1
|
Khan JZ, Zainab SR, Rehman MU, Abid M, Mazhar MU, Shah FA, Tipu MK. Chronic stress intensify PTZ-induced seizures by triggering neuroinflammation and oxidative stress. Biochem Biophys Res Commun 2024; 729:150333. [PMID: 38991397 DOI: 10.1016/j.bbrc.2024.150333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Epilepsy is a paroxysmal abnormal hypersynchronous electrical discharge characterized by recurrent seizures. It affects more than 50 million people worldwide. Stress is the leading cause of neurodegeneration and can produce seizures that may lead to or aggravate epilepsy. Inflammation plays a vital role in epilepsy by modulating oxidative stress, and levels of neuroinflammatory cytokines including NF-κB, TNF-α, and IL-1β. METHODS Stress-induced changes in behavior were evaluated in mice by employing behavioral assessment tests such as an elevated plus maze, light-dark box, open field test, tail suspension test, Y-maze, novel object recognition test, and Morris water maze in pentylenetetrazole (PTZ) kindled mice. Behavioral changes in all these paradigms including seizure score, latency, and frequency showed an increase in symptoms in PTZ (35 mg/kg) induced seizures in stressed mice (RS-PTZ) as compared to PTZ, Stress, and normal animals. RESULTS The Enzyme-linked immunosorbent assay (ELISA) results confirmed increased in serum cortisol levels. Histological examinations showed neurodegenerative changes in the hippocampus and cortex regions. The spectrophotometric evaluation showed an increase in oxidative stress by decreasing antioxidant production i.e. reduced glutathione, glutathione -s- transferase, and catalase (CAT), and increasing oxidant levels such as maloaldehyde and nitric oxide. Immunohistochemistry results showed increased expression of NF-κB, TNF-α, and IL-1β in the cortex and hippocampus of mice brains. CONCLUSIONS Results from the study conclude that stress increases the likelihood of eliciting an epileptic attack by increasing the level of reactive oxygen species and neuroinflammation.
Collapse
Affiliation(s)
- Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Syeda Rida Zainab
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | | | - Muhammad Abid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Muhammad Usama Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Fawad Ali Shah
- Department of Pharmacology and Toxicology, College of Pharmacy Prince Sattam Bin Abdulaziz University, Al-Kharj, 16278, Saudi Arabia.
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
2
|
Ribeiro RM, da Silveira EP, Santos VC, Teixeira LL, Santos GS, Galvão IN, Hamoy MKO, da Silva Tiago AC, de Araújo DB, Muto NA, Lopes DCF, Hamoy M. Dexamethasone attenuates low-frequency brainwave disturbances following acute seizures induced by pentylenetetrazol in Wistar rats. Exp Mol Pathol 2024; 139:104921. [PMID: 39096892 DOI: 10.1016/j.yexmp.2024.104921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024]
Abstract
Seizures are neurological disorders triggered by an imbalance in the activity of excitatory and inhibitory neurotransmitters in the brain. When triggered chronically, this imbalance can lead to epilepsy. Critically, many of the affected individuals are refractory to treatment. Given this, anti-inflammatory drugs, in particular glucocorticoids, have been considered as a potential antiepileptogenic therapy. Glucocorticoids are currently used in the treatment of refractory patients, although there have been contradictory results in terms of their use in association with antiepileptic drugs, which reinforces the need for a more thorough investigation of their effects. In this context, the present study evaluated the effects of dexamethasone (DEX, 0.6 mg/kg) on the electroencephalographic (EEG) and histopathological parameters of male Wistar rats submitted to acute seizure induced by pentylenetetrazol (PTZ). The EEG monitoring revealed that DEX reduced the total brainwave power, in comparison with PTZ, in 12 h after the convulsive episode, exerting this effect in up to 36 h (p < 0.05 for all comparisons). An increase in the accommodation of the oscillations of the delta, alpha, and gamma frequencies was also observed from the first 12 h onwards, with the accommodation of the theta frequency occurring after 36 h, and that of the beta frequency 24 h after the seizure. The histopathological analyses showed that the CA3 region and hilum of the hippocampus suffered cell loss after the PTZ-induced seizure (control vs. PTZ, p < 0.05), although DEX was not able to protect these regions against cell death (PTZ vs. DEX + PTZ, p > 0.05). While DEX did not reverse the cell damage caused by PTZ, the data indicate that DEX has beneficial properties in the EEG analysis, which makes it a promising candidate for the attenuation of the epileptiform wave patterns that can precipitate refractory seizures.
Collapse
Affiliation(s)
- Rafaella Marques Ribeiro
- Laboratory of the Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, Belém, Pará 66075-110, Brazil
| | - Esther Padilha da Silveira
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Rua dos Munducurus, 4487, Guamá, Belém, Pará 66073-000, Brazil
| | - Vitoria Corrêa Santos
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Rua dos Munducurus, 4487, Guamá, Belém, Pará 66073-000, Brazil
| | - Leonan Lima Teixeira
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Rua dos Munducurus, 4487, Guamá, Belém, Pará 66073-000, Brazil
| | - Gisely Santiago Santos
- Laboratory of the Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, Belém, Pará 66075-110, Brazil
| | - Izabela Nascimento Galvão
- Laboratory of the Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, Belém, Pará 66075-110, Brazil
| | - Maria Klara Otake Hamoy
- Laboratory of the Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, Belém, Pará 66075-110, Brazil
| | - Allan Carlos da Silva Tiago
- Laboratory of the Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, Belém, Pará 66075-110, Brazil
| | - Daniella Bastos de Araújo
- Laboratory of the Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, Belém, Pará 66075-110, Brazil
| | - Nilton Akio Muto
- Centre for the Valorization of Amazonian Bioactive Compounds (CVACBA), Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, Belém, Pará 66075-110, Brazil
| | - Dielly Catrina Favacho Lopes
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Rua dos Munducurus, 4487, Guamá, Belém, Pará 66073-000, Brazil
| | - Moisés Hamoy
- Laboratory of the Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, Belém, Pará 66075-110, Brazil.
| |
Collapse
|
3
|
Samriti, Kaur A, Kaur A, Goel RK. Ameliorative effect of diclofenac in rotenone corneal kindling model of drug-resistant epilepsy: Edge of dual COX and KMO inhibition. Brain Res 2024; 1846:149246. [PMID: 39304107 DOI: 10.1016/j.brainres.2024.149246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Epilepsy affects millions of people worldwide, about one-third patients with epilepsy exhibits resistance to available antiseizures medications, known as drug-resistant epilepsy (DRE). Mitochondrial dysfunction has been implicated as a hallmark in drug-resistant epilepsy via activation of microglial kynurenine 3-monooxygenase (KMO) and cyclooxygenase (COX) enzymes, leading to neuroinflammation and oxidative stress. Diclofenac, an equipotent non selective cyclooxygenase inhibitor, has inhibitory action on KMO enzyme and has also shown anti-inflammatory and antioxidant properties in animal models of epilepsy. These properties make it a suitable candidate for amelioration of DRE. However, its potential in drug-resistant epilepsy remained unexplored till date. In this study, dose dependent effect of diclofenac (5 mg/kg, 10 mg/kg, 20 mg/kg) has been explored in rotenone corneal kindling model of mitochondrial DRE. The results of our study revealed the induction of drug resistance to antiseizure medications and induced kynurenine 3-monooxygenase activity in rotenone corneal kindled epileptic mice in comparison to naive mice. Treatment of rotenone corneal kindled epileptic mice with diclofenac resulted in a significant decrease in drug resistance to antiseizure medications as evident by a reduction in seizure score in the treatment groups as compared to control group, in post-treatment resistance validation. The kynurenine 3-monooxygenase inhibitory activity (as evidenced by decreased levels of neurotoxic quinolinic acid) and the antioxidant effect (as evident by significantly reduced oxidative stress) in the diclofenac treated groups, emerged as a major contributor for its ameliorative action. Findings of this study suggests, diclofenac can be used as an adjunct therapy in amelioration of drug-resistant epilepsy.
Collapse
Affiliation(s)
- Samriti
- Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala, 147002 India.
| | - Arvinder Kaur
- Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala, 147002 India.
| | - Arshbir Kaur
- Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala, 147002 India.
| | - R K Goel
- Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala, 147002 India.
| |
Collapse
|
4
|
Mirzababaei M, Babaei F, Ghafghazi S, Rahimi Z, Asadi S, Dargahi L, Nassiri-Asl M, Haghnazari L. Saccharomyces Boulardii alleviates neuroinflammation and oxidative stress in PTZ-kindled seizure rat model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03361-8. [PMID: 39141021 DOI: 10.1007/s00210-024-03361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Previous research have reported that modulating the gut microbiome composition by fecal microbiota transplantation and probiotic administration can alleviate seizure occurrence and severity. Saccharomyces boulardii (SB) is a yeast probiotic that has demonstrated ameliorating effects on anxiety, memory and cognitive deficit, and brain amyloidogenesis. In this research, our goal was to examine the anti-seizure effects of SB on the pentylenetetrazole (PTZ)-kindled male Wistar rats. The animals were randomly categorized into four test groups. The rats were orally administered with saline (control and PTZ groups) or S. boulardii (SB + PTZ and SB groups) for 57 days. From the 29th day of the experiment, the animals received intraperitoneally saline (control and SB groups) or PTZ (PTZ and SB + PTZ groups) on alternate days for 30 days. The administration dose of SB and PTZ was 1010 CFU/ml/day and 35 mg/kg, respectively. We assessed animal seizure behavior, neuroinflammation, oxidative stress, and the levels of matrix metalloproteinase-9 (MMP-9) and brain-derived neurotrophic factor (BDNF) in the hippocampus tissue. S. boulardii hindered the PTZ-induced kindling development. SB treatment elevated glutathione (GSH) and total antioxidant capacity (TAC) and reduced malondialdehyde (MDA) levels. SB also lessened the hippocampal levels of BDNF and MMP-9. Following SB supplementation, proinflammatory cytokines interleukin-1 beta (IL-1β) and IL-6 were lowered, and anti-inflammatory cytokine IL-10 was enhanced. Overall, our data indicated, for the first time, the positive impact of SB on the PTZ-kindled seizure rat model. The anti-seizure activity of SB was mediated by modulating oxidative stress, neuroinflammation, and MMP-9 and BDNF levels.
Collapse
Affiliation(s)
- Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Babaei
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, I.R., Iran
| | - Shiva Ghafghazi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, I.R., Iran
| | - Zohreh Rahimi
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soheila Asadi
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, I.R., Iran.
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Lida Haghnazari
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Muller Guzzo EF, Rosa G, Lourenço de Lima AMD, Padilha R, Coitinho A. Piroxicam reduced the intensity of epileptic seizures in a kindling seizure model. Neurol Res 2024; 46:717-726. [PMID: 38679045 DOI: 10.1080/01616412.2024.2345032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/13/2024] [Indexed: 05/01/2024]
Abstract
Introduction: The close relationship between inflammatory processes and epileptic seizures is already known, although the exact pathophysiological mechanism is unclear. In this study, the anticonvulsant capacity of piroxicam, an anti-inflammatory drug, was evaluated. A rat pentylenetetrazole kindling model was used.Methods: Male Wistar rats, 8-9 weeks old, received piroxicam (0.15 and 0.30 mg/kg), diazepam (2 mg/kg) or saline for 14 days, and PTZ, on alternate days. Intraperitoneal was chosen as the route of administration. The intensity of epileptic seizures was assessed using a modified Racine scale. The open field test and object recognition analysis were performed at the beginning of the study to ensure the safety of the drugs used. At the end of the protocol, the animals were euthanized to measure the levels of inflammatory (TNF-a and IL-6) and anti-inflammatory (IL-10) cytokines in the cortex, hippocampus, and serum.Results:There were no changes in the open field test and object recognition analysis. Piroxicam was found to decrease Racine scale scores at both concentrations. The reported values for IL-6 levels remained steady in all structures, whereas the TNF-alpha level in the cortex was higher in animals treated with piroxicam than in the saline and diazepam subjects. Finally, animals treated with the anti-inflammatory drug presented reduced IL-10 levels in the cortex and hippocampus.onclusions: Using inflammation as a guiding principle, the anticonvulsant effect of PIRO could be associated with the hippocampal circuits, since this structure showed no increase in inflammatory cytokines.
Collapse
Affiliation(s)
| | - Gabriel Rosa
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Rafael Padilha
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Coitinho
- Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
6
|
de Lima AMDL, de Lima Rosa G, Guzzo EFM, Padilha RB, de Araujo MC, da Silva RC, Coitinho AS, Van Der Sand ST. Effect of prednisolone in a kindling model of epileptic seizures in rats on cytokine and intestinal microbiota diversity. Epilepsy Behav 2024; 155:109800. [PMID: 38657485 DOI: 10.1016/j.yebeh.2024.109800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/26/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
Epilepsy is a neurological disease characterized by spontaneous and recurrent seizures. Epileptic seizures can be initiated and facilitated by inflammatory mechanisms. As the dysregulation of the immune system would be involved in epileptogenesis, it is suggested that anti-inflammatory medications could impact epileptic seizures. These medications could potentially have a side effect by altering the structure and composition of the intestinal microbiota. These changes can disrupt microbial homeostasis, leading to dysbiosis and potentially exacerbating intestinal inflammation. We hypothesize that prednisolone may affect the development of epileptic seizures, potentially influencing the diversity of the intestinal microbiota and the regulation of pro-inflammatory cytokines in intestinal tissue. This study aimed to evaluate the effects of prednisolone treatment on epileptic seizures and investigate the effect of this drug on the bacterial diversity of the intestinal microbiota and markers of inflammatory processes in intestinal tissue. We used Male Wistar rat littermates (n = 31, 90-day-old) divided into four groups: positive control treated with 2 mg/kg of diazepam (n = 6), negative control treated with 0.9 g% sodium chloride (n = 6), and the remaining two groups were subjected to treatment with prednisolone, with one receiving 1 mg/kg (n = 9) and the other 5 mg/kg (n = 10). All administrations were performed intraperitoneally (i.p.) over 14 days. To induce the chronic model of epileptic seizures, we administered pentylenetetrazole (PTZ) 25 mg/kg i.p. on alternate days. Seizure latency (n = 6 - 10) and TNF-α and IL-1β concentrations from intestinal samples were measured by ELISA (n = 6 per group), and intestinal microbiota was evaluated with intergenic ribosomal RNA (rRNA) spacer (RISA) analysis (n = 6 per group). The prednisolone treatment demonstrated an increase in the latency time of epileptic seizures and TNF-α and IL-1β concentrations compared to controls. There was no statistically significant difference in intestinal microbiota diversity between the different treatments. However, there was a strong positive correlation between microbial diversity and TNF-α and IL-1β concentrations. The administration of prednisolone yields comparable results to diazepam on increasing latency between seizures, exhibiting promise for its use in clinical studies. Although there were no changes in intestinal microbial diversity, the increase in the TNF-α and IL-1β cytokines in intestinal tissue may be linked to immune system signaling pathways involving the intestinal microbiota. Additional research is necessary to unravel the intricacies of these pathways and to understand their implications for clinical practice.
Collapse
Affiliation(s)
- Amanda Muliterno Domingues Lourenço de Lima
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Gabriel de Lima Rosa
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Edson Fernando Müller Guzzo
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Rafael Bremm Padilha
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Milena Conci de Araujo
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Rodrigo Costa da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Adriana Simon Coitinho
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil.
| | - Sueli Teresinha Van Der Sand
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Akunal Türel C, Çelik H, Çetinkaya A, Türel İ. Electrophysiologic and anti-inflammatorial effects of cyclooxygenase inhibition in epileptiform activity. Physiol Rep 2023; 11:e15800. [PMID: 37688418 PMCID: PMC10492010 DOI: 10.14814/phy2.15800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of our study is to investigate the electrophysiological and anti-inflammatory effects of diclofenac potassium on epileptiform activity, which is the liquid form of diclofenac, and frequently used clinically for inflammatory process by inhibiting cyclooxygenase enzyme (COX). Wistar rats aged 2-4 months were divided into Epilepsy, Diazepam, Diclofenac potassium, and Diazepam+diclofenac potassium groups. Diazepam and diclofenac potassium were administered intraperitoneally 30 min after the epileptiform activity was created with penicillin injected intracortically under anesthesia. After the electrophysiological recording was taken in the cortex for 125 min, interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were evaluated by the ELISA in the serums. No change was observed between the groups in serum IL-1β, IL-6, and TNF-α values. It was observed that the co-administration of diclofenac potassium and diazepam at 51-55, 56-60, 61-65, 111-115, and 116-120 min was more effective in reducing spike amplitude than diclofenac potassium alone (p < 0.05). Single-dose diclofenac potassium did not have an anti-inflammatory effect in epileptiform activity but both diazepam and diclofenac potassium reduced the epileptiform activity.
Collapse
Affiliation(s)
- Canan Akunal Türel
- Department of NeurologyBolu Abant Izzet Baysal University Medical SchoolBolu Merkez/BoluTurkey
| | - Hümeyra Çelik
- Department of PhysiologyAlanya Alaaddin Keykubat University Medical SchoolAntalyaTurkey
| | - Ayhan Çetinkaya
- Department of PhysiologyBolu Abant Izzet Baysal University Medical SchoolBolu Merkez/BoluTurkey
| | - İdris Türel
- Department of PharmacologyBolu Abant Izzet Baysal University Medical SchoolBolu Merkez/BoluTurkey
| |
Collapse
|
8
|
Guzzo EFM, de Lima Rosa G, Domingues AM, Padilha RB, Coitinho AS. Reduction of seizures and inflammatory markers by betamethasone in a kindling seizure model. Steroids 2023; 193:109202. [PMID: 36828350 DOI: 10.1016/j.steroids.2023.109202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Epilepsy is a chronic disease characterized by an ongoing predisposition to seizures. Although inflammation has emerged as a crucial factor in the etiology of epilepsy, no approaches to anti-inflammatory treatment have been clinically proven to date. Betamethasone (a corticosteroid drug used in the clinic for its anti-inflammatory and immunosuppressive effects) has never been evaluated in attenuating the intensity of seizures in a kindling animal model of seizures. Using a kindling model in male wistar rats, this study evaluated the effect of betamethasone on the severity of seizures and levels of pro-inflammatory interleukins. Seizures were induced by pentylenetetrazole (30 mg/kg) on alternate days for 15 days. The animals were divided into four groups: a control group treated with saline, another control group treated with diazepam (2 mg/kg), and two groups treated with betamethasone (0.125 and 0.250 mg/kg, respectively). Open field test was conducted. Betamethasone treatments were effective in reducing the intensity of epileptic seizures. There were lower levels of Tumor Necrosis Factor-α and interleukin-1β in the cortex, compared to the saline group, on the other hand, levels in the hippocampus remained similar to the control groups. There was no change in the levels of interleukin-6 in the evaluated structures. Serum inflammatory mediators remained similar. Lower quantities of inflammatory mediators in the central nervous system may have been the key to the reduced severity of seizures on the Racine scale.
Collapse
Affiliation(s)
- Edson Fernando Muller Guzzo
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriel de Lima Rosa
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda Muliterno Domingues
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Bremm Padilha
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Simon Coitinho
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas - Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Tavakoli Z, Tahmasebi Dehkordi H, Lorigooini Z, Rahimi-Madiseh M, Korani MS, Amini-Khoei H. Anticonvulsant effect of quercetin in pentylenetetrazole (PTZ)-induced seizures in male mice: The role of anti-neuroinflammatory and anti-oxidative stress. Int Immunopharmacol 2023; 116:109772. [PMID: 36731152 DOI: 10.1016/j.intimp.2023.109772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/26/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Epilepsy is one of the major neurological disorders. The inflammatory process and oxidative stress are closely related to seizure progression. Quercetin is a flavonoid with anti-inflammatory and antioxidant properties as well as neuroprotective effects. We aimed to evaluate the effect of quercetin on pentylenetetrazole- (PTZ-) induced seizures in male mice focusing on its possible anti-neuroinflammatory and anti-oxidative stress. METHODS In this study, 50 male NMRI mice were divided into five groups (n = 10) and given the following treatments: normal saline, quercetin at doses of 10, 20, and 40 mg/kg, and diazepam at a dose of 10 mg/kg. In order to induce seizures, PTZ was administered intravenously. Drugs were administered intravenously 60 min before the seizure induction. The seizure threshold was measured, and finally, malondialdehyde (MDA), total antioxidant capacity (TAC), and the gene expression of IL-1β, TNF-α, NLRP3, and iNOS were determined in the prefrontal cortex. RESULTS It was confirmed that quercetin increased the seizure threshold. And quercetin increased TAC, and decreased levels of MDA as well as gene expression of TNF- α, NLRP3, IL-1β, and iNOS in the prefrontal cortex at the time of seizure induction. CONCLUSION It was suggested that the anticonvulsant effect of quercetin in PTZ-induced seizures in mice may be due to the reduction of inflammatory responses and oxidative stress in the prefrontal cortex.
Collapse
Affiliation(s)
- Zahra Tavakoli
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Tahmasebi Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rahimi-Madiseh
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrdad Shahrani Korani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
10
|
Stopschinski BE, Weideman RA, McMahan D, Jacob DA, Little BB, Chiang HS, Saez Calveras N, Stuve O. Microglia as a cellular target of diclofenac therapy in Alzheimer's disease. Ther Adv Neurol Disord 2023; 16:17562864231156674. [PMID: 36875711 PMCID: PMC9974624 DOI: 10.1177/17562864231156674] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/26/2023] [Indexed: 03/07/2023] Open
Abstract
Alzheimer's disease (AD) is an untreatable cause of dementia, and new therapeutic approaches are urgently needed. AD pathology is defined by extracellular amyloid plaques and intracellular neurofibrillary tangles. Research of the past decades has suggested that neuroinflammation plays a critical role in the pathophysiology of AD. This has led to the idea that anti-inflammatory treatments might be beneficial. Early studies investigated non-steroidal anti-inflammatory drugs (NSAIDS) such as indomethacin, celecoxib, ibuprofen, and naproxen, which had no benefit. More recently, protective effects of diclofenac and NSAIDs in the fenamate group have been reported. Diclofenac decreased the frequency of AD significantly compared to other NSAIDs in a large retrospective cohort study. Diclofenac and fenamates share similar chemical structures, and evidence from cell and mouse models suggests that they inhibit the release of pro-inflammatory mediators from microglia with leads to the reduction of AD pathology. Here, we review the potential role of diclofenac and NSAIDs in the fenamate group for targeting AD pathology with a focus on its potential effects on microglia.
Collapse
Affiliation(s)
- Barbara E Stopschinski
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Danni McMahan
- Pharmacy Service, Dallas VA Medical Center, Dallas, TX, USA
| | - David A Jacob
- Veterans Integrated Service Network 17, Arlington, TX, USA
| | - Bertis B Little
- School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Hsueh-Sheng Chiang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nil Saez Calveras
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Neurology Section, Dallas VA Medical Center, 4500 South Lancaster Road, Dallas, TX 75216, USA
| |
Collapse
|
11
|
Effects of Diclofenac Sodium on Seizure Activity in Rats with Pentylenetetrazole-Induced Convulsions. Neurochem Res 2022; 48:1412-1423. [PMID: 36474102 DOI: 10.1007/s11064-022-03838-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Epilepsy is a disease which affects between 1 and 2% of the population, and a large proportion of these people do not react to currently available anticonvulsant medications, indicating the need for further research into novel pharmacological therapies. Numerous studies have demonstrated that oxidative stress and inflammation occur during epilepsy and may contribute to its development and progression, indicating higher levels of oxidative and inflammatory parameters in experimental models and clinical patients. This research aimed to assess the impact of diclofenac sodium, a nonsteroidal anti-inflammatory medicine, on seizure and levels of oxidative stress and inflammatory biomarkers in a rat model of epilepsy triggered by pentylenetetrazole (PTZ). 60 rats were randomly allocated to one of two groups: electroencephalography (EEG) recordings or behavioral evaluation. Rats received diclofenac sodium at three various doses (25, 50, and 75 mg/kg) intraperitoneally (IP) or a placebo, followed by intraperitoneal (IP) pentylenetetrazole, a powerful seizure-inducing medication. To investigate if diclofenac sodium had antiseizure properties, seizure activity in rats was evaluated using EEG recordings, the Racine convulsion scale (RCS) behaviour score, the duration of the first myoclonic jerk (FMJ), and the levels of MDA, TNF-α, and SOD. The average percentage of EEG spike waves decreased from 76.8% (placebo) to 64.1% (25 mg/kg diclofenac), 55.9% (50 mg/kg diclofenac), and 37.8% (75 mg/kg diclofenac). FMJ had increased from a mean of 58.8 s (placebo), to 93.6 s (25 mg/kg diclofenac), 185.8 s (50 mg/kg diclofenac) and 231.7 s (75 mg/kg diclofenac). RCS scores decreased from a mean score of 5.6 (placebo), to 3.75 (25 mg/kg diclofenac), 2.8 (50 mg/kg diclofenac) and 1.75 (75 mg/kg diclofenac). MDA levels reduced from 14.2 ng/gr (placebo) to 9.6 ng/gr (25 mg/kg diclofenac), 8.4 ng/gr (50 mg/kg diclofenac) and 5.1 ng/gr (75 mg/kg diclofenac). Likely, TNF-α levels decreased from 67.9 ng/gr (placebo) to 48.1 ng/gr (25 mg/kg diclofenac), 33.5 ng/gr (50 mg/kg diclofenac) and 21.3 ng/gr (75 mg/kg diclofenac). SOD levels, however, enhanced from 0.048 U/mg (placebo) to 0.055 U/mg (25 mg/kg diclofenac), 0.14 U/mg (50 mg/kg diclofenac), and 0.18 U/mg (75 mg/kg diclofenac). Diclofenac sodium (25, 50, and 75 mg/kg i.p.) effectively lowered the spike percentages and RCS scores linked with PTZ-induced epilepsy in rats, as well as significantly decreased MDA, TNF-α, IL-1β, PGE2 and increased SOD levels. Probably as a result of its anti-oxidative and anti-inflammatory effects, diclofenac sodium dramatically lowered seizure activity at both doses compared to placebo control. Each of these results were significant, with p-values of < 0.01, < 0.05. Therefore, the therapeutic application diclofenac sodium as a potential anticonvulsant should be investigated further.
Collapse
|
12
|
de Lima Rosa G, Guzzo EFM, Nunes SEB, Padilha RB, Domingues AM, Barbosa BB, Siqueira IR, Coitinho AS. Aerobic exercise, alone or combined with an anti-inflammatory drug, reduces the severity of epileptic seizures and levels of central pro-inflammatory cytokines in an animal model of epileptic seizures. Epilepsy Res 2022; 186:107018. [PMID: 36126608 DOI: 10.1016/j.eplepsyres.2022.107018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/03/2022]
Abstract
Epilepsy is a chronic neurological disorder and there is increasing evidence about the role of inflammation in epileptogenesis. These findings have spurred the search for new immunomodulatory approaches that can improve prognosis. Using an animal model of chemically-induced epileptic seizures, we tested exercise alone as non-pharmacological therapy, and exercise combined with an anti-inflammatory drug. Five groups were used: sedentary, diazepam, aerobic exercise alone, aerobic exercise combined with an anti-inflammatory drug, and naive control. Our goal was to compare the severity of the epileptic seizures between groups as well as seizure latency in a pentylenetetrazole-induced paradigm. Cytokine levels (IL-1β, TNF-α, and IL-10) were measured. Both exercise groups showed a reduction in seizure severity and lower levels of pro-inflammatory cytokines in the cortex, while the levels of cytokines in the hippocampus remained unaffected.
Collapse
Affiliation(s)
- Gabriel de Lima Rosa
- Postgraduate Program in Biological Sciences, Physiology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, Brazil
| | - Edson Fernando Muller Guzzo
- Postgraduate Program in Biological Sciences, Physiology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, Brazil
| | - Silvia Elisandra Bitello Nunes
- Postgraduate Program in Biological Sciences, Physiology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, Brazil
| | - Rafael Bremm Padilha
- Department of Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, Brazil
| | - Amanda Muliterno Domingues
- Department of Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, Brazil
| | - Brayan Braz Barbosa
- Department of Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, Brazil
| | - Ionara Rodrigues Siqueira
- Postgraduate Program in Biological Sciences, Physiology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, Brazil; Postgraduate Program in Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, Brazil
| | - Adriana Simon Coitinho
- Postgraduate Program in Biological Sciences, Physiology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, Brazil; Postgraduate Program in Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, Brazil; Department of Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, Brazil.
| |
Collapse
|
13
|
Ekinci B, Altuner D, Suleyman B, Mammadov R, Bulut S, Suleyman Z, A. Gul M, Ergul C, Suleyman H. Effect of Thymoquinone on Diclofenac-Induced Liver Injury. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1331.1339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Alvi AM, Shah FA, Muhammad AJ, Feng J, Li S. 1,3,4, Oxadiazole Compound A3 Provides Robust Protection Against PTZ-Induced Neuroinflammation and Oxidative Stress by Regulating Nrf2-Pathway. J Inflamm Res 2022; 14:7393-7409. [PMID: 35002275 PMCID: PMC8721032 DOI: 10.2147/jir.s333451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Background Epilepsy is a common neurological disorder that is characterized by recurrent episodes of seizures. Various studies have demonstrated a direct association between oxidative stress and inflammation in several neurological disorders including epilepsy. This study aimed to investigate the neuroprotective effects of a synthetic 1,3,4, oxadiazole compound A3 against pentylenetetrazole (PTZ)-induced kindling and seizure model. Methodology PTZ was administered in a sub-convulsive dose of 40 mg/kg for 15 days, at 48-hour intervals to male Swiss-Albino mice until animals were fully kindled. Two different doses of A3 (10 mg/kg and 30 mg/kg) were administered to find out the effective dose of A3 and to further demonstrate the relative role of nuclear factor E2-related factor (Nrf2) in the PTZ-induced kindled model. Results Our results demonstrated a compromised antioxidant capacity associated with a low level of catalase (CAT), superoxide dismutase (SOD), glutathione (GST), and glutathione S-transferase (GSH) in the kindled group. However, the PTZ-induced group demonstrated an elevated level of lipid peroxidation (LPO) level parallel to pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), mediators as cyclooxygenase (COX-2), and nuclear factor kappa B (NFκB). Furthermore, the A3 treatment reversed these changes and overexpressed the antioxidant Nrf2 gene and its downstream HO-1. To further investigate the involvement of Nrf2, we employed an Nrf2-inhibitor, ie, all-trans retinoic acid (ATRA), that further aggravated the PTZ toxicity. Moreover, vascular endothelial growth factor (VEGF) expression was evaluated to assess the extent of BBB disruption. Conclusion The findings of this study suggest that A3 could mediate neuroprotection possibly by activating Nrf2 dependent downregulation of inflammatory cascades.
Collapse
Affiliation(s)
- Arooj Mohsin Alvi
- Department of Neonatology, Shenzhen Children's Hospital Shenzhen, Shenzhen, People's Republic of China.,Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Asmaa Jan Muhammad
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Jinxing Feng
- Department of Neonatology, Shenzhen Children's Hospital Shenzhen, Shenzhen, People's Republic of China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, People's Republic of China
| |
Collapse
|
15
|
de Lima AMDL, de Lima Rosa G, Müller Guzzo EF, Padilha RB, Costa da Silva R, Silveira AK, de Lima Morales D, Conci de Araujo M, Fonseca Moreira JC, Barth AL, Coitinho AS, Van Der Sand ST. Gut microbiota modulation by prednisolone in a rat kindling model of pentylenetetrazol (PTZ)-induced seizure. Microb Pathog 2021; 163:105376. [PMID: 34974121 DOI: 10.1016/j.micpath.2021.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/02/2021] [Accepted: 12/28/2021] [Indexed: 11/26/2022]
Abstract
The gut microbiota is a complex community composed by several microorganisms that interact in the maintenance of homeostasis and contribute to physiological processes, including brain function. The relationship of the taxonomic composition of the gut microbiota with neurological diseases such as autism, Parkinson's, Alzheimer's, anxiety, and depression is widely recognized. The immune system is an important intermediary between the gut microbiota and the central nervous system, being one of the communication routes of the gut-brain axis. Although the complexity of the relationship between inflammation and epilepsy has not yet been elucidated, inflammatory processes are similar in many ways to the consequences of dysbiosis and contribute to disease progression. This study aimed to analyze the taxonomic composition of the gut microbiota of rats treated with prednisolone in a kindling model of epilepsy. Male Wistar rats (90 days, n = 24) divided into four experimental groups: sodium chloride solution 0.9 g%, diazepam 2 mg/kg, prednisolone 1 mg/kg, and prednisolone 5 mg/kg administered intraperitoneally (i.p.) for 14 days. The kindling model was induced by pentylenetetrazole (PTZ) 25 mg/kg i.p. on alternate days. The taxonomic profile was established by applying metagenomic DNA sequencing. There was no change in alpha diversity, and the composition of the gut microbiota between prednisolone and diazepam was similar. The significant increase in Verrucomicrobia, Saccharibacteria, and Actinobacteria may be related to the protective activity against seizures and inflammatory processes that cause some cases of epilepsy. Further studies are needed to investigate the functional influence that these species have on epilepsy and the inflammatory processes that trigger it.
Collapse
Affiliation(s)
- Amanda Muliterno Domingues Lourenço de Lima
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Gabriel de Lima Rosa
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Edson Fernando Müller Guzzo
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Rafael Bremm Padilha
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Rodrigo Costa da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Alexandre Kleber Silveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Ramiro Barcelos 2.600 - Annex, Porto Alegre, RS, Brazil
| | - Daiana de Lima Morales
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2.350, Porto Alegre, RS, Brazil
| | - Milena Conci de Araujo
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - José Claudio Fonseca Moreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Ramiro Barcelos 2.600 - Annex, Porto Alegre, RS, Brazil
| | - Afonso Luís Barth
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2.350, Porto Alegre, RS, Brazil
| | - Adriana Simon Coitinho
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil.
| | - Sueli Teresinha Van Der Sand
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| |
Collapse
|
16
|
Enhanced photocatalytic degradation of eco-toxic pharmaceutical waste diclofenac sodium by anion loaded Cu-Al LDH⋅BiO composites. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Metcalf CS, Vanegas F, Underwood T, Johnson K, West PJ, Smith MD, Wilcox KS. Screening of prototype antiseizure and anti-inflammatory compounds in the Theiler's murine encephalomyelitis virus model of epilepsy. Epilepsia Open 2021; 7:46-58. [PMID: 34668659 PMCID: PMC8886069 DOI: 10.1002/epi4.12550] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Infection with Theiler's murine encephalomyelitis virus (TMEV) in C57Bl/6J mice results in handling-induced seizures and is useful for evaluating compounds effective against infection-induced seizures. However, to date only a few compounds have been evaluated in this model, and a comprehensive study of antiseizure medications (ASMs) has not yet been performed. Furthermore, as the TMEV infection produces marked neuroinflammation, an evaluation of prototype anti-inflammatory compounds is needed as well. METHODS Male C57Bl/6J mice were inoculated with TMEV (day 0) followed by daily administrations of test compounds (day 3-7) and subsequent handling sessions (day 3-7). Doses of ASMs, comprising several mechanistic classes, were selected based on previously published data demonstrating the effect of these compounds in reducing seizures in the 6 Hz model of pharmacoresistant seizures. Doses of anti-inflammatory compounds, comprising several mechanistic classes, were selected based on published evidence of reduction of inflammation or inflammation-related endpoints. RESULTS Several prototype ASMs reduced acute seizures following TMEV infection: lacosamide, phenytoin, ezogabine, phenobarbital, tiagabine, gabapentin, levetiracetam, topiramate, and sodium valproate. Of these, phenobarbital and sodium valproate had the greatest effect (>95% seizure burden reduction). Prototype anti-inflammatory drugs celecoxib, dexamethasone, and prednisone also moderately reduced seizure burden. SIGNIFICANCE The TMEV model is utilized by the Epilepsy Therapy Screening Program (ETSP) as a tool for evaluation of novel compounds. Compounds reducing seizures in the TMEV comprise distinct mechanistic classes, some with mechanisms of action that extend beyond traditional ASMs.
Collapse
Affiliation(s)
- Cameron S Metcalf
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Fabiola Vanegas
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Tristan Underwood
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Kristina Johnson
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Peter J West
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Misty D Smith
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA.,School of Dentistry, University of Utah, Salt Lake City, Utah, USA
| | - Karen S Wilcox
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
18
|
Carveol Attenuates Seizure Severity and Neuroinflammation in Pentylenetetrazole-Kindled Epileptic Rats by Regulating the Nrf2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9966663. [PMID: 34422216 PMCID: PMC8376446 DOI: 10.1155/2021/9966663] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022]
Abstract
Epilepsy is a neurodegenerative brain disorder characterized by recurrent seizure attacks. Numerous studies have suggested a strong correlation between oxidative stress and neuroinflammation in several neurodegenerative disorders including epilepsy. This study is aimed at investigating the neuroprotective effects of the natural compound carveol against pentylenetetrazole- (PTZ-) induced kindling and seizure model. Two different doses of carveol (10 mg/kg and 20 mg/kg) were administered to male rats to determine the effects and the effective dose of carveol and to further demonstrate the mechanism of action of nuclear factor E2-related factor (Nrf2) in PTZ-induced kindling model. Our results demonstrated reduced levels of innate antioxidants such as superoxide dismutase (SOD), catalase, glutathione-S-transferase (GST), and glutathione (GSH), associated with elevated lipid peroxidation (LPO) and inflammatory cytokines level such as tumor necrosis factor-alpha (TNF-α), and mediators like cyclooxygenase (COX-2) and nuclear factor kappa B (NFκB). These detrimental effects exacerbated oxidative stress and provoked a marked neuronal alteration in the cortex and hippocampus of PTZ-intoxicated animals that were associated with upregulated Nrf2 gene expression. Furthermore, carveol treatment positively modulated the antioxidant gene Nrf2 and its downstream target HO-1. To further investigate the role of Nrf2, an inhibitor of Nrf2 called all-trans retinoic acid (ATRA) was used, which further exacerbated PTZ toxicity. Moreover, carveol treatment induced cholinergic system activation by mitigating acetylcholinesterase level which is further linked to attenuated neuroinflammatory cascade. The extent of blood-brain barrier disruption was evaluated based on vascular endothelial growth factor (VEGF) expression. Taken together, our findings suggest that carveol acts as an Nrf2 activator and therefore induces downstream antioxidants and mitigates inflammatory insults through multiple pathways. This eventually alleviates PTZ-induced neuroinflammation and neurodegeneration.
Collapse
|
19
|
Yu L, Yang J, Yu W, Cao J, Li X. Rhein attenuates PTZ‑induced epilepsy and exerts neuroprotective activity via inhibition of the TLR4-NFκB signaling pathway. Neurosci Lett 2021; 758:136002. [PMID: 34090938 DOI: 10.1016/j.neulet.2021.136002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Epilepsy is a common neurological disease that cannot be well controlled by existing antiepileptic drugs. Studies have implicated oxidative stress and inflammation in the pathophysiology of epilepsy. Rhein has a comprehensive pharmacological function in reducing inflammation and can play a neuroprotective role in many neurological diseases, however little is known about its effects on epilepsy. METHODS A model of acute epilepsy in mice was established using the Pentylenetetrazol (PTZ) ignition method to evaluate the effects of Rhein on the duration and latency of convulsions, and the number and severity of seizures. Modified Neurological Severity Score (mNSS), Rotarod and open-field behavioral task tests were performed to evaluate the neuroprotective effect of Rhein. TUNEL staining was used to assess neuronal damage, and western blot, qPCR and ELISA kits were utilized to determine the expression of inflammatory signaling protein molecules and levels of inflammatory cytokines. RESULTS In this study, we demonstrate that Rhein delayed the onset of seizures, decreased their severity, and reduced the duration and frequency of seizures in PTZ-induced epileptic mice. Furthermore, we found that Rhein blocked neurological deficits induced by PTZ. In addition, our results show that Rhein inhibited the activation of the TLR4-NFκB signaling pathway and decreased the secretion of the inflammatory cytokines TNF-α, IL-6, IL-1β, and IL-18. CONCLUSION Our results suggest that the anticonvulsant and neuroprotective effects of Rhein are achieved by disrupting the processes involved in PTZ acquisition of epilepsy.
Collapse
Affiliation(s)
- Lei Yu
- Department of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Jiping Yang
- Institute of Basic Medical Sciences, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Wei Yu
- Department of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Jian Cao
- Department of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xueping Li
- Department of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
20
|
Dos Santos FM, Pflüger PF, Lazzarotto L, Uczay M, de Aguida WR, da Silva LS, Boaretto FBM, de Sousa JT, Picada JN, da Silva Torres IL, Pereira P. Gamma-Decanolactone Alters the Expression of GluN2B, A 1 Receptors, and COX-2 and Reduces DNA Damage in the PTZ-Induced Seizure Model After Subchronic Treatment in Mice. Neurochem Res 2021; 46:2066-2078. [PMID: 34019198 DOI: 10.1007/s11064-021-03345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022]
Abstract
Gamma-decanolactone (GD) has been shown to reduce epileptic behavior in different models, inflammatory decreasing, oxidative stress, and genotoxic parameters. This study assessed the GD effect on the pentylenetetrazole (PTZ) model after acute and subchronic treatment. We evaluated the expression of the inflammatory marker cyclooxygenase-2 (COX-2), GluN2B, a subunit of the NMDA glutamate receptor, adenosine A1 receptor, and GD genotoxicity and mutagenicity. Male and female mice were treated with GD (300 mg/kg) for 12 days. On the tenth day, they were tested in the Hot Plate test. On the thirteenth day, all animals received PTZ (90 mg/kg), and epileptic behavior PTZ-induced was observed for 30 min. Pregabalin (PGB) (30 mg/kg) was used as a positive control. Samples of the hippocampus and blood were collected for Western Blotting analyses and Comet Assay and bone marrow to the Micronucleus test. Only the acute treatment of GD reduced the seizure occurrence and increased the latency to the first stage 3 seizures. Males treated with GD for 12 days demonstrated a significant increase in the expression of the GluN2B receptor and a decrease in the COX-2 expression. Acute and subchronic treatment with GD and PGB reduced the DNA damage produced by PTZ in males and females. There is no increase in the micronucleus frequency in bone marrow after subchronic treatment. This study suggests that GD, after 12 days, could not reduce PTZ-induced seizures, but it has been shown to protect against DNA damage, reduce COX-2 and increase GluN2B expression.
Collapse
Affiliation(s)
- Fernanda Marcelia Dos Santos
- Laboratory of Neuropharmacology and Preclinical Toxicology, Health Basic Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pricila Fernandes Pflüger
- Laboratory of Neuropharmacology and Preclinical Toxicology, Health Basic Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Leticia Lazzarotto
- Laboratory of Neuropharmacology and Preclinical Toxicology, Health Basic Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mariana Uczay
- Laboratory of Neuropharmacology and Preclinical Toxicology, Health Basic Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Wesley Roberto de Aguida
- Laboratory of Neuropharmacology and Preclinical Toxicology, Health Basic Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lisiane Santos da Silva
- Laboratory of Pain Pharmacology and Neuromodulation: Pre-Clinical Research. Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | - Iraci Lucena da Silva Torres
- Laboratory of Pain Pharmacology and Neuromodulation: Pre-Clinical Research. Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Pereira
- Laboratory of Neuropharmacology and Preclinical Toxicology, Health Basic Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Laboratory of Neuropharmacology and Preclinical Toxicology, Department of Pharmacology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Sarmento Leite 500/305, Porto Alegre, RS, CEP 90050-170, Brazil.
| |
Collapse
|
21
|
Evaluation of Anticonvulsant Activity of Dual COX-2/5-LOX Inhibitor Darbufelon and Its Novel Analogues. Sci Pharm 2021. [DOI: 10.3390/scipharm89020022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neuroinflammation is an integral part of epilepsy pathogenesis and other convulsive conditions, and non-steroidal anti-inflammatory drugs (NSAIDs) present a potent tool for the contemporary search and design of novel anticonvulsants. In the present paper, evaluation of the anticonvulsant activity of the potential NSAID dual COX-2/5-LOX inhibitor darbufelone methanesulfonate using an scPTZ model in mice in dose 100 mg/kg is reported. Darbufelone possesses anticonvulsant properties in the scPTZ model and presents interest for in-depth studies as a possible anticonvulsant multi-target agent with anti-inflammatory activity. The series of 4-thiazolidinone derivatives have been synthesized following the analogue-based drug design and hybrid-pharmacophore approach using a darbufelone matrix. The synthesized derivatives showed a significant protection level for animals in the scPTZ model and are promising compounds for the design of potential anticonvulsants with satisfactory drug-like parameters.
Collapse
|
22
|
Anticonvulsant effect of pterostilbene and its influence on the anxiety- and depression-like behavior in the pentetrazol-kindled mice: behavioral, biochemical, and molecular studies. Psychopharmacology (Berl) 2021; 238:3167-3181. [PMID: 34333674 PMCID: PMC8605980 DOI: 10.1007/s00213-021-05933-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/08/2021] [Indexed: 01/03/2023]
Abstract
RATIONALE Pterostilbene is the 3,5-dimethoxy derivative of resveratrol with numerous beneficial effects including neuroprotective properties. Experimental studies revealed its anticonvulsant action in the acute seizure tests. OBJECTIVES The purpose of the present study was to evaluate the effect of pterostilbene in the pentetrazol (PTZ)-induced kindling model of epilepsy in mice as well as to assess some possible mechanisms of its anticonvulsant action in this model. METHODS Mice were repeatedly treated with pterostilbene (50-200 mg/kg) and its effect on the development of seizure activity in the PTZ kindling was estimated. Influence of pterostilbene on the locomotor activity and anxiety- and depression-like behavior in the PTZ-kindled mice was also assessed. To understand the possible mechanisms of anticonvulsant activity of pterostilbene, γ-aminobutyric acid (GABA) and glutamate concentrations in the prefrontal cortex and hippocampus of the PTZ-kindled mice were measured using LC-MS/MS method. Moreover, mRNA expression of BDNF, TNF-α, IL-1β, IL-6, GABRA1A, and GRIN2B was determined by RT-qPCR technique. RESULTS We found that pterostilbene at a dose of 200 mg/kg considerably reduced seizure activity but did not influence the locomotor activity and depression- and anxiety-like behavior in the PTZ-kindled mice. In the prefrontal cortex and hippocampus, pterostilbene reversed the kindling-induced decrease of GABA concentration. Neither in the prefrontal cortex nor hippocampus pterostilbene affected mRNA expression of IL-1β, IL-6, GABRA1A, and GRIN2B augmented by PTZ kindling. Pterostilbene at a dose of 100 mg/kg significantly decreased BDNF and TNF-α mRNA expression in the hippocampus of the PTZ-kindled mice. CONCLUSIONS Although further studies are necessary to understand the mechanism of anticonvulsant properties of pterostilbene, our findings suggest that it might be considered a candidate for a new antiseizure drug.
Collapse
|
23
|
de Lima Rosa G, Muller Guzzo E, Muliterno Domingues A, Bremm Padilha R, Dias de Oliveira Amaral V, Simon Coitinho A. Effects of prednisolone on behavioral and inflammatory profile in animal model of PTZ-induced seizure. Neurosci Lett 2020; 743:135560. [PMID: 33359047 DOI: 10.1016/j.neulet.2020.135560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 01/22/2023]
Abstract
Epilepsy is a chronic neurological condition that affects 1%-2% of the world population. Although research about the disease is advancing and a wide variety of drugs is available, about 30 % of patients have refractory epilepsy which cannot be controlled with the most common drugs. This highlights the need for a better understanding of the disorder and new types of treatment for it. Against this backdrop, a growing body of evidence has reported that inflammation may play a role both in the origin and in the progression of seizures. It has shown a tendency to be both the root and the result of epilepsy. This investigation aimed to assess the impact of prednisolone, a steroidal anti-inflammatory drug, in an animal model of pentylenetetrazole (PTZ)-induced seizures, at 1 mg/kg and 5 mg/kg doses. We also examined the degree of seizure severity and the modulation of pro-inflammatory cytokines in the treated animals. Four treatment groups were used (saline, diazepam, prednisolone 1 mg/kg, and prednisolone 5 mg/kg) and, in addition to their own daily treatments, subconvulsant doses of pentylenetetrazole (25 mg/kg) were administered every other day during a test protocol that lasted 14 days. After treatment, the cytokines interleukin 1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-α) were measured in the animals' sera, hippocampi, and prefrontal cortices. Animals treated with prednisolone presented less severe seizures than the animals in the saline group, and there was a decrease in pro-inflammatory cytokine levels in central structures, but not peripheral ones. In short, an animal model of chemically-induced epileptic seizures was used, in which the animals were treated with doses of prednisolone, and these animals presented less severe seizures than the negative control group (saline), in addition to showing decreased levels of pro-inflammatory cytokines IL-6, IL-1β and TNF-α, in the hippocampi and prefrontal cortices, but not the sera.
Collapse
Affiliation(s)
- Gabriel de Lima Rosa
- Postgraduate Program in Biological Sciences - Physiology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Edson Muller Guzzo
- Postgraduate Program in Biological Sciences - Physiology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Amanda Muliterno Domingues
- Postgraduate Program in Agricultural and Environmental Microbiology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Rafael Bremm Padilha
- Department of Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Vitória Dias de Oliveira Amaral
- Department of Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Adriana Simon Coitinho
- Postgraduate Program in Biological Sciences - Physiology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil; Postgraduate Program in Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil; Department of Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil.
| |
Collapse
|
24
|
Elgarhi R, Shehata MM, Abdelsameea AA, Salem AE. Effects of Diclofenac Versus Meloxicam in Pentylenetetrazol-Kindled Mice. Neurochem Res 2020; 45:1913-1919. [PMID: 32405761 DOI: 10.1007/s11064-020-03054-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/21/2020] [Accepted: 05/09/2020] [Indexed: 12/15/2022]
Abstract
Epilepsy comes after stroke as the most common chronic neurological disorder worldwide. Inflammation enhances neuronal hyperexcitability that could provide a background setting for the development of epilepsy. The aim of this study was to assess the effect of valproate (VAL), diclofenac (DIC), meloxicam (MEL), VAL + MEL and VAL + DIC in pentylenetetrazol (PTZ) kindled mice. Seventy mice were randomly allocated into 7 equal groups; Control, PTZ, VAL, DIC, MEL, VAL + MEL and VAL + DIC groups. Kindling was induced by PTZ (40 mg/kg, i.p.) injection every other day for 17 days. The drugs were administered, 30 min before each PTZ injection till the end of the schedule. Seizure score, latency, duration and mortality rate were recorded in all groups. Tumor necrosis factor- α (TNF-α), interleukin-1β (IL-1β), malondialdehyde (MDA) and prostaglandin E2 (PGE2) levels as well as reduced glutathione (GSH) content were assessed in brain homogenate at the end of the schedule. VAL, DIC, MEL, VAL + MEL and VAL + DIC decreased seizure score and duration. Meanwhile, they increased the latency period. PTZ increased TNF-α, IL-1β, MDA, and PGE2 levels meanwhile, it decreased GSH content. Administration of VAL, DIC, MEL, VAL + MEL and VAL + DIC decreased TNF-α, IL-1β, MDA, and PGE2 levels meanwhile, they increased GSH content in the brain homogenates. Effects of VAL + DIC combination on the studied parameters were significant in relation to VAL. VAL, DIC, MEL, VAL + MEL and VAL + DIC produced anticonvulsant effect and mitigated inflammation and oxidative stress in PTZ-kindled mice. Interestingly, DIC rather than MEL enhanced the anticonvulsant effect VAL.
Collapse
Affiliation(s)
- Reham Elgarhi
- Department of Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M Shehata
- Department of Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed A Abdelsameea
- Department of Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia.
| | - Amal E Salem
- Department of Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
25
|
Abstract
INTRODUCTION Neuroinflammation has a critical role in brain disorders. Cyclooxygenase (COX) is one of the principal drug targets for the reduction of neuroinflammation; however, studies have yielded mixed results for COX-inhibitors in the treatment of diverse acute and chronic models of epilepsy. AREAS COVERED The article covers the effects of COX-inhibitors in epilepsy disorders. A considerable emphasis has been placed on the antiepileptic and 'disease-modifying' properties of COX-1 and COX-2 inhibitors in various preclinical epilepsy models. EXPERT OPINION The effect of COX-inhibitors on epilepsy is inconclusive. Studies have indicated beneficial effects in preclinical models; however, proconvulsant or no effects have also been observed. These molecules may have a bidirectional role with early neuroprotective and delayed neurotoxic effects. Further systematic preclinical studies to establish the use of COX-inhibitors in epilepsy are necessary.
Collapse
Affiliation(s)
- Ashish Dhir
- a Department of Neurology, School of Medicine , University of California, Davis , Sacramento , CA , USA
| |
Collapse
|
26
|
Guzzo EFM, Lima KR, Vargas CR, Coitinho AS. Effect of dexamethasone on seizures and inflammatory profile induced by Kindling Seizure Model. J Neuroimmunol 2018; 325:92-98. [PMID: 30316679 DOI: 10.1016/j.jneuroim.2018.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 01/16/2023]
Abstract
The objective of this study was to evaluate the effect of dexamethasone, on the severity of seizures and levels of pro-inflammatory interleukins in animals with kindling model induced by pentylenetetrazole (20 mg/kg) in alternated days for 15 days of treatment. The animals were divided into five groups: control group given saline, a group treated with diazepam (2 mg/kg) and groups treated with dexamethasone (1, 2 and 4 mg/kg). Open field test was conducted. The treatment with dexamethasone decreased the severity of seizures, also decreased TNF-alpha and Interleukin 1 beta levels in the hippocampus and TNF-alpha level in the serum.
Collapse
Affiliation(s)
- Edson Fernando Müller Guzzo
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Karina Rodrigues Lima
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Estado do Rio grande do Sul, Porto Alegre, Brazil
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, CEP 90035-003 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Av. Ipiranga, 2752, CEP 90610-000 Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil; Departamento de Medicina Interna, Faculdade de Medicina, UFRGS, Brazil
| | - Adriana Simon Coitinho
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
27
|
Parisi OI, Ruffo M, Scrivano L, Malivindi R, Vassallo A, Puoci F. Smart Bandage Based on Molecularly Imprinted Polymers (MIPs) for Diclofenac Controlled Release. Pharmaceuticals (Basel) 2018; 11:E92. [PMID: 30248997 PMCID: PMC6316117 DOI: 10.3390/ph11040092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/15/2018] [Accepted: 09/20/2018] [Indexed: 11/16/2022] Open
Abstract
The aim of the present study was the development of a "smart bandage" for the topical administration of diclofenac, in the treatment of localized painful and inflammatory conditions, incorporating Molecularly Imprinted Polymers (MIPs) for the controlled release of this anti-inflammatory drug. For this purpose, MIP spherical particles were synthesized by precipitation polymerization, loaded with the therapeutic agent and incorporated into the bandage surface. Batch adsorption binding studies were performed to investigate the adsorption isotherms and kinetics and the selective recognition abilities of the synthesized MIP. In vitro diffusion studies were also carried out using Franz cells and the obtained results were reported as percentage of the diffused dose, cumulative amount of diffused drug, steady-state drug flux and permeability coefficient. Moreover, the biocompatibility of the developed device was evaluated using the EPISKIN™ model. The Scatchard analysis indicated that the prepared MIP is characterized by the presence of specific binding sites for diclofenac, which are not present in the corresponding non-imprinted polymer, and the obtained results confirmed both the ability of the prepared bandage to prolong the drug release and the absence of skin irritation reactions. Therefore, these results support the potential application of the developed "smart bandage" as topical device for diclofenac sustained release.
Collapse
Affiliation(s)
- Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
- Macrofarm s.r.l., C/O Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Mariarosa Ruffo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
- Macrofarm s.r.l., C/O Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Luca Scrivano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
- Macrofarm s.r.l., C/O Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Antonio Vassallo
- Department of Science, University of Basilicata, 85100 Potenza, Italy.
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
- Macrofarm s.r.l., C/O Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy.
| |
Collapse
|
28
|
Schiefecker AJ, Rass V, Gaasch M, Kofler M, Thomé C, Humpel C, Ianosi B, Hackl WO, Beer R, Pfausler B, Schmutzhard E, Helbok R. Brain Extracellular Interleukin-6 Levels Decrease Following Antipyretic Therapy with Diclofenac in Patients with Spontaneous Subarachnoid Hemorrhage. Ther Hypothermia Temp Manag 2018; 9:48-55. [PMID: 30074854 DOI: 10.1089/ther.2018.0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In patients with aneurysmal subarachnoid hemorrhage (aSAH), increased brain extracellular interleukin (IL)-6 levels measured by cerebral microdialysis (CMD) were associated with disease severity, early brain injury, delayed cerebral infarction, and axonal injury. In this study, we analyzed brain extracellular IL-6 levels of aSAH patients following parenteral diclofenac. Twenty-four mechanically ventilated poor-grade aSAH patients were included. Changes in cerebral metabolism, brain/body temperature, and CMD-IL-6 levels following intravenous diclofenac infusion (DCF; 75 mg diluted in 100 cc normal saline) were retrospectively analyzed from prospectively collected bedside data (at 1 hour before DCF = baseline; and at 2, 4, and 8 hours after DCF). Statistical analysis was performed using generalized estimating equations. Seventy-two events in 24 aSAH patients were analyzed. Median age was 60 years (interquartile range [IQR]: 52-67), admission Hunt & Hess grade was 4 (IQR: 3-5), and modified Fisher grade (mFisher) was 4 (IQR: 3-4). Higher CMD-IL-6 levels at baseline were linked to fever, higher mFisher, delayed cerebral infarction, and metabolic distress (p < 0.05). CMD-IL-6 levels at baseline were 281.4 pg/mL (IQR: 47-1866) and significantly (p < 0.001; Wald-X2 = 106) decreased at 2 hours to 86.3 pg/mL (IQR: 7-1946), at 4 hours to 40.9 pg/mL (IQR: 4-1237), and at 8 hours to 53.5 pg/mL (IQR: 5-1085), independent of probe location or day after bleeding. Parenteral diclofenac may attenuate brain extracellular proinflammatory response in poor-grade aSAH patients.
Collapse
Affiliation(s)
- Alois J Schiefecker
- 1 Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Rass
- 1 Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Maxime Gaasch
- 1 Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Mario Kofler
- 1 Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudius Thomé
- 2 Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Humpel
- 3 Laboratory for Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Innsbruck, Austria
| | - Bogdan Ianosi
- 4 Department of Medical Informatics and Technology, University for Health Sciences, Medical Informatics and Technology (UMIT), Hall, Austria
| | - Werner O Hackl
- 4 Department of Medical Informatics and Technology, University for Health Sciences, Medical Informatics and Technology (UMIT), Hall, Austria
| | - Ronny Beer
- 1 Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Pfausler
- 1 Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Erich Schmutzhard
- 1 Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raimund Helbok
- 1 Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
29
|
Gao B, Wu Y, Yang YJ, Li WZ, Dong K, Zhou J, Yin YY, Huang DK, Wu WN. Sinomenine exerts anticonvulsant profile and neuroprotective activity in pentylenetetrazole kindled rats: involvement of inhibition of NLRP1 inflammasome. J Neuroinflammation 2018; 15:152. [PMID: 29776417 PMCID: PMC5960124 DOI: 10.1186/s12974-018-1199-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/13/2018] [Indexed: 02/08/2023] Open
Abstract
Background Epilepsy is a common neurological disorder and is not well controlled by available antiepileptic drugs (AEDs). Inflammation is considered to be a critical factor in the pathophysiology of epilepsy. Sinomenine (SN), a bioactive alkaloid with anti-inflammatory effect, exerts neuroprotective activity in many nervous system diseases. However, little is known about the effect of SN on epilepsy. Methods The chronic epilepsy model was established by pentylenetetrazole (PTZ) kindling. Morris water maze (MWM) was used to test spatial learning and memory ability. H.E. staining and Hoechst 33258 staining were used to evaluate hippocampal neuronal damage. The expression of nucleotide oligomerization domain (NOD)-like receptor protein 1 (NLRP1) inflammasome complexes and the level of inflammatory cytokines were determined by western blot, quantitative real-time PCR and enzyme-linked immunosorbent assay (ELISA) kits. Results SN (20, 40, and 80 mg/kg) dose-dependently disrupts the kindling acquisition process, which decreases the seizure scores and the incidence of fully kindling. SN also increases the latency of seizure and decreases the duration of seizure in fully kindled rats. In addition, different doses of SN block the hippocampal neuronal damage and minimize the impairment of spatial learning and memory in PTZ kindled rats. Finally, PTZ kindling increases the expression of NLRP1 inflammasome complexes and the levels of inflammatory cytokines IL-1β, IL-18, IL-6, and TNF-α, which are all attenuated by SN in a dose- dependent manner. Conclusions SN exerts anticonvulsant and neuroprotective activity in PTZ kindling model of epilepsy. Disrupting the kindling acquisition, which inhibits NLRP1 inflammasome-mediated inflammatory process, might be involved in its effects. Electronic supplementary material The online version of this article (10.1186/s12974-018-1199-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Gao
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yu Wu
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yuan-Jian Yang
- Department of Psychiatry and Medical Experimental Center, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, 330029, People's Republic of China
| | - Wei-Zu Li
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Kun Dong
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Jun Zhou
- Department of Pharmacy, Xi'an Chest Hospital, Shaanxi University of Chinese Medicine, Xi'an, 710061, People's Republic of China
| | - Yan-Yan Yin
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Da-Ke Huang
- Synthetic Laboratory, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Wen-Ning Wu
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
30
|
Mutlu AY. Detection of epileptic dysfunctions in EEG signals using Hilbert vibration decomposition. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2017.08.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Nieoczym D, Socała K, Wlaź P. Evaluation of the Anticonvulsant Effect of Brilliant Blue G, a Selective P2X7 Receptor Antagonist, in the iv PTZ-, Maximal Electroshock-, and 6 Hz-Induced Seizure Tests in Mice. Neurochem Res 2017; 42:3114-3124. [PMID: 28702712 PMCID: PMC5649599 DOI: 10.1007/s11064-017-2348-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 12/12/2022]
Abstract
Epilepsy is one of the most common neurological disorders which is diagnosed in around 65 million people worldwide. Clinically available antiepileptic drugs fail to control epileptic activity in about 30% of patients and they are merely symptomatic treatments and cannot cure or prevent epilepsy. There remains a need for searching new therapeutic strategies for epileptic disorders. The P2X7 receptor has been recently investigated as a new target in epilepsy treatment. Preclinical studies revealed that P2X7 receptor antagonists have anticonvulsant properties in some models of epilepsy. We aimed to investigate whether P2X7 receptor antagonist-brilliant blue G (BBG)-is able to change seizure threshold in three acute seizure models in mice, i.e., in the intravenous pentylenetetrazole seizure threshold, maximal electroshock seizure threshold and 6 Hz psychomotor seizure threshold tests. BBG was administered acutely (50-200 mg/kg, 30 min before the tests) and sub-chronically (25-100 mg/kg, once daily for seven consecutive days). Moreover, the chimney and grip strength tests were used to estimate the influence of BBG on the motor coordination and muscular strength in mice, respectively. Our results revealed only a week anticonvulsant potential of the studied P2X7 receptor antagonist because it showed anticonvulsant action only in the 6 Hz seizure test, both after acute and sub-chronic administration. BBG did not significantly influence seizure thresholds in the remaining tests. Motor coordination and muscular strength were not affected by the studied P2X7 receptor antagonist. In summary, BBG does not possess any remarkable anticonvulsant potential in acute seizure models in mice.
Collapse
Affiliation(s)
- Dorota Nieoczym
- Faculty of Biology and Biotechnology, Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Katarzyna Socała
- Faculty of Biology and Biotechnology, Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Piotr Wlaź
- Faculty of Biology and Biotechnology, Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
32
|
Nejad SR, Motevalian M, Fatemi I, Shojaii A. Anticonvulsant Effects of the Hydroalcoholic Extract of Alpinia officinarum Rhizomesin Mice: Involvement of Benzodiazepine and Opioid Receptors. J Epilepsy Res 2017; 7:33-38. [PMID: 28775953 PMCID: PMC5540688 DOI: 10.14581/jer.17006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/03/2017] [Indexed: 01/09/2023] Open
Abstract
Background and Purpose Epilepsy is one of the most common serious neurological conditions. The current therapeutic treatment of epilepsy with modern antiepileptic drugs is associated with side effects, dose-related and chronic toxicity, and teratogenic effects and in approximately 30% of the patients is ineffective. Alpinia officinarum is used in Iranian traditional medicine for treatment of different diseases like back pain and seizure. Methods In this study, anticonvulsant effects of hydroalcoholic extract of Alpinia officinarum rhizomes were examined by using pentylentetrazole (PTZ) model in mice. Alpinia officinarum rhizomes extract (200, 400 and 600 mg/kg), diazepam (1 mg/kg) and normal saline (10 mL/kg) were injected (ip) 30 minutes before PTZ (90 mg/kg, ip). The time taken before the onset of clonic convulsions, the duration of colonic convulsions, and the percentage of seizure and mortality protection were recorded. For further clarification of the mechanism of action for Alpinia officinarum, flumazenil (2 mg/kg, ip) and naloxone (5 mg/kg, ip) were also injected 5 minutes before Alpinia officinarum extract. Results Alpinia officinarum extract at the doses of 200 and 400 mg/kg prolonged the time of onset of seizure and decreased the duration of seizures compared to control (saline) group (p < 0.05). At the dose of 600 mg/kg, percentage of seizure protection was 16.66%. Naloxone and flumazenil could suppress anticonvulsant effects of Alpinia officinarum. Conclusions It seems that Alpinia officinarum could be a good candidate and be useful for seizure control and treatment, and in these effects, opioid and benzodiazepine receptors might probably be involved.
Collapse
Affiliation(s)
- Shaghayegh Rezvani Nejad
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Manijeh Motevalian
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Iman Fatemi
- Department of Physiology and Pharmacology, Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Asie Shojaii
- Research Institute for Islamic and Complementary Medicine and School of Traditional Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|