1
|
Höltje M, Wolkowicz A, Brunk I, Baron J, Ahnert-Hilger G. Gα o1 and Gα o1/Gα o2 deletion differentially affect hippocampal mossy fiber tract anatomy and neuronal morphogenesis. J Neurochem 2024. [PMID: 39466989 DOI: 10.1111/jnc.16248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024]
Abstract
The heterotrimeric G-protein αo subunit is ubiquitously expressed in the CNS as two splice variants Gαo1 and Gαo2, regulating various brain functions. Here, we investigated the effect of single Gαo1, Gαo2, and double Gαo1/2 knockout on the postnatal development of the murine mossy fiber tract, a central pathway of the hippocampal connectivity circuit. The size of the hippocampal synaptic termination fields covered by mossy fiber boutons together with various fiber length parameters of the tract was analyzed by immunohistochemical staining of the vesicular Zinc transporter 3 (ZnT3) or Synaptoporin at postnatal days 2, 4, 8, 12, 16, and in the adult. Ultimately, Gαo1 knockout resulted in a reduced developmental growth of synaptic mossy fiber terminal fields by 37% in the adult Stratum lucidum and by 30% in the total mossy fiber tract size. Other morphological parameters such as projection length of the infrapyramidal bundle of the tract were increased (+52% in Gαo1 -/- mice). In contrast, Gαo2 knockout had no effects on the mossy fiber tract. Moreover, by using primary heterozygous and homozygous Gαo1 knockout hippocampal cultures, we detected a strongly pronounced reduction in axon and dendrite length (-50% and -38%, respectively) as well as axon and dendrite arborization complexity (-75% and -72% branch nodes, respectively) in the homozygous knockout. Deletion of both splice variants Gαo1 and Gαo2 partially rescued the in vivo and completely reconstituted the in vitro effects, indicating an opposing functional relevance of the two Gαo splice variants for neuronal development and synaptic connectivity.
Collapse
Affiliation(s)
- Markus Höltje
- Institut für Integrative Neuroanatomie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Anton Wolkowicz
- Institut für Integrative Neuroanatomie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Irene Brunk
- Institut für Integrative Neuroanatomie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Jens Baron
- Institut für Integrative Neuroanatomie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Gudrun Ahnert-Hilger
- Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry and University of Göttingen, Göttinge, Germany
| |
Collapse
|
2
|
Luna-Munguia H, Gasca-Martinez D, Garay-Cortes A, Coutiño D, Regalado M, de Los Rios E, Villaseñor P, Hidalgo-Flores F, Flores-Guapo K, Benito BY, Concha L. Selective Medial Septum Lesions in Healthy Rats Induce Longitudinal Changes in Microstructure of Limbic Regions, Behavioral Alterations, and Increased Susceptibility to Status Epilepticus. Mol Neurobiol 2024; 61:1-21. [PMID: 38443731 DOI: 10.1007/s12035-024-04069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Septo-hippocampal pathway, crucial for physiological functions and involved in epilepsy. Clinical monitoring during epileptogenesis is complicated. We aim to evaluate tissue changes after lesioning the medial septum (MS) of normal rats and assess how the depletion of specific neuronal populations alters the animals' behavior and susceptibility to establishing a pilocarpine-induced status epilepticus. Male Sprague-Dawley rats were injected into the MS with vehicle or saporins (to deplete GABAergic or cholinergic neurons; n = 16 per group). Thirty-two animals were used for diffusion tensor imaging (DTI); scanned before surgery and 14 and 49 days post-injection. Fractional anisotropy and apparent diffusion coefficient were evaluated in the fimbria, dorsal hippocampus, ventral hippocampus, dorso-medial thalamus, and amygdala. Between scans 2 and 3, animals were submitted to diverse behavioral tasks. Stainings were used to analyze tissue alterations. Twenty-four different animals received pilocarpine to evaluate the latency and severity of the status epilepticus 2 weeks after surgery. Additionally, eight different animals were only used to evaluate the neuronal damage inflicted on the MS 1 week after the molecular surgery. Progressive changes in DTI parameters in both white and gray matter structures of the four evaluated groups were observed. Behaviorally, the GAT1-saporin injection impacted spatial memory formation, while 192-IgG-saporin triggered anxiety-like behaviors. Histologically, the GABAergic toxin also induced aberrant mossy fiber sprouting, tissue damage, and neuronal death. Regarding the pilocarpine-induced status epilepticus, this agent provoked an increased mortality rate. Selective septo-hippocampal modulation impacts the integrity of limbic regions crucial for certain behavioral skills and could represent a precursor for epilepsy development.
Collapse
Affiliation(s)
- Hiram Luna-Munguia
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico.
| | - Deisy Gasca-Martinez
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
- Unidad de Analisis Conductual, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Alejandra Garay-Cortes
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Daniela Coutiño
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Mirelta Regalado
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Ericka de Los Rios
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
- Unidad de Microscopia, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Paulina Villaseñor
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Fernando Hidalgo-Flores
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Karen Flores-Guapo
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Brandon Yair Benito
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Luis Concha
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| |
Collapse
|
3
|
Clasadonte J, Deprez T, Stephens GS, Mairet-Coello G, Cortin PY, Boutier M, Frey A, Chin J, Rajman M. ΔFosB is part of a homeostatic mechanism that protects the epileptic brain from further deterioration. Front Mol Neurosci 2024; 16:1324922. [PMID: 38283700 PMCID: PMC10810990 DOI: 10.3389/fnmol.2023.1324922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024] Open
Abstract
Activity induced transcription factor ΔFosB plays a key role in different CNS disorders including epilepsy, Alzheimer's disease, and addiction. Recent findings suggest that ΔFosB drives cognitive deficits in epilepsy and together with the emergence of small molecule inhibitors of ΔFosB activity makes it an interesting therapeutic target. However, whether ΔFosB contributes to pathophysiology or provides protection in drug-resistant epilepsy is still unclear. In this study, ΔFosB was specifically downregulated by delivering AAV-shRNA into the hippocampus of chronically epileptic mice using the drug-resistant pilocarpine model of mesial temporal epilepsy (mTLE). Immunohistochemistry analyses showed that prolonged downregulation of ΔFosB led to exacerbation of neuroinflammatory markers of astrogliosis and microgliosis, loss of mossy fibers, and hippocampal granule cell dispersion. Furthermore, prolonged inhibition of ΔFosB using a ΔJunD construct to block ΔFosB signaling in a mouse model of Alzheimer's disease, that exhibits spontaneous recurrent seizures, led to similar findings, with increased neuroinflammation and decreased NPY expression in mossy fibers. Together, these data suggest that seizure-induced ΔFosB, regardless of seizure-etiology, is part of a homeostatic mechanism that protects the epileptic brain from further deterioration.
Collapse
Affiliation(s)
- Jerome Clasadonte
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Tania Deprez
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | | | | | - Pierre-Yves Cortin
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Maxime Boutier
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Aurore Frey
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Jeannie Chin
- Baylor College of Medicine, Houston, TX, United States
| | - Marek Rajman
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| |
Collapse
|
4
|
Bosetti C, Ferrini L, Ferrari AR, Bartolini E, Calderoni S. Children with Autism Spectrum Disorder and Abnormalities of Clinical EEG: A Qualitative Review. J Clin Med 2024; 13:279. [PMID: 38202286 PMCID: PMC10779511 DOI: 10.3390/jcm13010279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Over the last decade, the comorbidity between Autism Spectrum Disorder (ASD) and epilepsy has been widely demonstrated, and many hypotheses regarding the common neurobiological bases of these disorders have been put forward. A variable, but significant, prevalence of abnormalities on electroencephalogram (EEG) has been documented in non-epileptic children with ASD; therefore, several scientific studies have recently tried to demonstrate the role of these abnormalities as a possible biomarker of altered neural connectivity in ASD individuals. This narrative review intends to summarize the main findings of the recent scientific literature regarding abnormalities detected with standard EEG in children/adolescents with idiopathic ASD. Research using three different databases (PubMed, Scopus and Google Scholar) was conducted, resulting in the selection of 10 original articles. Despite an important lack of studies on preschoolers and a deep heterogeneity in results, some authors speculated on a possible association between EEG abnormalities and ASD characteristics, in particular, the severity of symptoms. Although this correlation needs to be more strongly elucidated, these findings may encourage future studies aimed at demonstrating the role of electrical brain abnormalities as an early biomarker of neural circuit alterations in ASD, highlighting the potential diagnostic, prognostic and therapeutic value of EEG in this field.
Collapse
Affiliation(s)
- Chiara Bosetti
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Luca Ferrini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Anna Rita Ferrari
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
| | - Emanuele Bartolini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Tuscany PhD Programme in Neurosciences, 50139 Florence, Italy
| | - Sara Calderoni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
5
|
Liu Z, Huang W, Zhu M, Xu Z, Xu Z, Yu C, Huang H. Mechanism of Robo1 in the pentylenetetrazol-kindled epilepsy mouse model. IBRAIN 2023; 9:369-380. [PMID: 38680506 PMCID: PMC11045194 DOI: 10.1002/ibra.12127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 04/28/2024]
Abstract
The neural network hypothesis is one of the important pathogenesis of drug-resistant epilepsy. Axons guide molecules through synaptic remodeling and brain tissue remodeling, which may result in the formation of abnormal neural networks. Therefore, axon guidance plays a crucial role in disease progression. However, although Robo1 is one of the important components of axon guidance, the role of Robo1 in epilepsy remains unclear. In this study, we aimed to explore the mechanism of Robo1 in epilepsy. Male adult C57BL/6 mice were intraperitoneally injected with pentylenetetrazol to establish an epilepsy model. Lentivirus (LV) was given via intracranial injection 2 weeks before pentylenetetrazol injection. Different expressions of Robo1 between the control group, LV-mediated Robo1 short hairpin RNA group, empty vector control LV group, and normal saline group were analyzed using Western blot, immunofluorescence staining, Golgi staining, and video monitoring. Robo1 was increased in the hippocampus in the pentylenetetrazol-induced epilepsy mouse model; lentiviral Robo1 knockdown prolonged the latency of seizure and reduced the seizure grade in mice and resulted in a decrease in dendritic spine density, while the number of mature dendritic spines was maintained. We speculate that Robo1 has been implicated in the development and progression of epilepsy through its effects on dendritic spine morphology and density. Epileptic mice with Robo1 knockdown virus intervention had lower seizure grade and longer latency. Follow-up findings suggest that Robo1 may modulate seizures by affecting dendritic spine density and morphology. Downregulation of Robo1 may negatively regulate epileptogenesis by decreasing the density of dendritic spines and maintaining a greater number of mature dendritic spines.
Collapse
Affiliation(s)
- Zheng Liu
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Wei Huang
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Man‐Min Zhu
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Zhong‐Xiang Xu
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Zu‐Cai Xu
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Chang‐Yin Yu
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Hao Huang
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
6
|
Brain Diffusion Weighted Imaging Study of Mongolian Idiopathic Epilepsy. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6978116. [PMID: 36478789 PMCID: PMC9722273 DOI: 10.1155/2022/6978116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022]
Abstract
Objective To evaluate the effectiveness of diffusion-weighted imaging in the assessment of idiopathic epilepsy in Mongolian. Methods One hundred Mongolian idiopathic epilepsy patients were enrolled as the observation group and 100 healthy Mongolian volunteers as the control group. All the subjects underwent routine MRI, diffusion kurtosis imaging (DKI), and intra-voxel incoherent motion (IVIM) examination on a 3.0 T scanner. Mean kurtosis (MK), mean diffusivity (MD), fractional anisotropy (FA), true water molecular diffusion coefficient (D), mean diffusion coefficient (MD), pseudo-diffusion coefficient (D∗), and perfusion fraction (f) of each region of interest in the brain were measured. Count data were expressed as rates, and the chi-square test was performed for comparison between groups. Measurement data were first assessed by a normality test, and the t test for independent samples was performed for comparison between groups if they met the normal distribution; for non-normal distribution, the Mann-Whitney U test was performed for comparison between groups. A ROC curve analysis was performed to test the effectiveness of each parameter. Results MK values of the hippocampus, thalamus, and white matter of the temporal lobe in the observation group were significantly higher than those in the control group, while D and F values were significantly lower (all P < 0.05). ROC curve analysis showed that MK, D, and F values of the hippocampus, thalamus, and white matter of the temporal lobe had moderate to good diagnostic efficacy for idiopathic epilepsy (AUC = 0.617-0.749, all P < 0.001). Conclusion DKI and IVIM can more accurately represent the abnormal changes of brain tissue in patients with epilepsy, and it may have important implications for the clinical diagnosis of Mongolian epileptic patients.
Collapse
|
7
|
Whitebirch AC, LaFrancois JJ, Jain S, Leary P, Santoro B, Siegelbaum SA, Scharfman HE. Enhanced excitability of the hippocampal CA2 region and its contribution to seizure activity in a mouse model of temporal lobe epilepsy. Neuron 2022; 110:3121-3138.e8. [PMID: 35987207 PMCID: PMC9547935 DOI: 10.1016/j.neuron.2022.07.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
Abstract
The hippocampal CA2 region, an area important for social memory, has been suspected to play a role in temporal lobe epilepsy (TLE) because of its resistance to degeneration observed in neighboring CA1 and CA3 regions in both humans and rodent models of TLE. However, little is known about whether alterations in CA2 properties promote seizure generation or propagation. Here, we addressed the role of CA2 using the pilocarpine-induced status epilepticus model of TLE. Ex vivo electrophysiological recordings from acute hippocampal slices revealed a set of coordinated changes that enhance CA2 PC intrinsic excitability, reduce CA2 inhibitory input, and increase CA2 excitatory output to its major CA1 synaptic target. Moreover, selective chemogenetic silencing of CA2 pyramidal cells caused a significant decrease in the frequency of spontaneous seizures measured in vivo. These findings provide the first evidence that CA2 actively contributes to TLE seizure activity and may thus be a promising therapeutic target.
Collapse
Affiliation(s)
- Alexander C Whitebirch
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, NY 10027, USA
| | - John J LaFrancois
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Swati Jain
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Paige Leary
- Department of Neuroscience and Physiology, New York University Langone Health, New York, NY 10016, USA
| | - Bina Santoro
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, NY 10027, USA
| | - Steven A Siegelbaum
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, NY 10027, USA.
| | - Helen E Scharfman
- Department of Child Psychiatry, New York University Langone Health, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Langone Health, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| |
Collapse
|
8
|
Puhahn-Schmeiser B, Kleemann T, Jabbarli R, Bock HH, Beck J, Freiman TM. Granule cell dispersion in two mouse models of temporal lobe epilepsy and reeler mice is associated with changes in dendritic orientation and spine distribution. Hippocampus 2022; 32:517-528. [PMID: 35621370 DOI: 10.1002/hipo.23447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 11/06/2022]
Abstract
Temporal lobe epilepsy is characterized by hippocampal neuronal death in CA1 and hilus. Dentate gyrus granule cells survive but show dispersion of the compact granule cell layer. This is associated with decrease of the glycoprotein Reelin, which regulates neuron migration and dendrite outgrow. Reelin-deficient (reeler) mice show no layering, their granule cells are dispersed throughout the dentate gyrus. We studied granule cell dendritic orientation and distribution of postsynaptic spines in reeler mice and two mouse models of temporal lobe epilepsy, namely the p35 knockout mice, which show Reelin-independent neuronal migration defects, and mice with unilateral intrahippocampal kainate injection. Granule cells were Golgi-stained and analyzed, using a computerized camera lucida system. Granule cells in naive controls exhibited a vertically oriented dendritic arbor with a small bifurcation angle if positioned proximal to the hilus and a wider dendritic bifurcation angle, if positioned distally. P35 knockout- and kainate-injected mice showed a dispersed granule cell layer, granule cells showed basal dendrites with wider bifurcation angles, which lost position-specific differences. Reeler mice lacked dendritic orientation. P35 knockout- and kainate-injected mice showed increased dendritic spine density in the granule cell layer. Molecular layer dendrites showed a reduced spine density in kainate-injected mice only, whereas in p35 knockouts no reduced spine density was seen. Reeler mice showed a homogenous high spine density. We hypothesize that granule cells migrate in temporal lobe epilepsy, develop new dendrites which show a spread of the dendritic tree, create new spines in areas proximal to mossy fiber sprouting, which is present in p35 knockout- and kainate-injected mice and loose spines on distal dendrites if mossy cell death is present, as it was in kainate-injected mice only. These results are in accordance with findings in epilepsy patients.
Collapse
Affiliation(s)
- Barbara Puhahn-Schmeiser
- Faculty of Medicine, Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Tobias Kleemann
- Department of Gastroenterology and Rheumatology, Carl-Thiem-Hospital, Cottbus, Germany
| | - Ramazan Jabbarli
- Faculty of Medicine, Department of Neurosurgery, Medical Center, University of Duisburg-Essen, Essen, Germany
| | - Hans H Bock
- Faculty of Medicine, Department of Gastroenterology, Hepatology and Infectiology, Medical Center, University of Duesseldorf, Duesseldorf, Germany
| | - Jürgen Beck
- Faculty of Medicine, Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Thomas M Freiman
- Department of Neurosurgery, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
9
|
Woelfle S, Boeckers TM. Layer-Specific Vesicular Glutamate Transporter 1 Immunofluorescence Levels Delineate All Layers of the Human Hippocampus Including the Stratum lucidum. Front Cell Neurosci 2021; 15:789903. [PMID: 34955756 PMCID: PMC8696355 DOI: 10.3389/fncel.2021.789903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/18/2021] [Indexed: 11/18/2022] Open
Abstract
The hippocampal formation consists of the Ammon’s horn (cornu Ammonis with its regions CA1-4), dentate gyrus, subiculum, and the entorhinal cortex. The rough extension of the regions CA1-3 is typically defined based on the density and size of the pyramidal neurons without clear-cut boundaries. Here, we propose the vesicular glutamate transporter 1 (VGLUT1) as a molecular marker for the CA3 region. This is based on its strong labeling of the stratum lucidum (SL) in fluorescently stained human hippocampus sections. VGLUT1 puncta of the intense SL band co-localize with synaptoporin (SPO), a protein enriched in mossy fibers (MFs). Owing to its specific intensity profile throughout all hippocampal layers, VGLUT1 could be implemented as a pendant to Nissl-staining in fluorescent approaches with the additional demarcation of the SL. Furthermore, by high-resolution confocal microscopy, we detected VGLUT2 in the human hippocampus, thus reconciling two previous studies. Finally, by VGLUT1/SPO co-staining, we provide evidence for the existence of infrapyramidal MFs in the human hippocampus and we show that SPO expression is not restricted to MF synapses as demonstrated for rodent tissue.
Collapse
Affiliation(s)
- Sarah Woelfle
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,International Graduate School in Molecular Medicine Ulm (IGradU), Ulm, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| |
Collapse
|
10
|
Zhang C, Tian F, Tan Z, Du J, Long X. Altered Expression of Par3, aPKC-λ, and Lgl1 in Hippocampus in Kainic Acid-Induced Status Epilepticus Rat Model. Front Neurol 2021; 12:780042. [PMID: 34956060 PMCID: PMC8692670 DOI: 10.3389/fneur.2021.780042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction: Mossy fiber sprouting (MFS) is a frequent histopathological finding in temporal lobe epilepsy (TLE) and is involved in the pathology of TLE. However, molecular signals underlying MFS remain unclear. Partitioning defective 3(Par3), atypical protein kinase C-λ(aPKC-λ), and lethal giant larvae 1(Lgl1) were involved in the neuronal polarity and axon growth. The potential roles of those proteins in MFS and epileptogenesis of TLE were investigated.Material and Methods: The epileptic rat models were established by intracerebroventricular injection of kainic acid (KA). The degree of MFS was measured by using Timm staining, Neuronal loss and the expression aPKC-λ, Par3, and Lgl1 in hippocampus were measured by using immunohistochemistry and western blot analysis.Results: The neuronal loss in CA3 region was observed from 3 days to 8 weeks, while the neuronal loss in the hilar region was observed from 1 to 8 weeks in experimental group. The Timm score in the CA3 region in experimental group was significantly higher than that in the control group from 2 to 8 weeks. Compared with control group, the expressions of Par3 and Lgl1 were upregulated and the expression of aPKC-λ was downregulated in the experimental groups. Positive correlation between the Par3 expression and Timm scores, and the negative correlation between the aPKC-λ expression and Timm scores in CA3 region were discovered in experimental group.Conclusion: The findings of the present study indicated that aPKC-λ, Par3, and Lgl1 may be involved in MFS and in the epileptogenesis of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fafa Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zheren Tan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Du
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaoyan Long ;
| |
Collapse
|
11
|
Twible C, Abdo R, Zhang Q. Astrocyte Role in Temporal Lobe Epilepsy and Development of Mossy Fiber Sprouting. Front Cell Neurosci 2021; 15:725693. [PMID: 34658792 PMCID: PMC8514632 DOI: 10.3389/fncel.2021.725693] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Epilepsy affects approximately 50 million people worldwide, with 60% of adult epilepsies presenting an onset of focal origin. The most common focal epilepsy is temporal lobe epilepsy (TLE). The role of astrocytes in the presentation and development of TLE has been increasingly studied and discussed within the literature. The most common histopathological diagnosis of TLE is hippocampal sclerosis. Hippocampal sclerosis is characterized by neuronal cell loss within the Cornu ammonis and reactive astrogliosis. In some cases, mossy fiber sprouting may be observed. Mossy fiber sprouting has been controversial in its contribution to epileptogenesis in TLE patients, and the mechanisms surrounding the phenomenon have yet to be elucidated. Several studies have reported that mossy fiber sprouting has an almost certain co-existence with reactive astrogliosis within the hippocampus under epileptic conditions. Astrocytes are known to play an important role in the survival and axonal outgrowth of central and peripheral nervous system neurons, pointing to a potential role of astrocytes in TLE and associated cellular alterations. Herein, we review the recent developments surrounding the role of astrocytes in the pathogenic process of TLE and mossy fiber sprouting, with a focus on proposed signaling pathways and cellular mechanisms, histological observations, and clinical correlations in human patients.
Collapse
Affiliation(s)
- Carolyn Twible
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada
| | - Rober Abdo
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada.,Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Qi Zhang
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada.,Department of Pathology and Lab Medicine, London Health Sciences Centre, University Hospital, London, ON, Canada
| |
Collapse
|
12
|
Puhahn-Schmeiser B, Leicht K, Gessler F, Freiman TM. Aberrant hippocampal mossy fibers in temporal lobe epilepsy target excitatory and inhibitory neurons. Epilepsia 2021; 62:2539-2550. [PMID: 34453315 DOI: 10.1111/epi.17035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The pathoanatomical correlate of temporal lobe epilepsy is hippocampal sclerosis, characterized by selective neuronal death of mossy cells in the hilus and of pyramidal cells in cornu ammonis 1. Although granule cells survive, they lose mossy cells as a target and redirect their axons (mossy fibers) backward into the molecular cell layer. It has been assumed that this process results in excitatory circuits. We therefore examined whether sprouted mossy fibers form synaptic connection not only with excitatory granule cells but also with inhibitory interneurons, such as basket cells. METHODS Resected hippocampal specimens of patients with hippocampal sclerosis were compared to controls of patients with extrahippocampal lesions with only mild sclerosis. Mossy fibers were traced with Neurobiotin or labeled against synaptoporin; inhibitory interneurons were labeled against parvalbumin. Synapses were examined with electron microscopy, labeled with γ-aminobutyric acid immunogold. RESULTS Sprouted mossy fibers of epileptic hippocampi innervate not only excitatory granule cells but also inhibitory parvalbuminergic interneurons. Despite neuronal death in hippocampal sclerosis, the axonal plexus of inhibitory parvalbuminergic interneurons surrounding the granule cells is preserved. Connections of sprouted mossy fibers and inhibitory axon terminals were quantified, showing that the number of inhibitory axon terminals significantly exceeds the number of sprouted excitatory mossy fiber terminals (.03 boutons/µm vs. .11 boutons/µm; p < .001). SIGNIFICANCE Although no definite conclusions regarding the function of our findings may be derived from this anatomical study, the observed aberrant connectivity might lead to an increased inhibition and synchronization of granule cells, because the preserved inhibitory interneurons show an additional innervation through sprouted mossy fibers. This might result in the instability of a previously balanced network.
Collapse
Affiliation(s)
- Barbara Puhahn-Schmeiser
- Department of Neurosurgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Kathrin Leicht
- Department of Neurosurgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Florian Gessler
- Department of Neurosurgery, Faculty of Medicine, University of Rostock, Rostock, Germany
| | - Thomas M Freiman
- Department of Neurosurgery, Faculty of Medicine, University of Rostock, Rostock, Germany
| |
Collapse
|
13
|
Scopolamine prevents aberrant mossy fiber sprouting and facilitates remission of epilepsy after brain injury. Neurobiol Dis 2021; 158:105446. [PMID: 34280524 DOI: 10.1016/j.nbd.2021.105446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022] Open
Abstract
Prevention or modification of acquired epilepsy in patients at risk is an urgent, yet unmet, clinical need. Following acute brain insults, there is an increased risk of mesial temporal lobe epilepsy (mTLE), which is often associated with debilitating comorbidities and reduced life expectancy. The latent period between brain injury and the onset of epilepsy may offer a therapeutic window for interfering with epileptogenesis. The pilocarpine model of mTLE is widely used in the search for novel antiepileptogenic treatments. Recent biochemical studies indicated that cholinergic mechanisms play a role in the epileptogenic alterations induced by status epilepticus (SE) in this and other models of mTLE, which prompted us to evaluate whether treatment with the muscarinic antagonist scopolamine during the latent period after SE is capable of preventing or modifying epilepsy and associated behavioral and cognitive alterations in female Sprague-Dawley rats. First, in silico pharmacokinetic modeling was used to select a dosing protocol by which M-receptor inhibitory brain levels of scopolamine are maintained during prolonged treatment. This protocol was verified by drug analysis in vivo. Rats were then treated twice daily with scopolamine over 17 days after SE, followed by drug wash-out and behavioral and video/EEG monitoring up to ~6 months after SE. Compared to vehicle controls, rats that were treated with scopolamine during the latent period exhibited a significantly lower incidence of spontaneous recurrent seizures during periods of intermittent recording in the chronic phase of epilepsy, less behavioral excitability, less cognitive impairment, and significantly reduced aberrant mossy fiber sprouting in the hippocampus. The present data may indicate that scopolamine exerts antiepileptogenic/disease-modifying activity in the lithium-pilocarpine rat model, possibly involving increased remission of epilepsy as a new mechanism of disease-modification. For evaluating the rigor of the present data, we envision a study that more thoroughly addresses the gender bias and video-EEG recording limitations of the present study.
Collapse
|
14
|
Freiman TM, Häussler U, Zentner J, Doostkam S, Beck J, Scheiwe C, Brandt A, Haas CA, Puhahn-Schmeiser B. Mossy fiber sprouting into the hippocampal region CA2 in patients with temporal lobe epilepsy. Hippocampus 2021; 31:580-592. [PMID: 33720466 DOI: 10.1002/hipo.23323] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 01/28/2023]
Abstract
Hippocampal sclerosis (HS) in Temporal Lobe Epilepsy (TLE) shows neuronal death in cornu ammonis (CA)1, CA3, and CA4. It is known that granule cells and CA2 neurons survive and their axons, the mossy fibers (MF), lose their target cells in CA3 and CA4 and sprout to the granule cell layer and molecular layer. We examined in TLE patients and in a mouse epilepsy model, whether MF sprouting is directed to the dentate gyrus or extends to distant CA regions and whether sprouting is associated with death of target neurons in CA3 and CA4. In 319 TLE patients, HS was evaluated by Wyler grade and International League against Epilepsy (ILAE) types using immunohistochemistry against neuronal nuclei (NeuN). Synaptoporin was used to colocalize MF. In addition, transgenic Thy1-eGFP mice were intrahippocampally injected with kainate and sprouting of eGFP-positive MFs was analyzed together with immunocytochemistry for regulator of G-protein signaling 14 (RGS14). In human HS Wyler III and IV as well as in ILAE 1, 2, and 3 specimens, we found synaptoporin-positive axon terminals in CA2 and even in CA1, associated with the extent of granule cell dispersion. Sprouting was seen in cases with cell death of target neurons in CA3 and CA4 (classical severe HS ILAE type 1) but also without this cell death (atypical HS ILAE type 2). Similarly, in epileptic mice eGFP-positive MFs sprouted to CA2 and beyond. The presence of MF terminals in the CA2 pyramidal cell layer and in CA1 was also correlated with the extent of granule cell dispersion. The similarity of our findings in human specimens and in the mouse model highlights the importance and opens up new chances of using translational approaches to determine mechanisms underlying TLE.
Collapse
Affiliation(s)
- Thomas M Freiman
- Department of Neurosurgery, Rostock University Medical Center, Rostock, Germany
| | - Ute Häussler
- Department of Neurosurgery, Experimental Epilepsy Research, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Josef Zentner
- Faculty of Medicine, Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
| | - Soroush Doostkam
- Faculty of Medicine, Institute of Neuropathology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Faculty of Medicine, Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
| | - Christian Scheiwe
- Faculty of Medicine, Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
| | - Armin Brandt
- Epilepsy Center, University Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| | - Carola A Haas
- Department of Neurosurgery, Experimental Epilepsy Research, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Barbara Puhahn-Schmeiser
- Faculty of Medicine, Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Gray LG, Mills JD, Curry-Hyde A, Devore S, Friedman D, Thom M, Scott C, Thijs RD, Aronica E, Devinsky O, Janitz M. Identification of Specific Circular RNA Expression Patterns and MicroRNA Interaction Networks in Mesial Temporal Lobe Epilepsy. Front Genet 2020; 11:564301. [PMID: 33101384 PMCID: PMC7546880 DOI: 10.3389/fgene.2020.564301] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) regulate mRNA translation by binding to microRNAs (miRNAs), and their expression is altered in diverse disorders, including cancer, cardiovascular disease, and Parkinson’s disease. Here, we compare circRNA expression patterns in the temporal cortex and hippocampus of patients with pharmacoresistant mesial temporal lobe epilepsy (MTLE) and healthy controls. Nine circRNAs showed significant differential expression, including circRNA-HOMER1, which is expressed in synapses. Further, we identified miRNA binding sites within the sequences of differentially expressed (DE) circRNAs; expression levels of mRNAs correlated with changes in complementary miRNAs. Gene set enrichment analysis of mRNA targets revealed functions in heterocyclic compound binding, regulation of transcription, and signal transduction, which maintain the structure and function of hippocampal neurons. The circRNA–miRNA–mRNA interaction networks illuminate the molecular changes in MTLE, which may be pathogenic or an effect of the disease or treatments and suggests that DE circRNAs and associated miRNAs may be novel therapeutic targets.
Collapse
Affiliation(s)
- Lachlan G Gray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, Sydney, NSW, Australia
| | - James D Mills
- Amsterdam UMC, Department of (Neuro)Pathology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Ashton Curry-Hyde
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Sasha Devore
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Daniel Friedman
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Catherine Scott
- Centre for Medical Image Computing, University College London Institute of Neurology, London, United Kingdom
| | - Roland D Thijs
- Stichting Epilepsie Instellingen Nederland, Heemstede, Netherlands
| | - Eleonora Aronica
- Amsterdam UMC, Department of (Neuro)Pathology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, Netherlands.,Stichting Epilepsie Instellingen Nederland, Heemstede, Netherlands
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University Langone Medical Center, New York, NY, United States
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, Sydney, NSW, Australia.,Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
16
|
Fu J, Tao T, Li Z, Chen Y, Li J, Peng L. The roles of ER stress in epilepsy: Molecular mechanisms and therapeutic implications. Biomed Pharmacother 2020; 131:110658. [PMID: 32841895 DOI: 10.1016/j.biopha.2020.110658] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsies are a diverse group of neurological disorders, which are characterized by spontaneous recurrent seizures. Although a wide range of pathogenic mechanisms such as alterations in ion channels, inflammation and neuronal loss have been reported to be implicated in the epileptogenesis, the underlying pathogenesis of epilepsy remains unclear currently. Endoplasmic reticulum (ER) stress is regarded as a condition that unfolded or misfolded proteins accumulate in the ER lumen. Excessive or prolonged ER stress causes the activation of the unfolded protein response (UPR) to buffer ER stress and restore ER homeostasis. Increasing evidence has indicated dysregulated ER stress during epileptogenesis, which may participate in various pathological processes associated with epilepsy. In this present review, we summarized recent advances in the involvement of ER stress in the pathogenesis of epilepsy. Additionally, the antiepileptic and neuroprotective effects of interventions targeting ER stress were also discussed.
Collapse
Affiliation(s)
- Jie Fu
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China; Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Tao Tao
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China
| | - Zuoxiao Li
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China
| | - Yangmei Chen
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jinglun Li
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China.
| | - Lilei Peng
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China.
| |
Collapse
|
17
|
Han CL, Liu YP, Guo CJ, Du TT, Jiang Y, Wang KL, Shao XQ, Meng FG, Zhang JG. The lncRNA H19 binding to let-7b promotes hippocampal glial cell activation and epileptic seizures by targeting Stat3 in a rat model of temporal lobe epilepsy. Cell Prolif 2020; 53:e12856. [PMID: 32648622 PMCID: PMC7445408 DOI: 10.1111/cpr.12856] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/27/2020] [Accepted: 05/16/2020] [Indexed: 12/18/2022] Open
Abstract
Objectives Glial cell activation contributes to the inflammatory response and occurrence of epilepsy. Our preliminary study demonstrated that the long non‐coding RNA, H19, promotes hippocampal glial cell activation during epileptogenesis. However, the precise mechanisms underlying this effect remain unclear. Materials and methods H19 and let‐7b were overexpressed or silenced using an adeno‐associated viral vector in vivo. Their expression in a kainic acid‐induced epilepsy model was evaluated by real‐time quantitative PCR, fluorescence in situ hybridization, and cytoplasmic and nuclear RNA isolation. A dual‐luciferase reporter assay was used to evaluate the direct binding of let‐7b to its target genes and H19. Western blot, video camera monitoring and Morris water maze were performed to confirm the role of H19 and let7b on epileptogenesis. Results H19 was increased in rat hippocampus neurons after status epilepticus, which might be due to epileptic seizure‐induced hypoxia. Increased H19 aggravated the epileptic seizures, memory impairment and mossy fibre sprouting of the epileptic rats. H19 could competitively bind to let‐7b to suppress its expression. Overexpression of let‐7b inhibited hippocampal glial cell activation, inflammatory response and epileptic seizures by targeting Stat3. Moreover, overexpressed H19 reversed the inhibitory effect of let‐7b on glial cell activation. Conclusions LncRNA H19 could competitively bind to let‐7b to promote hippocampal glial cell activation and epileptic seizures by targeting Stat3 in a rat model of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Chun-Lei Han
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yun-Peng Liu
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Chen-Jia Guo
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ting-Ting Du
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Ying Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Kai-Liang Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Xiao-Qiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fan-Gang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Guo Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Hammer MF, Sprissler R, Bina RW, Lau B, Johnstone L, Walter CM, Labiner DM, Weinand ME. Altered expression of signaling pathways regulating neuronal excitability in hippocampal tissue of temporal lobe epilepsy patients with low and high seizure frequency. Epilepsy Res 2019; 155:106145. [DOI: 10.1016/j.eplepsyres.2019.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022]
|
19
|
Tse K, Hammond D, Simpson D, Beynon RJ, Beamer E, Tymianski M, Salter MW, Sills GJ, Thippeswamy T. The impact of postsynaptic density 95 blocking peptide (Tat-NR2B9c) and an iNOS inhibitor (1400W) on proteomic profile of the hippocampus in C57BL/6J mouse model of kainate-induced epileptogenesis. J Neurosci Res 2019; 97:1378-1392. [PMID: 31090233 DOI: 10.1002/jnr.24441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/22/2022]
Abstract
Antiepileptogenic agents that prevent the development of epilepsy following a brain insult remain the holy grail of epilepsy therapeutics. We have employed a label-free proteomic approach that allows quantification of large numbers of brain-expressed proteins in a single analysis in the mouse (male C57BL/6J) kainate (KA) model of epileptogenesis. In addition, we have incorporated two putative antiepileptogenic drugs, postsynaptic density protein-95 blocking peptide (PSD95BP or Tat-NR2B9c) and a highly selective inducible nitric oxide synthase inhibitor, 1400W, to give an insight into how such agents might ameliorate epileptogenesis. The test drugs were administered after the induction of status epilepticus (SE) and the animals were euthanized at 7 days, their hippocampi removed, and subjected to LC-MS/MS analysis. A total of 2,579 proteins were identified; their normalized abundance was compared between treatment groups using ANOVA, with correction for multiple testing by false discovery rate. Significantly altered proteins were subjected to gene ontology and KEGG pathway enrichment analyses. KA-induced SE was most robustly associated with an alteration in the abundance of proteins involved in neuroinflammation, including heat shock protein beta-1 (HSP27), glial fibrillary acidic protein, and CD44 antigen. Treatment with PSD95BP or 1400W moderated the abundance of several of these proteins plus that of secretogranin and Src substrate cortactin. Pathway analysis identified the glutamatergic synapse as a key target for both drugs. Our observations require validation in a larger-scale investigation, with candidate proteins explored in more detail. Nevertheless, this study has identified several mechanisms by which epilepsy might develop and several targets for novel drug development. OPEN PRACTICES: This article has been awarded Open Data. All materials and data are publicly accessible as supporting information. Learn more about the Open Practices badges from the Center for Open Science: https://osf.io/tvyxz/wiki.
Collapse
Affiliation(s)
- Karen Tse
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Dean Hammond
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Deborah Simpson
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Edward Beamer
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Michael Tymianski
- Department of Physiology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Michael W Salter
- Department of Physiology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Graeme J Sills
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Thimmasettappa Thippeswamy
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
20
|
Cavarsan CF, Malheiros J, Hamani C, Najm I, Covolan L. Is Mossy Fiber Sprouting a Potential Therapeutic Target for Epilepsy? Front Neurol 2018; 9:1023. [PMID: 30555406 PMCID: PMC6284045 DOI: 10.3389/fneur.2018.01023] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) caused by hippocampal sclerosis is one of the most frequent focal epilepsies in adults. It is characterized by focal seizures that begin in the hippocampus, sometimes spread to the insulo-perisylvian regions and may progress to secondary generalized seizures. Morphological alterations in hippocampal sclerosis are well defined. Among them, hippocampal sclerosis is characterized by prominent cell loss in the hilus and CA1, and abnormal mossy fiber sprouting (granular cell axons) into the dentate gyrus inner molecular layer. In this review, we highlight the role of mossy fiber sprouting in seizure generation and hippocampal excitability and discuss the response of alternative treatment strategies in terms of MFS and spontaneous recurrent seizures in models of TLE (temporal lobe epilepsy).
Collapse
Affiliation(s)
- Clarissa F Cavarsan
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jackeline Malheiros
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clement Hamani
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil.,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Imad Najm
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Luciene Covolan
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil.,Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
21
|
Jeong KH, Kim SH, Choi YH, Cho I, Kim WJ. Increased expression of WNK3 in dispersed granule cells in hippocampal sclerosis of mesial temporal lobe epilepsy patients. Epilepsy Res 2018; 147:58-61. [PMID: 30253317 DOI: 10.1016/j.eplepsyres.2018.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/22/2018] [Accepted: 09/14/2018] [Indexed: 11/17/2022]
Abstract
Granule cell dispersion (GCD) is a common neuropathological feature of hippocampal sclerosis (HS) in patients with temporal lobe epilepsy (TLE). However, the underlying molecular mechanism of GCD formation remains unclear. The present study aimed to investigate the expressional changes of With No Lysine protein kinase subtype 3 (WNK3), a molecule upstream of cation-chloride cotransporters with reciprocal expression in sclerosed hippocampus of TLE patients. Using immunofluorescence staining, we analyzed WNK3 immunoreactivity in hippocampal specimens from histologically normal controls and TLE patients with HS. Our results showed that WNK3 expression was significantly increased in dispersed granule neurons in hippocampal tissues from patients with TLE compared with histologically normal hippocampus. These findings demonstrate a potential association between an increased expression of WNK3 and GCD formation during the chronic phase of epilepsy. Controlling WNK3 expression may thus be a novel therapeutic target in epileptogenesis.
Collapse
Affiliation(s)
- Kyoung Hoon Jeong
- Department of Neurology and Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Yun Ho Choi
- Department of Neurology, Incheon St. Mary's Hospital, The Catholic University of Korea College of Medicine, Incheon, Republic of Korea
| | - Inja Cho
- Department of Neurology and Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Won-Joo Kim
- Department of Neurology and Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Chung BYT, Bailey CDC. Similar nicotinic excitability responses across the developing hippocampal formation are regulated by small-conductance calcium-activated potassium channels. J Neurophysiol 2018; 119:1707-1722. [PMID: 29384449 DOI: 10.1152/jn.00426.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The hippocampal formation forms a cognitive circuit that is critical for learning and memory. Cholinergic input to nicotinic acetylcholine receptors plays an important role in the normal development of principal neurons within the hippocampal formation. However, the ability of nicotinic receptors to stimulate principal neurons across all regions of the developing hippocampal formation has not been determined. We show in this study that heteromeric nicotinic receptors mediate direct inward current and depolarization responses in principal neurons across the hippocampal formation of the young postnatal mouse. These responses were found in principal neurons of the CA1, CA3, dentate gyrus, subiculum, and entorhinal cortex layer VI, and they varied in magnitude across regions with the greatest responses occurring in the subiculum and entorhinal cortex. Despite this regional variation in the magnitude of passive responses, heteromeric nicotinic receptor stimulation increased the excitability of active principal neurons by a similar amount in all regions. Pharmacological experiments found this similar excitability response to be regulated by small-conductance calcium-activated potassium (SK) channels, which exhibited regional differences in their influence on neuron activity that offset the observed regional differences in passive nicotinic responses. These findings demonstrate that SK channels play a role to coordinate the magnitude of heteromeric nicotinic excitability responses across the hippocampal formation at a time when nicotinic signaling drives the development of this cognitive brain region. This coordinated input may contribute to the normal development, synchrony, and maturation of the hippocampal formation learning and memory network. NEW & NOTEWORTHY This study demonstrates that small-conductance calcium-activated potassium channels regulate similar-magnitude excitability responses to heteromeric nicotinic acetylcholine receptor stimulation in active principal neurons across multiple regions of the developing mouse hippocampal formation. Given the importance of nicotinic neurotransmission for the development of principal neurons within the hippocampal formation, this coordinated excitability response is positioned to influence the normal development, synchrony, and maturation of the hippocampal formation learning and memory network.
Collapse
Affiliation(s)
- Beryl Y T Chung
- Department of Biomedical Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Craig D C Bailey
- Department of Biomedical Sciences, University of Guelph , Guelph, Ontario , Canada
| |
Collapse
|
23
|
Wu Q, Zhao CW, Long Z, Xiao B, Feng L. Anatomy Based Networks and Topology Alteration in Seizure-Related Cognitive Outcomes. Front Neuroanat 2018; 12:25. [PMID: 29681801 PMCID: PMC5898178 DOI: 10.3389/fnana.2018.00025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 03/20/2018] [Indexed: 01/19/2023] Open
Abstract
Epilepsy is a paroxysmal neurological disorder characterized by recurrent and unprovoked seizures affecting approximately 50 million people worldwide. Cognitive dysfunction induced by seizures is a severe comorbidity of epilepsy and epilepsy syndromes and reduces patients’ quality of life. Seizures, along with accompanying histopathological and pathophysiological changes, are associated with cognitive comorbidities. Advances in imaging technology and computing allow anatomical and topological changes in neural networks to be visualized. Anatomical components including the hippocampus, amygdala, cortex, corpus callosum (CC), cerebellum and white matter (WM) are the fundamental components of seizure- and cognition-related topological networks. Damage to these structures and their substructures results in worsening of epilepsy symptoms and cognitive dysfunction. In this review article, we survey structural, network changes and topological alteration in different regions of the brain and in different epilepsy and epileptic syndromes, and discuss what these changes may mean for cognitive outcomes related to these disease states.
Collapse
Affiliation(s)
- Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Charlie W Zhao
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Zhe Long
- Sydney Medical School and the Brain & Mind Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Galinato MH, Takashima Y, Fannon MJ, Quach LW, Morales Silva RJ, Mysore KK, Terranova MJ, Dutta RR, Ostrom RW, Somkuwar SS, Mandyam CD. Neurogenesis during Abstinence Is Necessary for Context-Driven Methamphetamine-Related Memory. J Neurosci 2018; 38:2029-2042. [PMID: 29363584 PMCID: PMC5824740 DOI: 10.1523/jneurosci.2011-17.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/05/2017] [Accepted: 01/09/2018] [Indexed: 12/22/2022] Open
Abstract
Abstinence from methamphetamine addiction enhances proliferation and differentiation of neural progenitors and increases adult neurogenesis in the dentate gyrus (DG). We hypothesized that neurogenesis during abstinence contributes to context-driven drug-seeking behaviors. To test this hypothesis, the pharmacogenetic rat model (GFAP-TK rats) was used to conditionally and specifically ablate neurogenesis in the DG. Male GFAP-TK rats were trained to self-administer methamphetamine or sucrose and were administered the antiviral drug valganciclovir (Valcyte) to produce apoptosis of actively dividing GFAP type 1 stem-like cells to inhibit neurogenesis during abstinence. Hippocampus tissue was stained for Ki-67, NeuroD, and DCX to measure levels of neural progenitors and immature neurons, and was stained for synaptoporin to determine alterations in mossy fiber tracts. DG-enriched tissue punches were probed for CaMKII to measure alterations in plasticity-related proteins. Whole-cell patch-clamp recordings were performed in acute brain slices from methamphetamine naive (controls) and methamphetamine experienced animals (+/-Valcyte). Spontaneous EPSCs and intrinsic excitability were recorded from granule cell neurons (GCNs). Reinstatement of methamphetamine seeking enhanced autophosphorylation of CaMKII, reduced mossy fiber density, and induced hyperexcitability of GCNs. Inhibition of neurogenesis during abstinence prevented context-driven methamphetamine seeking, and these effects correlated with reduced autophosphorylation of CaMKII, increased mossy fiber density, and reduced the excitability of GCNs. Context-driven sucrose seeking was unaffected. Together, the loss-of-neurogenesis data demonstrate that neurogenesis during abstinence assists with methamphetamine context-driven memory in rats, and that neurogenesis during abstinence is essential for the expression of synaptic proteins and plasticity promoting context-driven drug memory.SIGNIFICANCE STATEMENT Our work uncovers a mechanistic relationship between neurogenesis in the dentate gyrus and drug seeking. We report that the suppression of excessive neurogenesis during abstinence from methamphetamine addiction by a confirmed phamacogenetic approach blocked context-driven methamphetamine reinstatement and prevented maladaptive changes in expression and activation of synaptic proteins and basal synaptic function associated with learning and memory in the dentate gyrus. Our study is the first to demonstrate an interesting and dysfunctional role of adult hippocampal neurogenesis during abstinence to drug-seeking behavior in animals self-administering escalating amounts of methamphetamine. Together, these results support a direct role for the importance of adult neurogenesis during abstinence in compulsive-like drug reinstatement.
Collapse
Affiliation(s)
- Melissa H Galinato
- Departments of Neuroscience
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California 92037
| | - Yoshio Takashima
- Anesthesiology, University of California San Diego, San Diego, California 92093
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - McKenzie J Fannon
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - Leon W Quach
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | | | - Karthik K Mysore
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - Michael J Terranova
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - Rahul R Dutta
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California 92037
| | - Ryan W Ostrom
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - Sucharita S Somkuwar
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - Chitra D Mandyam
- Departments of Neuroscience,
- Anesthesiology, University of California San Diego, San Diego, California 92093
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
25
|
Kitaura H, Shirozu H, Masuda H, Fukuda M, Fujii Y, Kakita A. Pathophysiological Characteristics Associated With Epileptogenesis in Human Hippocampal Sclerosis. EBioMedicine 2018; 29:38-46. [PMID: 29478873 PMCID: PMC5925580 DOI: 10.1016/j.ebiom.2018.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/07/2018] [Accepted: 02/15/2018] [Indexed: 12/29/2022] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) is the most frequent focal epileptic syndrome in adults, and the majority of seizures originate primarily from the hippocampus. The resected hippocampal tissue often shows severe neuronal loss, a condition referred to as hippocampal sclerosis (HS). In order to understand hippocampal epileptogenesis in MTLE, it seems important to clarify any discrepancies between the clinical and pathological features of affected patients. Here we investigated epileptiform activities ex vivo using living hippocampal tissue taken from patients with MTLE. Flavoprotein fluorescence imaging and local field potential recordings revealed that epileptiform activities developed from the subiculum. Moreover, physiological and morphological experiments revealed possible impairment of K+ clearance in the subiculum affected by HS. Stimulation of mossy fibers induced recurrent trans-synaptic activity in the granule cell layer of the dentate gyrus, suggesting that mossy fiber sprouting in HS also contributes to the epileptogenic mechanism. These results indicate that pathophysiological alterations involving the subiculum and dentate gyrus could be responsible for epileptogenesis in patients with MTLE.
Collapse
Affiliation(s)
- Hiroki Kitaura
- Department of Pathology, Brain Research Institute, Niigata University, 1 Asahimachi, Chuo-ku, Niigata 951-8585, Japan.
| | - Hiroshi Shirozu
- Department of Neurosurgery, Nishi-Niigata Chuo National Hospital, 1 Masago, Nishi-ku, Niigata 950-2085, Japan
| | - Hiroshi Masuda
- Department of Neurosurgery, Nishi-Niigata Chuo National Hospital, 1 Masago, Nishi-ku, Niigata 950-2085, Japan
| | - Masafumi Fukuda
- Department of Neurosurgery, Nishi-Niigata Chuo National Hospital, 1 Masago, Nishi-ku, Niigata 950-2085, Japan
| | - Yukihiko Fujii
- Department of Neurosurgery, Brain Research Institute, Niigata University, 1 Asahimachi, Chuo-ku, Niigata 951-8585, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, 1 Asahimachi, Chuo-ku, Niigata 951-8585, Japan
| |
Collapse
|
26
|
Jarero-Basulto JJ, Gasca-Martínez Y, Rivera-Cervantes MC, Ureña-Guerrero ME, Feria-Velasco AI, Beas-Zarate C. Interactions Between Epilepsy and Plasticity. Pharmaceuticals (Basel) 2018; 11:ph11010017. [PMID: 29414852 PMCID: PMC5874713 DOI: 10.3390/ph11010017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
Undoubtedly, one of the most interesting topics in the field of neuroscience is the ability of the central nervous system to respond to different stimuli (normal or pathological) by modifying its structure and function, either transiently or permanently, by generating neural cells and new connections in a process known as neuroplasticity. According to the large amount of evidence reported in the literature, many stimuli, such as environmental pressures, changes in the internal dynamic steady state of the organism and even injuries or illnesses (e.g., epilepsy) may induce neuroplasticity. Epilepsy and neuroplasticity seem to be closely related, as the two processes could positively affect one another. Thus, in this review, we analysed some neuroplastic changes triggered in the hippocampus in response to seizure-induced neuronal damage and how these changes could lead to the establishment of temporal lobe epilepsy, the most common type of focal human epilepsy.
Collapse
Affiliation(s)
- José J Jarero-Basulto
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Yadira Gasca-Martínez
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Martha C Rivera-Cervantes
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Mónica E Ureña-Guerrero
- Neurotransmission Biology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Alfredo I Feria-Velasco
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Carlos Beas-Zarate
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| |
Collapse
|
27
|
Schmeiser B, Li J, Brandt A, Zentner J, Doostkam S, Freiman TM. Different mossy fiber sprouting patterns in ILAE hippocampal sclerosis types. Epilepsy Res 2017; 136:115-122. [DOI: 10.1016/j.eplepsyres.2017.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/07/2017] [Accepted: 08/05/2017] [Indexed: 12/28/2022]
|