Medical Faculty, Ss. Cyril and Methodius University, Vodnjanska str. 17, MK-1000, Skopje, Macedonia.
| | - William Alves Martins
- Epilepsy Center, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA,Service of Neurology, Hospital São Lucas, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jorge Gonzalez-Martinez
- Epilepsy Center, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA,Department of Neurosurgery, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Ken Taylor
- Epilepsy Center, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jian Li
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA
| | - Olesya Grinenko
- Epilepsy Center, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - John Mosher
- Epilepsy Center, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA,Department of Neurology, University of Texas, Huston, TX, USA
| | - Richard Leahy
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA
| | - Patrick Chauvel
- Epilepsy Center, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Dileep Nair
- Epilepsy Center, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
24
|
Mégevand P, Groppe DM, Bickel S, Mercier MR, Goldfinger MS, Keller CJ, Entz L, Mehta AD. The Hippocampus and Amygdala Are Integrators of Neocortical Influence: A CorticoCortical Evoked Potential Study. Brain Connect 2018; 7:648-660. [PMID: 28978234 DOI: 10.1089/brain.2017.0527] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brain stimulation is increasingly viewed as an effective approach to treat neuropsychiatric disease. The brain's organization in distributed networks suggests that the activity of a remote brain structure could be modulated by stimulating cortical areas that strongly connect to the target. Most connections between cerebral areas are asymmetric, and a better understanding of the relative direction of information flow along connections could improve the targeting of stimulation to influence deep brain structures. The hippocampus and amygdala, two deep-situated structures that are crucial to memory and emotions, respectively, have been implicated in multiple neurological and psychiatric disorders. We explored the directed connectivity between the hippocampus and amygdala and the cerebral cortex in patients implanted with intracranial electrodes using corticocortical evoked potentials (CCEPs) evoked by single-pulse electrical stimulation. The hippocampus and amygdala were connected with most of the cortical mantle, either directly or indirectly, with the inferior temporal cortex being most directly connected. Because CCEPs assess the directionality of connections, we could determine that incoming connections from cortex to hippocampus were more direct than outgoing connections from hippocampus to cortex. We found a similar, although smaller, tendency for connections between the amygdala and cortex. Our results support the roles of the hippocampus and amygdala to be integrators of widespread cortical influence. These results can inform the targeting of noninvasive neurostimulation to influence hippocampus and amygdala function.
Collapse
Affiliation(s)
- Pierre Mégevand
- 1 Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine, and Feinstein Institute for Medical Research , Manhasset, New York
| | - David M Groppe
- 1 Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine, and Feinstein Institute for Medical Research , Manhasset, New York
| | - Stephan Bickel
- 1 Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine, and Feinstein Institute for Medical Research , Manhasset, New York.,2 Department of Neurology, Montefiore Medical Center , Bronx, New York
| | - Manuel R Mercier
- 2 Department of Neurology, Montefiore Medical Center , Bronx, New York.,3 Department of Neuroscience, Albert Einstein College of Medicine , Bronx, New York
| | - Matthew S Goldfinger
- 1 Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine, and Feinstein Institute for Medical Research , Manhasset, New York
| | - Corey J Keller
- 1 Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine, and Feinstein Institute for Medical Research , Manhasset, New York.,3 Department of Neuroscience, Albert Einstein College of Medicine , Bronx, New York
| | - László Entz
- 4 Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences , Hungarian Academy of Sciences, Budapest, Hungary .,5 National Institute of Clinical Neuroscience , Budapest, Hungary .,6 Faculty of Information Technology and Bionics, Péter Pázmány Catholic University , Budapest, Hungary
| | - Ashesh D Mehta
- 1 Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine, and Feinstein Institute for Medical Research , Manhasset, New York
| |
Collapse
|
25
|
van Blooijs D, Leijten FSS, van Rijen PC, Meijer HGE, Huiskamp GJM. Evoked directional network characteristics of epileptogenic tissue derived from single pulse electrical stimulation. Hum Brain Mapp 2018; 39:4611-4622. [PMID: 30030947 PMCID: PMC6220882 DOI: 10.1002/hbm.24309] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/07/2023] Open
Abstract
We investigated effective networks constructed from single pulse electrical stimulation (SPES) in epilepsy patients who underwent intracranial electrocorticography. Using graph analysis, we compared network characteristics of tissue within and outside the epileptogenic area. In 21 patients with subdural electrode grids (1 cm interelectrode distance), we constructed a binary, directional network derived from SPES early responses (<100 ms). We calculated in‐degree, out‐degree, betweenness centrality, the percentage of bidirectional, receiving and activating connections, and the percentage of connections toward the (non‐)epileptogenic tissue for each node in the network. We analyzed whether these network measures were significantly different in seizure onset zone (SOZ)‐electrodes compared to non‐SOZ electrodes, in resected area (RA)‐electrodes compared to non‐RA electrodes, and in seizure free compared to not seizure‐free patients. Electrodes in the SOZ/RA showed significantly higher values for in‐degree and out‐degree, both at group level, and at patient level, and more so in seizure‐free patients. These differences were not observed for betweenness centrality. There were also more bidirectional and fewer receiving connections in the SOZ/RA in seizure‐free patients. It appears that the SOZ/RA is densely connected with itself, with only little input arriving from non‐SOZ/non‐RA electrodes. These results suggest that meso‐scale effective network measures are different in epileptogenic compared to normal brain tissue. Local connections within the SOZ/RA are increased and the SOZ/RA is relatively isolated from the surrounding cortex. This offers the prospect of enhanced prediction of epilepsy‐prone brain areas using SPES.
Collapse
Affiliation(s)
- Dorien van Blooijs
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frans S S Leijten
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter C van Rijen
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hil G E Meijer
- Department of Applied Mathematics, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Geertjan J M Huiskamp
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
26
|
Trebaul L, Deman P, Tuyisenge V, Jedynak M, Hugues E, Rudrauf D, Bhattacharjee M, Tadel F, Chanteloup-Foret B, Saubat C, Reyes Mejia GC, Adam C, Nica A, Pail M, Dubeau F, Rheims S, Trébuchon A, Wang H, Liu S, Blauwblomme T, Garcés M, De Palma L, Valentin A, Metsähonkala EL, Petrescu AM, Landré E, Szurhaj W, Hirsch E, Valton L, Rocamora R, Schulze-Bonhage A, Mindruta I, Francione S, Maillard L, Taussig D, Kahane P, David O. Probabilistic functional tractography of the human cortex revisited. Neuroimage 2018; 181:414-429. [PMID: 30025851 PMCID: PMC6150949 DOI: 10.1016/j.neuroimage.2018.07.039] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/21/2018] [Accepted: 07/15/2018] [Indexed: 12/13/2022] Open
Abstract
In patients with pharmaco-resistant focal epilepsies investigated with intracranial electroencephalography (iEEG), direct electrical stimulations of a cortical region induce cortico-cortical evoked potentials (CCEP) in distant cerebral cortex, which properties can be used to infer large scale brain connectivity. In 2013, we proposed a new probabilistic functional tractography methodology to study human brain connectivity. We have now been revisiting this method in the F-TRACT project (f-tract.eu) by developing a large multicenter CCEP database of several thousand stimulation runs performed in several hundred patients, and associated processing tools to create a probabilistic atlas of human cortico-cortical connections. Here, we wish to present a snapshot of the methods and data of F-TRACT using a pool of 213 epilepsy patients, all studied by stereo-encephalography with intracerebral depth electrodes. The CCEPs were processed using an automated pipeline with the following consecutive steps: detection of each stimulation run from stimulation artifacts in raw intracranial EEG (iEEG) files, bad channels detection with a machine learning approach, model-based stimulation artifact correction, robust averaging over stimulation pulses. Effective connectivity between the stimulated and recording areas is then inferred from the properties of the first CCEP component, i.e. onset and peak latency, amplitude, duration and integral of the significant part. Finally, group statistics of CCEP features are implemented for each brain parcel explored by iEEG electrodes. The localization (coordinates, white/gray matter relative positioning) of electrode contacts were obtained from imaging data (anatomical MRI or CT scans before and after electrodes implantation). The iEEG contacts were repositioned in different brain parcellations from the segmentation of patients' anatomical MRI or from templates in the MNI coordinate system. The F-TRACT database using the first pool of 213 patients provided connectivity probability values for 95% of possible intrahemispheric and 56% of interhemispheric connections and CCEP features for 78% of intrahemisheric and 14% of interhemispheric connections. In this report, we show some examples of anatomo-functional connectivity matrices, and associated directional maps. We also indicate how CCEP features, especially latencies, are related to spatial distances, and allow estimating the velocity distribution of neuronal signals at a large scale. Finally, we describe the impact on the estimated connectivity of the stimulation charge and of the contact localization according to the white or gray matter. The most relevant maps for the scientific community are available for download on f-tract. eu (David et al., 2017) and will be regularly updated during the following months with the addition of more data in the F-TRACT database. This will provide an unprecedented knowledge on the dynamical properties of large fiber tracts in human.
Collapse
Affiliation(s)
- Lena Trebaul
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Pierre Deman
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Viateur Tuyisenge
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Maciej Jedynak
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Etienne Hugues
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - David Rudrauf
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Manik Bhattacharjee
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - François Tadel
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Blandine Chanteloup-Foret
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Carole Saubat
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Gina Catalina Reyes Mejia
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Claude Adam
- Epilepsy Unit, Dept of Neurology, Pitié-Salpêtrière Hospital, APHP, Paris, France
| | - Anca Nica
- Neurology Department, CHU, Rennes, France
| | - Martin Pail
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
| | - François Dubeau
- Montreal Neurological Institute and Hospital, Montreal, Canada
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France
| | - Agnès Trébuchon
- Service de Neurophysiologie Clinique, APHM, Hôpitaux de la Timone, Marseille, France
| | - Haixiang Wang
- Yuquan Hospital Epilepsy Center, Tsinghua University, Beijing, China
| | - Sinclair Liu
- Canton Sanjiu Brain Hospital Epilepsy Center, Jinan University, Guangzhou, China
| | - Thomas Blauwblomme
- Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, Université Paris V Descartes, Sorbonne Paris Cité, Paris, France
| | - Mercedes Garcés
- Multidisciplinary Epilepsy Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Luca De Palma
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRRCS, Rome, Italy
| | - Antonio Valentin
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), London, UK
| | | | | | | | - William Szurhaj
- Epilepsy Unit, Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France
| | - Edouard Hirsch
- University Hospital, Department of Neurology, Strasbourg, France
| | - Luc Valton
- University Hospital, Department of Neurology, Toulouse, France
| | - Rodrigo Rocamora
- Epilepsy Monitoring Unit, Department of Neurology, Hospital del Mar-IMIM, Barcelona, Spain
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Ioana Mindruta
- Neurology Department, University Emergency Hospital, Bucharest, Romania
| | | | - Louis Maillard
- Centre Hospitalier Universitaire de Nancy, Nancy, France
| | - Delphine Taussig
- Service de neurochirurgie pédiatrique, Fondation Rothschild, Paris, France
| | - Philippe Kahane
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France; CHU Grenoble Alpes, Neurology Department, Grenoble, France
| | - Olivier David
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France.
| |
Collapse
|
27
|
Alarcón G, Jiménez-Jiménez D, Valentín A, Martín-López D. Characterizing EEG Cortical Dynamics and Connectivity with Responses to Single Pulse Electrical Stimulation (SPES). Int J Neural Syst 2018; 28:1750057. [DOI: 10.1142/s0129065717500575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Objectives: To model cortical connections in order to characterize their oscillatory behavior and role in the generation of spontaneous electroencephalogram (EEG). Methods: We studied averaged responses to single pulse electrical stimulation (SPES) from the non-epileptogenic hemisphere of five patients assessed with intracranial EEG who became seizure free after contralateral temporal lobectomy. Second-order control system equations were modified to characterize the systems generating a given response. SPES responses were modeled as responses to a unit step input. EEG power spectrum was calculated on the 20[Formula: see text]s preceding SPES. Results: 121 channels showed responses to 32 stimulation sites. A single system could model the response in 41.3% and two systems were required in 58.7%. Peaks in the frequency response of the models tended to occur within the frequency range of most activity on the spontaneous EEG. Discrepancies were noted between activity predicted by models and activity recorded in the spontaneous EEG. These discrepancies could be explained by the existence of alpha rhythm or interictal epileptiform discharges. Conclusions: Cortical interactions shown by SPES can be described as control systems which can predict cortical oscillatory behavior. The method is unique as it describes connectivity as well as dynamic interactions.
Collapse
Affiliation(s)
- Gonzalo Alarcón
- Comprehensive Epilepsy Center Neuroscience Institute, Academic Health Systems, Hamad Medical Corporation, Doha, Qatar
- Department of Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience London, UK
- Department of Clinical Neurophysiology, King’s College Hospital NHS FT, London, UK
- Weill Cornell Medical College, Doha, Qatar
| | - Diego Jiménez-Jiménez
- Department of Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience London, UK
- Department of Clinical Neurophysiology, King’s College Hospital NHS FT, London, UK
- Universidad San Francisco de Quito, School of Medicine, Quito, Ecuador
| | - Antonio Valentín
- Department of Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience London, UK
- Department of Clinical Neurophysiology, King’s College Hospital NHS FT, London, UK
- Weill Cornell Medical College, Doha, Qatar
| | - David Martín-López
- Department of Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience London, UK
- Weill Cornell Medical College, Doha, Qatar
- Department of Clinical Neurophysiology, Kingston Hospital NHS FT, London, UK
- Department of Clinical Neurophysiology, St George’s University Hospitals NHS FT, London, UK
| |
Collapse
|
28
|
Zhang N, Zhang B, Rajah GB, Geng X, Singh R, Yang Y, Yan X, Li Z, Zhou W, Ding Y, Sun W. The effectiveness of cortico-cortical evoked potential in detecting seizure onset zones. Neurol Res 2018; 40:480-490. [PMID: 29575990 DOI: 10.1080/01616412.2018.1454092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Nan Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Bingqing Zhang
- Epilepsy Center of YuQuan Hospital, Tsinghua University, Beijing, China
| | - Gary B. Rajah
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Rasanjeet Singh
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yanfeng Yang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiupeng Yan
- Epilepsy Center of YuQuan Hospital, Tsinghua University, Beijing, China
| | - Zhe Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenjing Zhou
- Epilepsy Center of YuQuan Hospital, Tsinghua University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Wei Sun
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Prime D, Rowlands D, O'Keefe S, Dionisio S. Considerations in performing and analyzing the responses of cortico-cortical evoked potentials in stereo-EEG. Epilepsia 2017; 59:16-26. [DOI: 10.1111/epi.13939] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2017] [Indexed: 12/14/2022]
Affiliation(s)
- David Prime
- Griffith University School of Engineering; Brisbane Qld Australia
- Mater Advanced Epilepsy Unit; Mater Hospital; Brisbane Qld Australia
| | - David Rowlands
- Griffith University School of Engineering; Brisbane Qld Australia
| | - Steven O'Keefe
- Griffith University School of Engineering; Brisbane Qld Australia
| | - Sasha Dionisio
- Mater Advanced Epilepsy Unit; Mater Hospital; Brisbane Qld Australia
| |
Collapse
|
30
|
Seizure self-prediction: Myth or missed opportunity? Seizure 2017; 51:180-185. [PMID: 28892758 DOI: 10.1016/j.seizure.2017.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/22/2017] [Accepted: 08/25/2017] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Many patients report being able to predict their own seizures, and yet most seizures appear to strike out of the blue. This inherent contradiction makes the topic of seizure self-prediction controversial as well as difficult to study. Here we review the evidence for whether this ability exists, how many patients are capable of self-prediction and the nature of this capability, and whether this could provide a target for intervention. METHODS Systematic searches of bibliographic databases including MEDLINE, EMBASE and PsycINFO through OVID were performed to identify relevant papers which were then screened by the study authors for inclusion in the study. 18 papers were selected for inclusion as the focus of this review. RESULTS On the basis of two studies, between 17% and 41% of patients demonstrate a significantly greater than chance ability to predict an upcoming seizure in the following 12-h time window. This risk is correlated with self-reported anxiety, stress, sleep deprivation, mood and certain prodromal symptoms. However, there is no evidence for any subjective experience which directly heralds an imminent seizure. Thus, while patients may be aware of seizure risk, and have some ability to predict seizure occurrence over a wide time window, they are unable to subjectively recognise seizure onset in advance. CONCLUSION Utilising subjectively acquired knowledge of seizure risk may provide a widely implementable tool for targeted intervention. The risk fluctuates over a time course appropriate for pharmacotherapy which may improve seizure control and the side-effect profile of anti-epileptic medication.
Collapse
|
31
|
Tousseyn S, Krishnan B, Wang ZI, Wongwiangjunt S, Nayak CS, Mosher JC, Wu G, Van Paesschen W, Leahy RM, Gonzalez-Martinez JA, Bulacio J, Najm IM, Alexopoulos AV, Nair DR. Connectivity in ictal single photon emission computed tomography perfusion: a cortico-cortical evoked potential study. Brain 2017; 140:1872-1884. [PMID: 28582473 DOI: 10.1093/brain/awx123] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/14/2017] [Indexed: 11/13/2022] Open
Abstract
Subtraction ictal and interictal single photon emission computed tomography can demonstrate complex ictal perfusion patterns. Regions with ictal hyperperfusion are suggested to reflect seizure onset and propagation pathways. The significance of ictal hypoperfusion is not well understood. The aim of this study was to verify whether ictal perfusion changes, both hyper- and hypoperfusion, correspond to electrically connected brain networks. A total of 36 subtraction ictal and interictal perfusion studies were analysed in 31 consecutive medically refractory focal epilepsy patients, evaluated by stereo-electroencephalography that demonstrated a single focal onset. Cortico-cortical evoked potential studies were performed after repetitive electrical stimulation of the ictal onset zone. Evoked responses at electrode contacts outside the stimulation site were used as a measure of connectivity. The evoked responses at these electrodes were compared to ictal perfusion values noted at these locations. In 67% of studies, evoked responses were significantly larger in hyperperfused compared to baseline-perfused areas. The majority of hyperperfused contacts also had significantly increased evoked responses relative to pre-stimulus electroencephalogram. In contrast, baseline-perfused and hypoperfused contacts mainly demonstrated non-significant evoked responses. Finally, positive significant correlations (P < 0.05) were found between perfusion scores and evoked responses in 61% of studies. When the stimulated ictal onset area was hyperperfused, 82% of studies demonstrated positive significant correlations. Following stimulation of hyperperfused areas outside seizure onset, positive significant correlations between perfusion changes and evoked responses could be seen, suggesting bidirectional connectivity. We conclude that strong connectivity was demonstrated between the ictal onset zone and hyperperfused regions, while connectivity was weaker in the direction of baseline-perfused or hypoperfused areas. In trying to understand a patient's epilepsy, one should consider the contribution of all hyperperfused regions, as these are likely not random, but represent an electrically connected epileptic network.
Collapse
Affiliation(s)
- Simon Tousseyn
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH, USA.,Academic Center for Epileptology, Kempenhaeghe and Maastricht UMC+, Heeze, The Netherlands
| | - Balu Krishnan
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Zhong I Wang
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | - Chetan S Nayak
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - John C Mosher
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Guiyun Wu
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | | | | | - Juan Bulacio
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Imad M Najm
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | - Dileep R Nair
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
32
|
Discrimination of a medial functional module within the temporal lobe using an effective connectivity model: A CCEP study. Neuroimage 2017; 161:219-231. [PMID: 28774647 DOI: 10.1016/j.neuroimage.2017.07.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 06/14/2017] [Accepted: 07/28/2017] [Indexed: 11/21/2022] Open
Abstract
The temporal lobe is classically divided in two functional systems: the ventral visual pathway and the medial temporal memory system. However, their functional separation has been challenged by studies suggesting that the medial temporal lobe could be best understood as an extension of the hierarchically organized ventral visual pathway. Our purpose was to investigate (i) whether cerebral regions within the temporal lobe could be grouped into distinct functional assemblies, and (ii) which regions were central within these functional assemblies. We studied low intensity and low frequency electrical stimulations (0.5 mA, 1 Hz, 4 ms) performed during sixteen pre-surgical intracerebral EEG investigations in patients with medically intractable temporal or temporo-occipital lobe epilepsies. Eleven regions of interest were delineated per anatomical landmarks such as gyri and sulci. Effective connectivity based on electrophysiological feature (amplitude) of cortico-cortical evoked potentials (CCEPs) was evaluated and subjected to graph metrics. The amplitudes discriminated one medial module where the hippocampus could act as a signal amplifier. Mean amplitudes of CCEPs in regions of the temporal lobe showed a generalized Pareto distribution of probability suggesting neural synchronies to be self-organized critically. Our description of effective interactions within the temporal lobe provides a regional electrophysiological model of effective connectivity which is discussed in the context of the current hypothesis of pattern completion.
Collapse
|
33
|
Sarma AA, Crocker B, Cash SS, Truccolo W. A modular, closed-loop platform for intracranial stimulation in people with neurological disorders. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:3139-3142. [PMID: 28268973 DOI: 10.1109/embc.2016.7591394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuromodulation systems based on electrical stimulation can be used to investigate, probe, and potentially treat a range of neurological disorders. The effects of ongoing neural state and dynamics on stimulation response, and of stimulation parameters on neural state, have broad implications for the development of closed-loop neuro-modulation approaches. We describe the development of a modular, low-latency platform for pre-clinical, closed-loop neuromodulation studies with human participants. We illustrate the uses of the platform in a stimulation case study with a person with epilepsy undergoing neuro-monitoring prior to resective surgery. We demonstrate the efficacy of the system by tracking interictal epileptiform discharges in the local field potential to trigger intracranial electrical stimulation, and show that the response to stimulation depends on the neural state.
Collapse
|
34
|
Kobayashi K, Matsumoto R, Matsuhashi M, Usami K, Shimotake A, Kunieda T, Kikuchi T, Yoshida K, Mikuni N, Miyamoto S, Fukuyama H, Takahashi R, Ikeda A. High frequency activity overriding cortico-cortical evoked potentials reflects altered excitability in the human epileptic focus. Clin Neurophysiol 2017; 128:1673-1681. [PMID: 28750290 DOI: 10.1016/j.clinph.2017.06.249] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 05/10/2017] [Accepted: 06/22/2017] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We aimed to clarify that high frequency activity (HFA) of cortico-cortical evoked potentials (CCEPs), elicited by single pulse electrical stimulation (SPES), reflects cortical excitability. METHODS We recruited 16 patients with refractory partial epilepsy who had chronic subdural electrode implantation for presurgical evaluation. A repetitive SPES was given to (1) the seizure onset zone (SOZ) and (2) the control cortices (non-seizure onset zone: nSOZ). CCEPs were recorded from the neighboring cortices within SOZ and nSOZ. We applied short-time Fourier transform to obtain the induced responses for the timing of early (<50ms after SPES) and late CCEP components and analyzed the logarithmic power change for ripple (<200Hz) and fast ripple (>200Hz) bands. RESULTS Twenty-one clear CCEPs were recorded for both the SOZ and nSOZ. The HFA power of early CCEPs in SOZ significantly increased compared to that in nSOZ in both frequency bands, particularly in mesial temporal lobe epilepsy (MTLE). CONCLUSION Similar to the features of spontaneous pathological HFOs, the power of stimulus-induced HFAs in SOZ were greater than that outside SOZ, particularly in MTLE. SIGNIFICANCE HFA overriding CCEPs can be a surrogate marker of cortical excitability in epileptic focus.
Collapse
Affiliation(s)
- Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Masao Matsuhashi
- Human Brain Research Center, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Kiyohide Usami
- Department of Neurology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Akihiro Shimotake
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Shizukawa Toon City, Ehime 791-0295, Japan; Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Nobuhiro Mikuni
- Department of Neurosurgery, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo 060-8543, Japan.
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Hidenao Fukuyama
- Human Brain Research Center, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
35
|
Bhattacharyya PK, Mullin J, Lee BS, Gonzalez-Martinez JA, Jones SE. Safety of externally stimulated intracranial electrodes during functional MRI at 1.5 T. Magn Reson Imaging 2017; 38:182-188. [DOI: 10.1016/j.mri.2017.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 11/16/2022]
|
36
|
Shimada S, Kunii N, Kawai K, Matsuo T, Ishishita Y, Ibayashi K, Saito N. Impact of volume-conducted potential in interpretation of cortico-cortical evoked potential: Detailed analysis of high-resolution electrocorticography using two mathematical approaches. Clin Neurophysiol 2017; 128:549-557. [PMID: 28226289 DOI: 10.1016/j.clinph.2017.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/22/2016] [Accepted: 01/15/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Cortico-cortical evoked potential (CCEP) has been utilized to evaluate connectivity between cortices. However, previous reports have rarely referred to the impact of volume-conducted potential (VCP) which must be a confounding factor of large potential around the stimulation site. To address this issue, we challenged the null hypothesis that VCP accounts for the majority of the recorded potential, particularly around the stimulation site. METHODS CCEP was recorded with high-density intracranial electrodes in 8 patients with intractable epilepsy. First, we performed regression analysis for describing the relationship between the distance and potential of each electrode. Second, we performed principal component analysis (PCA) to reveal the temporal features of recorded waveforms. RESULTS The regression curve, declining by the inverse square of the distance, fitted tightly to the plots (R2: 0.878-0.991) with outliers. PCA suggested the responses around the stimulation site had the same temporal features. We also observed the continuous declination over the anatomical gap and the phase reversal phenomena around the stimulation site. CONCLUSIONS These results were consistent with the null hypothesis. SIGNIFICANCE This study highlighted the risk of misinterpreting CCEP mapping, and proposed mathematical removal of VCP, which could lead to more reliable mapping based on CCEP.
Collapse
Affiliation(s)
- Seijiro Shimada
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Naoto Kunii
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Takeshi Matsuo
- Department of Neurosurgery, NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8625, Japan
| | - Yohei Ishishita
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kenji Ibayashi
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
37
|
Matsumoto R, Kunieda T, Nair D. Single pulse electrical stimulation to probe functional and pathological connectivity in epilepsy. Seizure 2016; 44:27-36. [PMID: 27939100 DOI: 10.1016/j.seizure.2016.11.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
In the last decade, single pulse electrical stimulation (SPES) has been used as an investigational tool in the field of epilepsy surgery. Direct cortical stimulation applied at a frequency of ∼1Hz can probe cortico-cortical connections by averaging electrocorticogram time-lock to the stimuli (2×20-30 trials). These evoked potentials that emanate from adjacent and remote cortices have been termed cortico-cortical evoked potentials (CCEPs). Although limited to patients undergoing invasive presurgical evaluations with intracranial electrodes, CCEP provides a novel way to explore inter-areal connectivity in vivo in the living human brain to probe functional brain networks such as language and cognitive motor networks. In addition to its impact on systems neuroscience, this method, in combination with 50Hz electrical cortical stimulation, could contribute clinically to map the functional brain systems by tracking the cortico-cortical connections among the functional cortical regions in each individual patient. This approach may help identify the normal cortico-cortical network within pathology as well as reveal connections that might arise from neural plasticity. Because of its high practicality, it has been recently applied for intraoperative monitoring of the functional brain networks for patients with brain tumor. With regard to epilepsy, SPES has been used for the two major purposes, one to probe cortical excitability of the focus, namely, epileptogenicity, and the other to probe seizure networks. Both early (i.e., CCEP) and delayed responses, and probably their high frequency oscillation counterparts, are regarded as a surrogate marker of epileptogenicity. With regards to its impact on the human brain connectivity map, worldwide collaboration is warranted to establish the standardized CCEP connectivity map as a solid reference for non-invasive connectome researches.
Collapse
Affiliation(s)
- Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Dileep Nair
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, USA
| |
Collapse
|
38
|
Lie OV, van Mierlo P. Seizure-Onset Mapping Based on Time-Variant Multivariate Functional Connectivity Analysis of High-Dimensional Intracranial EEG: A Kalman Filter Approach. Brain Topogr 2016; 30:46-59. [PMID: 27722839 DOI: 10.1007/s10548-016-0527-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/29/2016] [Indexed: 11/29/2022]
Abstract
The visual interpretation of intracranial EEG (iEEG) is the standard method used in complex epilepsy surgery cases to map the regions of seizure onset targeted for resection. Still, visual iEEG analysis is labor-intensive and biased due to interpreter dependency. Multivariate parametric functional connectivity measures using adaptive autoregressive (AR) modeling of the iEEG signals based on the Kalman filter algorithm have been used successfully to localize the electrographic seizure onsets. Due to their high computational cost, these methods have been applied to a limited number of iEEG time-series (<60). The aim of this study was to test two Kalman filter implementations, a well-known multivariate adaptive AR model (Arnold et al. 1998) and a simplified, computationally efficient derivation of it, for their potential application to connectivity analysis of high-dimensional (up to 192 channels) iEEG data. When used on simulated seizures together with a multivariate connectivity estimator, the partial directed coherence, the two AR models were compared for their ability to reconstitute the designed seizure signal connections from noisy data. Next, focal seizures from iEEG recordings (73-113 channels) in three patients rendered seizure-free after surgery were mapped with the outdegree, a graph-theory index of outward directed connectivity. Simulation results indicated high levels of mapping accuracy for the two models in the presence of low-to-moderate noise cross-correlation. Accordingly, both AR models correctly mapped the real seizure onset to the resection volume. This study supports the possibility of conducting fully data-driven multivariate connectivity estimations on high-dimensional iEEG datasets using the Kalman filter approach.
Collapse
Affiliation(s)
- Octavian V Lie
- Department of Neurology, University of Texas Health Science Center at San Antonio, 8300 Floyd Curl Drive MSC: 7883, San Antonio, TX, 78229-3900, USA.
| | - Pieter van Mierlo
- Functional Brain Mapping Laboratory, EEG and Epilepsy Unit, University of Geneva, Geneva, Switzerland.,iMinds Medical IT Department, Medical Image and Signal Processing Group, Ghent University, Ghent, Belgium
| |
Collapse
|
39
|
Enatsu R, Mikuni N. Invasive Evaluations for Epilepsy Surgery: A Review of the Literature. Neurol Med Chir (Tokyo) 2016; 56:221-7. [PMID: 26948700 PMCID: PMC4870176 DOI: 10.2176/nmc.ra.2015-0319] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Invasive evaluations play important roles in identifying epileptogenic zones and functional areas in patients with intractable focal epilepsy. This article reviews the usefulness, methods, and limitations of invasive evaluations for epilepsy surgery. Invasive evaluations include various types of intracranial electrodes such as stereotactically implanted intracranial depth electrodes (stereo-EEG), chronic subdural electrodes, and intraoperative electrocorticography. Scalp EEG is distorted by the skull, meninges, and skin. On the other hand, intracranial electrodes provide spatial information with higher resolution than scalp electrodes, thereby enabling further delineation of epileptogenic zones and mapping of functional areas with electrical stimulation. In addition, intracranial electrodes record a wide frequency range of electrical activity, which is not possible with scalp electrodes. The very slow potentials in ictal recordings, known as ictal direct current (DC) shifts and ictal/interictal high frequency oscillations, such as ripples (100–200 Hz) and fast ripples (200–500 Hz), have been correlated with the ictal onset zone and are a sensitive and specific marker for epileptogenicity. Furthermore, several studies reported that the electrical stimulation of epileptogenic zones elicited enhanced cortical evoked potentials, abnormal delayed or repetitive responses, and fast ripples. These responses may assist in the delineation of the epileptogenic cortex as a potential new marker. There are definite risks of complications associated with the use of intracranial electrodes. However, when an invasive evaluation is selected based on careful consideration of the risks and benefits, it provides useful information for establishing a strategy for epilepsy surgery.
Collapse
Affiliation(s)
- Rei Enatsu
- Department of Neurosurgery, Sapporo Medical University
| | | |
Collapse
|
40
|
A comparative study of the effects of pulse parameters for intracranial direct electrical stimulation in epilepsy. Clin Neurophysiol 2016; 127:91-101. [DOI: 10.1016/j.clinph.2015.02.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 12/31/2014] [Accepted: 02/13/2015] [Indexed: 11/18/2022]
|
41
|
Lega B, Dionisio S, Flanigan P, Bingaman W, Najm I, Nair D, Gonzalez-Martinez J. Cortico-cortical evoked potentials for sites of early versus late seizure spread in stereoelectroencephalography. Epilepsy Res 2015. [DOI: 10.1016/j.eplepsyres.2015.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Mouthaan B, van ‘t Klooster M, Keizer D, Hebbink G, Leijten F, Ferrier C, van Putten M, Zijlmans M, Huiskamp G. Single Pulse Electrical Stimulation to identify epileptogenic cortex: Clinical information obtained from early evoked responses. Clin Neurophysiol 2015; 127:1088-1098. [PMID: 26377063 DOI: 10.1016/j.clinph.2015.07.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 07/19/2015] [Accepted: 07/27/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Single Pulse Electrical Stimulation (SPES) probes epileptogenic cortex during electrocorticography. Two SPES responses are described: pathological delayed responses (DR, >100 ms) associated with the seizure onset zone (SOZ) and physiological early responses (ER, <100 ms) that map cortical connectivity. We analyzed properties of ERs, including frequencies >80 Hz, in the SOZ and seizure propagation areas. METHODS We used data from 12 refractory epilepsy patients. SPES consisted of 10 pulses of 1 ms, 4-8 mA and 5s interval on adjacent electrodes pairs. Data were available at 2048 samples/s for six and 512 samples/s (22 bits) for eight patients and analyzed in the time-frequency (TF) and time-domain (TD). RESULTS Electrodes with ERs were stronger associated with SOZ than non-SOZ electrodes. ERs with frequency content >80 Hz exist and are specific for SOZ channels. ERs evoked by stimulation of seizure onset electrodes were associated with electrodes involved in seizure propagation. CONCLUSION Analysis of ERs can reveal aspects of pathology, manifested by association with seizure propagation and areas with high ER numbers that coincide with the SOZ. SIGNIFICANCE Not only DRs, but also ERs could have clinical value for mapping epileptogenic cortex and help to unravel aspects of the epileptic network.
Collapse
|
43
|
Kunieda T, Yamao Y, Kikuchi T, Matsumoto R. New Approach for Exploring Cerebral Functional Connectivity: Review of Cortico-cortical Evoked Potential. Neurol Med Chir (Tokyo) 2015; 55:374-82. [PMID: 25925755 PMCID: PMC4628165 DOI: 10.2176/nmc.ra.2014-0388] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There has been a paradigm shift in the understanding of brain function. The intrinsic architecture of neuronal connections forms a key component of the cortical organization in our brain. Many imaging studies, such as noninvasive magnetic resonance imaging (MRI) studies, have now enabled visualization of the white matter fiber tracts interconnecting the functional cortical areas in the living brain. Although such a structural connectome is essential for understanding of cortical function, the anatomical information alone is not sufficient. Practically, few techniques allow the investigation of the excitatory and inhibitory mechanisms of the cortex in vivo in humans. Several attempts have been made to track neuronal connectivity by applying direct electrical stimuli to the brain in order to stimulate subdural and/or depth electrodes and record responses from the functionally connected cortex. In vivo single-pulse electrical stimulation (SPES) and/or cortico-cortical evoked potential (CCEP) were recently introduced to track various brain networks. This article reviews the concepts, significance, methods, mechanisms, limitations, and clinical applications of CCEP in the analysis of these dynamic connections.
Collapse
Affiliation(s)
- Takeharu Kunieda
- Department of Neurosurgery, Kyoto University Graduate School of Medicine
| | | | | | | |
Collapse
|
44
|
Jiménez-Jiménez D, Abete-Rivas M, Martín-López D, Lacruz ME, Selway RP, Valentín A, Alarcón G. Incidence of functional bi-temporal connections in the human brain in vivo and their relevance to epilepsy surgery. Cortex 2015; 65:208-18. [PMID: 25748887 DOI: 10.1016/j.cortex.2015.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/13/2014] [Accepted: 01/19/2015] [Indexed: 11/25/2022]
Abstract
The incidence of functional connections between human temporal lobes and their latencies were investigated using intracranial EEG responses to electrical stimulation with 1 msec single pulses in 91 patients assessed for surgery for treatment of epilepsy. The areas studied were amygdala, hippocampus, parahippocampal gyrus, fusiform gyrus, inferior and mid temporal gyrus. Furthermore, we assessed whether the presence of such connections are related to seizure onset extent and postsurgical seizure control. Responses were seen in any region of the contralateral temporal lobe when stimulating temporal regions in 30 patients out of the 91 (32.96%). Bi-hippocampal or bi-amygdalar projections were seen in only 5% of temporal lobes (N = 60) and between both fusiform gyri in 7.1% (N = 126). All other bilateral connections occurred in less than 5% of hemispheres. Depending on the structures, latencies ranged between 20 and 90 msec, with an average value of 60.2 msec. There were no statistical difference in the proportion of patients showing Engel Class I between patients with and without contralateral temporal connections. No difference was found in the proportion of patients showing bilateral or unilateral seizure onset among patients with and without contralateral temporal projections. The present findings corroborate that the functionality of bilateral temporal connections in humans is limited and does not affect the surgical outcome.
Collapse
|
45
|
Physiology of functional and effective networks in epilepsy. Clin Neurophysiol 2015; 126:227-36. [DOI: 10.1016/j.clinph.2014.09.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/01/2014] [Accepted: 09/07/2014] [Indexed: 12/22/2022]
|
46
|
Pittau F, Mégevand P, Sheybani L, Abela E, Grouiller F, Spinelli L, Michel CM, Seeck M, Vulliemoz S. Mapping epileptic activity: sources or networks for the clinicians? Front Neurol 2014; 5:218. [PMID: 25414692 PMCID: PMC4220689 DOI: 10.3389/fneur.2014.00218] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/08/2014] [Indexed: 01/03/2023] Open
Abstract
Epileptic seizures of focal origin are classically considered to arise from a focal epileptogenic zone and then spread to other brain regions. This is a key concept for semiological electro-clinical correlations, localization of relevant structural lesions, and selection of patients for epilepsy surgery. Recent development in neuro-imaging and electro-physiology and combinations, thereof, have been validated as contributory tools for focus localization. In parallel, these techniques have revealed that widespread networks of brain regions, rather than a single epileptogenic region, are implicated in focal epileptic activity. Sophisticated multimodal imaging and analysis strategies of brain connectivity patterns have been developed to characterize the spatio-temporal relationships within these networks by combining the strength of both techniques to optimize spatial and temporal resolution with whole-brain coverage and directional connectivity. In this paper, we review the potential clinical contribution of these functional mapping techniques as well as invasive electrophysiology in human beings and animal models for characterizing network connectivity.
Collapse
Affiliation(s)
- Francesca Pittau
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Pierre Mégevand
- Laboratory for Multimodal Human Brain Mapping, Hofstra North Shore LIJ School of Medicine , Manhasset, NY , USA
| | - Laurent Sheybani
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Eugenio Abela
- Support Center of Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital , Bern , Switzerland
| | - Frédéric Grouiller
- Radiology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Laurent Spinelli
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| |
Collapse
|
47
|
Boido D, Kapetis D, Gnatkovsky V, Pastori C, Galbardi B, Sartori I, Tassi L, Cardinale F, Francione S, de Curtis M. Stimulus-evoked potentials contribute to map the epileptogenic zone during stereo-EEG presurgical monitoring. Hum Brain Mapp 2014; 35:4267-81. [PMID: 24706574 PMCID: PMC6869715 DOI: 10.1002/hbm.22516] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 02/03/2014] [Accepted: 03/18/2014] [Indexed: 11/07/2022] Open
Abstract
Presurgical monitoring with intracerebral electrodes in patients with drug-resistant focal epilepsy represents a standard invasive procedure to localize the sites of seizures origin, defined as the epileptogenic zone (EZ). During presurgical evaluation, intracerebral single-pulse electrical stimulation (SPES) is performed to define the boundaries of eloquent areas and to evoke seizure-associated symptoms. Extensive intracranial exploration and stimulation generate a large dataset on brain connectivity that can be used to improve EZ detection and to understand the organization of the human epileptic brain. We developed a protocol to analyse field responses evoked by intracranial stimulation. Intracerebral recordings were performed with 105-162 recording sites positioned in fronto-temporal regions in 12 patients with pharmacoresistant focal epilepsy. Recording sites were used for bipolar SPES at 1 Hz. Reproducible early and late phases (<60 ms and 60-500 ms from stimulus artefact, respectively) were identified on averaged evoked responses. Phase 1 and 2 responses recorded at all and each recording sites were plotted on a 3D brain reconstructions. Based on connectivity properties, electrode contacts were primarily identified as receivers, mainly activators or bidirectional. We used connectivity patterns to construct networks and applied cluster partitioning to study the proprieties between potentials evoked/stimulated in different regions. We demonstrate that bidirectional connectivity during phase 1 is a prevalent feature that characterize contacts included in the EZ. This study shows that the application of an analytical protocol on intracerebral stimulus-evoked recordings provides useful information that may contribute to EZ detection and to the management of surgical-remediable epilepsies.
Collapse
Affiliation(s)
- Davide Boido
- Experimental Neurophysiology and Epileptology UnitFondazione Istituto Neurologico Carlo BestaMilanoItaly
| | - Dimos Kapetis
- Bioinformatics Unit of Scientific DirectionFondazione Istituto Neurologico Carlo BestaMilanoItaly
| | - Vadym Gnatkovsky
- Experimental Neurophysiology and Epileptology UnitFondazione Istituto Neurologico Carlo BestaMilanoItaly
| | - Chiara Pastori
- Experimental Neurophysiology and Epileptology UnitFondazione Istituto Neurologico Carlo BestaMilanoItaly
| | - Barbara Galbardi
- Bioinformatics Unit of Scientific DirectionFondazione Istituto Neurologico Carlo BestaMilanoItaly
| | - Ivana Sartori
- Claudio Munari Epilepsy Surgery CenterOspedale Niguarda Cà GrandaMilanoItaly
| | - Laura Tassi
- Claudio Munari Epilepsy Surgery CenterOspedale Niguarda Cà GrandaMilanoItaly
| | - Francesco Cardinale
- Claudio Munari Epilepsy Surgery CenterOspedale Niguarda Cà GrandaMilanoItaly
| | - Stefano Francione
- Claudio Munari Epilepsy Surgery CenterOspedale Niguarda Cà GrandaMilanoItaly
| | - Marco de Curtis
- Experimental Neurophysiology and Epileptology UnitFondazione Istituto Neurologico Carlo BestaMilanoItaly
| |
Collapse
|
48
|
Nayak D, Valentín A, Selway RP, Alarcón G. Can single pulse electrical stimulation provoke responses similar to spontaneous interictal epileptiform discharges? Clin Neurophysiol 2014; 125:1306-11. [DOI: 10.1016/j.clinph.2013.11.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/21/2013] [Accepted: 11/23/2013] [Indexed: 11/29/2022]
|
49
|
Valentín A, Alarcón G, Barrington SF, García Seoane JJ, Martín-Miguel MC, Selway RP, Koutroumanidis M. Interictal estimation of intracranial seizure onset in temporal lobe epilepsy. Clin Neurophysiol 2014; 125:231-8. [DOI: 10.1016/j.clinph.2013.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/06/2013] [Accepted: 07/11/2013] [Indexed: 01/01/2023]
|
50
|
Yoo JY, Farooque P, Chen WC, Youngblood MW, Zaveri HP, Gerrard JL, Spencer DD, Hirsch LJ, Blumenfeld H. Ictal spread of medial temporal lobe seizures with and without secondary generalization: an intracranial electroencephalography analysis. Epilepsia 2014; 55:289-95. [PMID: 24417694 DOI: 10.1111/epi.12505] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2013] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Secondary generalization of seizures has devastating consequences for patient safety and quality of life. The aim of this intracranial electroencephalography (icEEG) study was to investigate the differences in onset and propagation patterns of temporal lobe seizures that remained focal versus those with secondary generalization, in order to better understand the mechanism of secondary generalization. METHODS A total of 39 seizures were analyzed in nine patients who met the following criteria: (1) icEEG-video monitoring with at least one secondarily generalized tonic-clonic seizure (GTCS), (2) pathologically proven hippocampal sclerosis, and (3) no seizures for at least 1 year after anteromedial temporal lobe resection. Seizures were classified as focal or secondary generalized by behavioral analysis of video. Onset and propagation patterns were compared by analysis of icEEG. RESULTS We obtained data from 22 focal seizures without generalization (FS), and 17 GTCS. Seizure-onset patterns did not differ between FS and GTCS, but there were differences in later propagation. All seizures started with low voltage fast activity, except for seven seizures in one patient (six FS, one GTCS), which started with sharply contoured theta activity. Fifteen of 39 seizures started from the hippocampus, and 24 seizures (including six seizures in a patient without hippocampal contacts) started from other medial temporal lobe areas. We observed involvement or more prominent activation of the posterior-lateral temporal regions in GTCS prior to propagation to the other cortical regions, versus FS, which had no involvement or less prominent activation of the posterior lateral temporal cortex. Occipital contacts were not involved at the time of clinical secondary generalization. SIGNIFICANCE The posterior-lateral temporal cortex may serve as an important "gateway" controlling propagation of medial temporal lobe seizures to other cortical regions. Identifying the mechanisms of secondary generalization of focal seizures could lead to improved treatments to confine seizure spread.
Collapse
Affiliation(s)
- Ji Yeoun Yoo
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, U.S.A
| | | | | | | | | | | | | | | | | |
Collapse
|