1
|
Johnson KJ, Moy B, Rensing N, Robinson A, Ly M, Chengalvala R, Wong M, Galindo R. Functional neuropathology of neonatal hypoxia-ischemia by single-mouse longitudinal electroencephalography. Epilepsia 2022; 63:3037-3050. [PMID: 36054439 PMCID: PMC10176800 DOI: 10.1111/epi.17403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Neonatal cerebral hypoxia-ischemia (HI) results in symptomatic seizures and long-term neurodevelopmental disability. The Rice-Vannucci model of rodent neonatal HI has been used extensively to examine and translate the functional consequences of acute and chronic HI-induced encephalopathy. Yet, longitudinal electrophysiological characterization of this brain injury model has been limited by the size of the neonatal mouse's head and postnatal maternal dependency. We overcome this challenge by employing a novel method of longitudinal single-mouse electroencephalography (EEG) using chronically implanted subcranial electrodes in the term-equivalent mouse pup. We characterize the neurophysiological disturbances occurring during awake and sleep states in the acute and chronic phases following newborn brain injury. METHODS C57BL/6 mice underwent long-term bilateral subcranial EEG and electromyographic electrode placement at postnatal day 9 followed by unilateral carotid cauterization and exposure to 40 minutes of hypoxia the following day. EEG recordings were obtained prior, during, and intermittently after the HI procedure from postnatal day 10 to weaning age. Quantitative EEG and fast Fourier transform analysis were used to evaluate seizures, cortical cerebral dysfunction, and disturbances in vigilance states. RESULTS We observed neonatal HI-provoked electrographic focal and bilateral seizures during or immediately following global hypoxia and most commonly contralateral to the ischemic injury. Spontaneous chronic seizures were not seen. Injured mice developed long-term asymmetric EEG background attenuation in all frequencies and most prominently during non-rapid eye movement (NREM) sleep. HI mice also showed transient impairments in vigilance state duration and transitions during the first 2 days following injury. SIGNIFICANCE The functional burden of mouse neonatal HI recorded by EEG resembles closely that of the injured human newborn. The use of single-mouse longitudinal EEG in this immature model can advance our understanding of the developmental and pathophysiological mechanisms of neonatal cerebral injury and help translate novel therapeutic strategies against this devastating condition.
Collapse
Affiliation(s)
- Kevin J Johnson
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Brianna Moy
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicholas Rensing
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alexia Robinson
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael Ly
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ramya Chengalvala
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael Wong
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rafael Galindo
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Menéndez Méndez A, Smith J, Engel T. Neonatal Seizures and Purinergic Signalling. Int J Mol Sci 2020; 21:ijms21217832. [PMID: 33105750 PMCID: PMC7660091 DOI: 10.3390/ijms21217832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Neonatal seizures are one of the most common comorbidities of neonatal encephalopathy, with seizures aggravating acute injury and clinical outcomes. Current treatment can control early life seizures; however, a high level of pharmacoresistance remains among infants, with increasing evidence suggesting current anti-seizure medication potentiating brain damage. This emphasises the need to develop safer therapeutic strategies with a different mechanism of action. The purinergic system, characterised by the use of adenosine triphosphate and its metabolites as signalling molecules, consists of the membrane-bound P1 and P2 purinoreceptors and proteins to modulate extracellular purine nucleotides and nucleoside levels. Targeting this system is proving successful at treating many disorders and diseases of the central nervous system, including epilepsy. Mounting evidence demonstrates that drugs targeting the purinergic system provide both convulsive and anticonvulsive effects. With components of the purinergic signalling system being widely expressed during brain development, emerging evidence suggests that purinergic signalling contributes to neonatal seizures. In this review, we first provide an overview on neonatal seizure pathology and purinergic signalling during brain development. We then describe in detail recent evidence demonstrating a role for purinergic signalling during neonatal seizures and discuss possible purine-based avenues for seizure suppression in neonates.
Collapse
Affiliation(s)
- Aida Menéndez Méndez
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
| | - Jonathon Smith
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- Correspondence: ; Tel.: +35-314-025-199
| |
Collapse
|
3
|
Semple BD, Dill LK, O'Brien TJ. Immune Challenges and Seizures: How Do Early Life Insults Influence Epileptogenesis? Front Pharmacol 2020; 11:2. [PMID: 32116690 PMCID: PMC7010861 DOI: 10.3389/fphar.2020.00002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022] Open
Abstract
The development of epilepsy, a process known as epileptogenesis, often occurs later in life following a prenatal or early postnatal insult such as cerebral ischemia, stroke, brain trauma, or infection. These insults share common pathophysiological pathways involving innate immune activation including neuroinflammation, which is proposed to play a critical role in epileptogenesis. This review provides a comprehensive overview of the latest preclinical evidence demonstrating that early life immune challenges influence neuronal hyperexcitability and predispose an individual to later life epilepsy. Here, we consider the range of brain insults that may promote the onset of chronic recurrent spontaneous seizures at adulthood, spanning intrauterine insults (e.g. maternal immune activation), perinatal injuries (e.g. hypoxic–ischemic injury, perinatal stroke), and insults sustained during early postnatal life—such as fever-induced febrile seizures, traumatic brain injuries, infections, and environmental stressors. Importantly, all of these insults represent, to some extent, an immune challenge, triggering innate immune activation and implicating both central and systemic inflammation as drivers of epileptogenesis. Increasing evidence suggests that pro-inflammatory cytokines such as interleukin-1 and subsequent signaling pathways are important mediators of seizure onset and recurrence, as well as neuronal network plasticity changes in this context. Our current understanding of how early life immune challenges prime microglia and astrocytes will be explored, as well as how developmental age is a critical determinant of seizure susceptibility. Finally, we will consider the paradoxical phenomenon of preconditioning, whereby these same insults may conversely provide neuroprotection. Together, an improved appreciation of the neuroinflammatory mechanisms underlying the long-term epilepsy risk following early life insults may provide insight into opportunities to develop novel immunological anti-epileptogenic therapeutic strategies.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Larissa K Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Abbasi H, Unsworth CP. Electroencephalogram studies of hypoxic ischemia in fetal and neonatal animal models. Neural Regen Res 2020; 15:828-837. [PMID: 31719243 PMCID: PMC6990791 DOI: 10.4103/1673-5374.268892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alongside clinical achievements, experiments conducted on animal models (including primate or non-primate) have been effective in the understanding of various pathophysiological aspects of perinatal hypoxic/ischemic encephalopathy (HIE). Due to the reasonably fair degree of flexibility with experiments, most of the research around HIE in the literature has been largely concerned with the neurodevelopmental outcome or how the frequency and duration of HI seizures could relate to the severity of perinatal brain injury, following HI insult. This survey concentrates on how EEG experimental studies using asphyxiated animal models (in rodents, piglets, sheep and non-human primate monkeys) provide a unique opportunity to examine from the exact time of HI event to help gain insights into HIE where human studies become difficult.
Collapse
Affiliation(s)
- Hamid Abbasi
- Department of Engineering Science, the University of Auckland, Auckland, New Zealand
| | - Charles P Unsworth
- Department of Engineering Science, the University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Kasahara Y, Ikegaya Y, Koyama R. Neonatal Seizure Models to Study Epileptogenesis. Front Pharmacol 2018; 9:385. [PMID: 29720941 PMCID: PMC5915831 DOI: 10.3389/fphar.2018.00385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
Current therapeutic strategies for epilepsy include anti-epileptic drugs and surgical treatments that are mainly focused on the suppression of existing seizures rather than the occurrence of the first spontaneous seizure. These symptomatic treatments help a certain proportion of patients, but these strategies are not intended to clarify the cellular and molecular mechanisms underlying the primary process of epilepsy development, i.e., epileptogenesis. Epileptogenic changes include reorganization of neural and glial circuits, resulting in the formation of an epileptogenic focus. To achieve the goal of developing “anti-epileptogenic” drugs, we need to clarify the step-by-step mechanisms underlying epileptogenesis for patients whose seizures are not controllable with existing “anti-epileptic” drugs. Epileptogenesis has been studied using animal models of neonatal seizures because such models are useful for studying the latent period before the occurrence of spontaneous seizures and the lowering of the seizure threshold. Further, neonatal seizure models are generally easy to handle and can be applied for in vitro studies because cells in the neonatal brain are suitable for culture. Here, we review two animal models of neonatal seizures for studying epileptogenesis and discuss their features, specifically focusing on hypoxia-ischemia (HI)-induced seizures and febrile seizures (FSs). Studying these models will contribute to identifying the potential therapeutic targets and biomarkers of epileptogenesis.
Collapse
Affiliation(s)
- Yuka Kasahara
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Bin NR, Song H, Wu C, Lau M, Sugita S, Eubanks JH, Zhang L. Continuous Monitoring via Tethered Electroencephalography of Spontaneous Recurrent Seizures in Mice. Front Behav Neurosci 2017; 11:172. [PMID: 28959196 PMCID: PMC5603658 DOI: 10.3389/fnbeh.2017.00172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022] Open
Abstract
We describe here a simple, cost-effective apparatus for continuous tethered electroencephalographic (EEG) monitoring of spontaneous recurrent seizures in mice. We used a small, low torque slip ring as an EEG commutator, mounted the slip ring onto a standard mouse cage and connected rotary wires of the slip ring directly to animal's implanted headset. Modifications were made in the cage to allow for a convenient installation of the slip ring and accommodation of animal ambient activity. We tested the apparatus for hippocampal EEG recordings in adult C57 black mice. Spontaneous recurrent seizures were induced using extended hippocampal kindling (≥95 daily stimulation). Control animals underwent similar hippocampal electrode implantations but no stimulations were given. Combined EEG and webcam monitoring were performed for 24 h daily for 5–9 consecutive days. During the monitoring periods, the animals moved and accessed water and food freely and showed no apparent restriction in ambient cage activities. Ictal-like hippocampal EEG discharges and concurrent convulsive behaviors that are characteristics of spontaneous recurrent seizures were reliably recorded in a majority of the monitoring experiments in extendedly kindled but not in control animals. However, 1–2 rotary wires were disconnected from the implanted headset in some animals after continuous recordings for ≥5 days. The key features and main limitations of our recording apparatus are discussed.
Collapse
Affiliation(s)
- Na-Ryum Bin
- Krembil Research Institute, University Health NetworkToronto, ON, Canada.,Department of Physiology, University of TorontoToronto, ON, Canada
| | - Hongmei Song
- Krembil Research Institute, University Health NetworkToronto, ON, Canada.,Department of Neurosurgery, The First Hospital of Jilin UniversityJilin, China
| | - Chiping Wu
- Krembil Research Institute, University Health NetworkToronto, ON, Canada
| | - Marcus Lau
- Krembil Research Institute, University Health NetworkToronto, ON, Canada
| | - Shuzo Sugita
- Krembil Research Institute, University Health NetworkToronto, ON, Canada.,Department of Physiology, University of TorontoToronto, ON, Canada
| | - James H Eubanks
- Krembil Research Institute, University Health NetworkToronto, ON, Canada.,Department of Physiology, University of TorontoToronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of TorontoToronto, ON, Canada.,The Epilepsy Research Program of Ontario Brain InstituteToronto, ON, Canada
| | - Liang Zhang
- Krembil Research Institute, University Health NetworkToronto, ON, Canada.,The Epilepsy Research Program of Ontario Brain InstituteToronto, ON, Canada.,Division of Neurology, Department of Medicine, University of TorontoToronto, ON, Canada
| |
Collapse
|
7
|
Wang J, Wu C, Peng J, Patel N, Huang Y, Gao X, Aljarallah S, Eubanks JH, McDonald R, Zhang L. Early-Onset Convulsive Seizures Induced by Brain Hypoxia-Ischemia in Aging Mice: Effects of Anticonvulsive Treatments. PLoS One 2015; 10:e0144113. [PMID: 26630670 PMCID: PMC4668036 DOI: 10.1371/journal.pone.0144113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/15/2015] [Indexed: 12/27/2022] Open
Abstract
Aging is associated with an increased risk of seizures/epilepsy. Stroke (ischemic or hemorrhagic) and cardiac arrest related brain injury are two major causative factors for seizure development in this patient population. With either etiology, seizures are a poor prognostic factor. In spite of this, the underlying pathophysiology of seizure development is not well understood. In addition, a standardized treatment regimen with anticonvulsants and outcome assessments following treatment has yet to be established for these post-ischemic seizures. Previous studies have modeled post-ischemic seizures in adult rodents, but similar studies in aging/aged animals, a group that mirrors a higher risk elderly population, remain sparse. Our study therefore aimed to investigate early-onset seizures in aging animals using a hypoxia-ischemia (HI) model. Male C57 black mice 18-20-month-old underwent a unilateral occlusion of the common carotid artery followed by a systemic hypoxic episode (8% O2 for 30 min). Early-onset seizures were detected using combined behavioral and electroencephalographic (EEG) monitoring. Brain injury was assessed histologically at different times post HI. Convulsive seizures were observed in 65% of aging mice post-HI but not in control aging mice following either sham surgery or hypoxia alone. These seizures typically occurred within hours of HI and behaviorally consisted of jumping, fast running, barrel-rolling, and/or falling (loss of the righting reflex) with limb spasms. No evident discharges during any convulsive seizures were seen on cortical-hippocampal EEG recordings. Seizure development was closely associated with acute mortality and severe brain injury on brain histological analysis. Intra-peritoneal injections of lorazepam and fosphenytoin suppressed seizures and improved survival but only when applied prior to seizure onset and not after. These findings together suggest that seizures are a major contributing factor to acute mortality in aging mice following severe brain ischemia and that early anticonvulsive treatment may prevent seizure genesis and improve overall outcomes.
Collapse
Affiliation(s)
- Justin Wang
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Chiping Wu
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jessie Peng
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Nisarg Patel
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yayi Huang
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xiaoxing Gao
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Salman Aljarallah
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Neurology Unit, Department of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - James H. Eubanks
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery (Neurosurgery), University of Toronto, Toronto, Ontario, Canada
| | - Robert McDonald
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Liang Zhang
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Departments of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Sun H, Juul HM, Jensen FE. Models of hypoxia and ischemia-induced seizures. J Neurosci Methods 2015; 260:252-60. [PMID: 26434705 DOI: 10.1016/j.jneumeth.2015.09.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/22/2015] [Indexed: 01/19/2023]
Abstract
Despite greater understanding and improved management, seizures continue to be a major problem in childhood. Neonatal seizures are often refractory to conventional antiepileptic drugs, and can result in later life epilepsy and cognitive deficits, conditions for which there are no specific treatments. Hypoxic and/or ischemic encephalopathy (HIE) is the most common cause for neonatal seizures, and accounts for more than two-thirds of neonatal seizure cases. A better understanding of the cellular and molecular mechanisms is essential for identifying new therapeutic strategies that control the neonatal seizures and its cognitive consequences. This heavily relies on animal models that play a critical role in discovering novel mechanisms underlying both epileptogenesis and associated cognitive impairments. To date, a number of animal models have provided a tremendous amount of information regarding the pathophysiology of HIE-induced neonatal seizures. This review provides an overview on the most important features of the main animal models of HIE-induced seizures. In particular, we focus on the methodology of seizure induction and the characterizations of post-HIE injury consequences. These aspects of HIE-induced seizure models are discussed in the light of the suitability of these models in studying human HIE-induced seizures.
Collapse
Affiliation(s)
- Hongyu Sun
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Halvor M Juul
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
9
|
Kang SK, Kadam SD. Neonatal Seizures: Impact on Neurodevelopmental Outcomes. Front Pediatr 2015; 3:101. [PMID: 26636052 PMCID: PMC4655485 DOI: 10.3389/fped.2015.00101] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/05/2015] [Indexed: 11/24/2022] Open
Abstract
Neonatal period is the most vulnerable time for the occurrence of seizures, and neonatal seizures often pose a clinical challenge both for their acute management and frequency of associated long-term co-morbidities. Etiologies of neonatal seizures are known to play a primary role in the anti-epileptic drug responsiveness and the long-term sequelae. Recent studies have suggested that burden of acute recurrent seizures in neonates may also impact chronic outcomes independent of the etiology. However, not many studies, either clinical or pre-clinical, have addressed the long-term outcomes of neonatal seizures in an etiology-specific manner. In this review, we briefly review the available clinical and pre-clinical research for long-term outcomes following neonatal seizures. As the most frequent cause of acquired neonatal seizures, we focus on the studies evaluating long-term effects of HIE-seizures with the goal to evaluate (1) what parameters evaluated during acute stages of neonatal seizures can reliably be used to predict long-term outcomes? and (2) what available clinical and pre-clinical data are available help determine importance of etiology vs. seizure burdens in long-term sequelae.
Collapse
Affiliation(s)
- Seok Kyu Kang
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger , Baltimore, MD , USA
| | - Shilpa D Kadam
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger , Baltimore, MD , USA ; Department of Neurology, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|