1
|
Sakhr HM, Hassan MH, Salah AE, Bakri AH. Clinical and biochemical assessments of circulating High Mobility Group Box Protein1 in children with epilepsy: relation to cognitive function and drug responsiveness. Neurol Sci 2024:10.1007/s10072-024-07795-z. [PMID: 39466324 DOI: 10.1007/s10072-024-07795-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Childhood epilepsy is a major health concern posing a significant burden and having disastrous consequences for cognitive function. High Mobility Group Box1 (HMGB1) is an activator of neuroinflammation, and it is possibly involved in the initiation and progression of epilepsy. We aimed to investigate circulating HMGB1 in children with epilepsy and its connection to cognitive function and drug responsiveness. METHODS Case-control research included 100 epileptic youngsters and 100 healthy matched controls. Serum HMGB1 was measured using a commercially available ELISA assay. Cognitive functions were evaluated by the Stanford-Binet test 5th edition. RESULTS Drug-resistant epilepsy (DRE) was found in 37% of the investigated patients. Epileptic children have lower cognitive function parameter levels versus the control group and lower cognitive function in the DRE group compared to the drug-responsive group (P-value < 0.0001). HMGB1 levels were significantly higher in the patients' group (6.279 µg/L) compared to the control group (2.093 µg/L) and in the drug-resistant group (14.26 µg/L) versus the drug-responsive group (4.88 µg/L). A significant negative correlation was detected between HMGB1 with Full-scale IQ (r = - 0.547, P = 0.000), Visual-spatial reasoning (r = - 0.501, P = 0.000), fluid reasoning (r = - 0.510, P = 0.000), and working memory (r = - 0.555, P = 0.000). Serum HMGB1 cut-off levels > 6.85 µg/L differentiate drug-responsive from resistant patients. CONCLUSION Elevated HMGB1 levels, especially in patients with drug-resistant epilepsy, correlate negatively with cognitive performance, emphasizing its importance as a potential marker for early prediction of drug resistance and impairment of cognitive function.
Collapse
Affiliation(s)
- Hala M Sakhr
- Department of Pediatrics, Faculty of Medicine, South Valley University, Qena, Egypt.
| | - Mohammed H Hassan
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt.
| | - Asmaa E Salah
- Department of Pediatrics, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Ali Helmi Bakri
- Department of Pediatrics, Faculty of Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
2
|
Aguilar-Castillo MJ, Cabezudo-García P, García-Martín G, Lopez-Moreno Y, Estivill-Torrús G, Ciano-Petersen NL, Oliver-Martos B, Narváez-Pelaez M, Serrano-Castro PJ. A Systematic Review of the Predictive and Diagnostic Uses of Neuroinflammation Biomarkers for Epileptogenesis. Int J Mol Sci 2024; 25:6488. [PMID: 38928193 PMCID: PMC11487433 DOI: 10.3390/ijms25126488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
A central role for neuroinflammation in epileptogenesis has recently been suggested by several investigations. This systematic review explores the role of inflammatory mediators in epileptogenesis, its association with seizure severity, and its correlation with drug-resistant epilepsy (DRE). The study analysed articles published in JCR journals from 2019 to 2024. The search strategy comprised the MESH, free terms of "Neuroinflammation", and selective searches for the following single biomarkers that had previously been selected from the relevant literature: "High mobility group box 1/HMGB1", "Toll-Like-Receptor 4/TLR-4", "Interleukin-1/IL-1", "Interleukin-6/IL-6", "Transforming growth factor beta/TGF-β", and "Tumour necrosis factor-alpha/TNF-α". These queries were all combined with the MESH terms "Epileptogenesis" and "Epilepsy". We found 243 articles related to epileptogenesis and neuroinflammation, with 356 articles from selective searches by biomarker type. After eliminating duplicates, 324 articles were evaluated, with 272 excluded and 55 evaluated by the authors. A total of 21 articles were included in the qualitative evaluation, including 18 case-control studies, 2 case series, and 1 prospective study. As conclusion, this systematic review provides acceptable support for five biomarkers, including TNF-α and some of its soluble receptors (sTNFr2), HMGB1, TLR-4, CCL2 and IL-33. Certain receptors, cytokines, and chemokines are examples of neuroinflammation-related biomarkers that may be crucial for the early diagnosis of refractory epilepsy or may be connected to the control of epileptic seizures. Their value will be better defined by future studies.
Collapse
Affiliation(s)
| | - Pablo Cabezudo-García
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Alianza Andalucía Neuro-RECA—Roche en Neurología Médica de Precisión, 29010 Málaga, Spain
| | - Guillermina García-Martín
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Alianza Andalucía Neuro-RECA—Roche en Neurología Médica de Precisión, 29010 Málaga, Spain
| | - Yolanda Lopez-Moreno
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Guillermo Estivill-Torrús
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Alianza Andalucía Neuro-RECA—Roche en Neurología Médica de Precisión, 29010 Málaga, Spain
| | - Nicolas Lundahl Ciano-Petersen
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Alianza Andalucía Neuro-RECA—Roche en Neurología Médica de Precisión, 29010 Málaga, Spain
- Hospitales Vithas Málaga y Xanit Internacional, 29016 Málaga, Spain
| | - Begoña Oliver-Martos
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Alianza Andalucía Neuro-RECA—Roche en Neurología Médica de Precisión, 29010 Málaga, Spain
- Departamento de Fisiologia Animal, Biologìa Celular y Genética, Universidad de Málaga, 29010 Málaga, Spain
| | - Manuel Narváez-Pelaez
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Hospitales Vithas Málaga y Xanit Internacional, 29016 Málaga, Spain
- Departamento de Fisiología, Universidad de Málaga, 29010 Málaga, Spain
| | - Pedro Jesús Serrano-Castro
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Alianza Andalucía Neuro-RECA—Roche en Neurología Médica de Precisión, 29010 Málaga, Spain
- Hospitales Vithas Málaga y Xanit Internacional, 29016 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| |
Collapse
|
3
|
Wu Z, Liang L, Huang Q. Potential significance of high-mobility group protein box 1 in cerebrospinal fluid. Heliyon 2023; 9:e21926. [PMID: 38027583 PMCID: PMC10661089 DOI: 10.1016/j.heliyon.2023.e21926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/27/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
High-mobility group protein box 1 (HMGB1) is a cytokine with multiple functions (according to its subcellular location) that serves a marker of inflammation. CSF HMGB1 could be the part of pathological mechanisms that underlie the complications associated with CNS diseases. HMGB1 actively or passively released into the CSF is detected in the CSF in many diseases of the central nervous system (CNS) and thus may be useful as a biomarker. Pathological alterations in distant areas were observed due to lesions in a specific region, and the level of HMGB1 in the CSF was found to be elevated. Reducing the HMGB1 level via intraventricular injection of anti-HMGB1 neutralizing antibodies can improve the outcomes of CNS diseases. The results indicated that CSF HMGB1 could serve as a biomarker for predicting disease progression and may also act as a pathogenic factor contributing to pathological alterations in distant areas following focal lesions in the CNS. In this mini-review, the characteristics of HMGB1 and progress in research on CSF HMGB1 as a biomarker of CNS diseases were discussed. CSF HMGB1 is useful not only as a biomarker of CNS diseases but may also be involved in interactions between different brain regions and the spinal cord.
Collapse
Affiliation(s)
- Zhiwu Wu
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital, Southern Hospital of Southern Medical University), 16th Meiguan Road, Ganzhou 341000, China
| | - Liping Liang
- Department of Science and Education, Ganzhou People's Hospital (Ganzhou Hospital, Southern Hospital of Southern Medical University), 16th Meiguan Road, Ganzhou 341000, China
| | - Qianliang Huang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital, Southern Hospital of Southern Medical University), 16th Meiguan Road, Ganzhou 341000, China
| |
Collapse
|
4
|
Rastin C, Schenkel LC, Sadikovic B. Complexity in Genetic Epilepsies: A Comprehensive Review. Int J Mol Sci 2023; 24:14606. [PMID: 37834053 PMCID: PMC10572646 DOI: 10.3390/ijms241914606] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Epilepsy is a highly prevalent neurological disorder, affecting between 5-8 per 1000 individuals and is associated with a lifetime risk of up to 3%. In addition to high incidence, epilepsy is a highly heterogeneous disorder, with variation including, but not limited to the following: severity, age of onset, type of seizure, developmental delay, drug responsiveness, and other comorbidities. Variable phenotypes are reflected in a range of etiologies including genetic, infectious, metabolic, immune, acquired/structural (resulting from, for example, a severe head injury or stroke), or idiopathic. This review will focus specifically on epilepsies with a genetic cause, genetic testing, and biomarkers in epilepsy.
Collapse
Affiliation(s)
- Cassandra Rastin
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Laila C. Schenkel
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Bekim Sadikovic
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
5
|
Phoswa WN, Khaliq OP, Eche S. A Review on Inflammasomes and Immune Checkpoints in Pre-Eclampsia Complicated with Tuberculosis and Human Immune Deficiency Virus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6627. [PMID: 37681767 PMCID: PMC10487055 DOI: 10.3390/ijerph20176627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
The current review evaluates how inflammasomes and immune checkpoints are regulated in pre-eclampsia (PE) associated with tuberculosis (TB) and Human Immune Deficiency Virus (HIV). Studies indicate that inflammasomes such as (NRLP3, NEK7, and AIM2) and immune checkpoints such as (CLT4, PD-1, TIM3, and LAG-3) are dysregulated in TB- and HIV-infected individuals, and also in pre-eclamptic pregnancies, which explains why pregnant women who are either infected with TB or HIV have an increased risk of developing PE. Evidence suggests that inhibition of inflammasomes and immune checkpoints may assist in the development of novel anti-inflammatory drugs for the prevention and management of PE in patients with or without TB and HIV infection.
Collapse
Affiliation(s)
- Wendy N. Phoswa
- Department of Life and Consumer Sciences, Science Campus, University of South Africa (UNISA), Private Bag X 6, Florida, Roodepoort 1710, South Africa
| | - Olive P. Khaliq
- Department of Paediatrics and Child Health, University of the Free State, Bloemfontein 9300, South Africa;
| | - Simeon Eche
- School of Medicine, Yale University, 333 Cedar Street, New Haven, CO 06510, USA;
| |
Collapse
|
6
|
Perucca E, Perucca P, White HS, Wirrell EC. Drug resistance in epilepsy. Lancet Neurol 2023:S1474-4422(23)00151-5. [PMID: 37352888 DOI: 10.1016/s1474-4422(23)00151-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 06/25/2023]
Abstract
Drug resistance is estimated to affect about a third of individuals with epilepsy, but its prevalence differs in relation to the epilepsy syndrome, the cause of epilepsy, and other factors such as age of seizure onset and presence of associated neurological deficits. Although drug-resistant epilepsy is not synonymous with unresponsiveness to any drug treatment, the probability of achieving seizure freedom on a newly tried medication decreases with increasing number of previously failed treatments. After two appropriately used antiseizure medications have failed to control seizures, individuals should be referred whenever possible to a comprehensive epilepsy centre for diagnostic re-evaluation and targeted management. The feasibility of epilepsy surgery and other treatments, including those targeting the cause of epilepsy, should be considered early after diagnosis. Substantial evidence indicates that a delay in identifying an effective treatment can adversely affect ultimate outcome and carry an increased risk of cognitive disability, other comorbidities, and premature mortality. Research on mechanisms of drug resistance and novel therapeutics is progressing rapidly, and potentially improved treatments, including those targeting disease modification, are on the horizon.
Collapse
Affiliation(s)
- Emilio Perucca
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia; Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Piero Perucca
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia; Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, VIC, Australia; Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Elaine C Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
7
|
Potschka H, Fischer A, Löscher W, Volk HA. Pathophysiology of drug-resistant canine epilepsy. Vet J 2023; 296-297:105990. [PMID: 37150317 DOI: 10.1016/j.tvjl.2023.105990] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Drug resistance continues to be a major clinical problem in the therapeutic management of canine epilepsies with substantial implications for quality of life and survival times. Experimental and clinical data from human medicine provided evidence for relevant contributions of intrinsic severity of the disease as well as alterations in pharmacokinetics and -dynamics to failure to respond to antiseizure medications. In addition, several modulatory factors have been identified that can be associated with the level of therapeutic responses. Among others, the list of potential modulatory factors comprises genetic and epigenetic factors, inflammatory mediators, and metabolites. Regarding data from dogs, there are obvious gaps in knowledge when it comes to our understanding of the clinical patterns and the mechanisms of drug-resistant canine epilepsy. So far, seizure density and the occurrence of cluster seizures have been linked with a poor response to antiseizure medications. Moreover, evidence exists that the genetic background and alterations in epigenetic mechanisms might influence the efficacy of antiseizure medications in dogs with epilepsy. Further molecular, cellular, and network alterations that may affect intrinsic severity, pharmacokinetics, and -dynamics have been reported. However, the association with drug responsiveness has not yet been studied in detail. In summary, there is an urgent need to strengthen clinical and experimental research efforts exploring the mechanisms of resistance as well as their association with different etiologies, epilepsy types, and clinical courses.
Collapse
Affiliation(s)
- Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany.
| | - Andrea Fischer
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
8
|
Phoswa WN, Mokgalaboni K. Immunological Imbalances Associated with Epileptic Seizures in Type 2 Diabetes Mellitus. Brain Sci 2023; 13:brainsci13050732. [PMID: 37239204 DOI: 10.3390/brainsci13050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
PURPOSE OF THE REVIEW Type 2 diabetes mellitus (T2DM) is a global health burden that leads to an increased morbidity and mortality rate arising from microvascular and macrovascular complications. Epilepsy leads to complications that cause psychological and physical distress to patients and carers. Although these conditions are characterized by inflammation, there seems to be a lack of studies that have evaluated inflammatory markers in the presence of both conditions (T2DM and epilepsy), especially in low-middle-income countries where T2DM is epidemic. Summary findings: In this review, we describe the role of immunity in the seizure generation of T2DM. Current evidence shows an increase in the levels of biomarkers such as interleukin (IL-1β, IL-6, and IL-8), tumour necrosis factor-α (TNF-α), high mobility group box-1 (HMGB1), and toll-like receptors (TLRs) in epileptic seizures and T2DM. However, there is limited evidence to show a correlation between inflammatory markers in the central and peripheral levels of epilepsy. CONCLUSIONS Understanding the pathophysiological mechanism behind epileptic seizures in T2DM through an investigation of immunological imbalances might improve diagnosis and further counter the risks of developing complications. This might also assist in delivering safe and effective therapies to T2DM patients affected, thus reducing morbidity and mortality by preventing or reducing associated complications. Moreover, this review also provides an overview approach on inflammatory cytokines that can be targeted when developing alternative therapies, in case these conditions coexist.
Collapse
Affiliation(s)
- Wendy N Phoswa
- Department of Life and Consumer Sciences, University of South Africa (UNISA), Science Campus, Private Bag X6, Florida, Roodepoort 1710, South Africa
| | - Kabelo Mokgalaboni
- Department of Life and Consumer Sciences, University of South Africa (UNISA), Science Campus, Private Bag X6, Florida, Roodepoort 1710, South Africa
| |
Collapse
|
9
|
Wu Z, Li M. High-Mobility Group Box 1 in Spinal Cord Injury and Its Potential Role in Brain Functional Remodeling After Spinal Cord Injury. Cell Mol Neurobiol 2023; 43:1005-1017. [PMID: 35715656 DOI: 10.1007/s10571-022-01240-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/04/2022] [Indexed: 11/30/2022]
Abstract
High-mobility group box 1 (HMGB1) is a nonhistone nuclear protein, the functions of which depend on its subcellular location. It is actively or passively secreted into the blood and/or cerebrospinal fluid (CSF) and can be used as a prognostic indicator of disease. HMGB1 released into the bloodstream can cause pathological reactions in distant organs, and entry into the CSF can destroy the blood-brain barrier and aggravate brain injuries. HMGB1 expression has been reported to be increased in the tissues of spinal cord injury (SCI) patients and involved in the regulation of neuroinflammation, neuronal apoptosis, and ferroptosis. SCI can lead to brain changes, resulting in neuropathic pain, depression, and cognitive dysfunction, but the specific mechanism is unknown. It remains unclear whether HMGB1 plays an important role in brain functional remodeling after SCI. Damaged cells at the site of SCI passively release HMGB1, which travels to the brain via the blood, CSF, and/or axonal transport, destroys the blood-brain barrier, and causes pathological changes in the brain. This may explain the remodeling of brain function that occurs after SCI. In this minireview, we introduce the structure and function of HMGB1 and its mechanism of action in SCI. Clarifying the functions of HMGB1 may provide insight into the links between SCI and various brain regions.
Collapse
Affiliation(s)
- Zhiwu Wu
- Department of Neurosurgery & Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17th Yongwaizheng Street, Nanchang, 330006, China
| | - Meihua Li
- Department of Neurosurgery & Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17th Yongwaizheng Street, Nanchang, 330006, China.
| |
Collapse
|
10
|
Chen Y, Chen X, Liang Y. Meta-analysis of HMGB1 levels in the cerebrospinal fluid and serum of patients with epilepsy. Neurol Sci 2023:10.1007/s10072-023-06720-0. [PMID: 36933099 DOI: 10.1007/s10072-023-06720-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/27/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Epilepsy pathogenesis and progression are strongly influenced by inflammation. High-mobility group box-1 (HMGB1) is a key proinflammatory factor. The purpose of this study was to quantify and assess the relationship between HMGB1 level and epilepsy. METHODS We searched Embase, Web of Science, PubMed, and the Cochrane Library for studies examining the relationship between HMGB1 and epilepsy. Two independent researchers extracted data and assessed quality using the Cochrane Collaboration tool. Data extracted were analyzed using Stata 15 and Review Manager 5.3. The study protocol was registered prospectively at INPLASY, ID: INPLASY2021120029. RESULTS A total of 12 studies were eligible for inclusion. After exclusion of one study with reduced robustness, 11 studies were included, with a total of 443 patients and 333 matched controls. Two of the articles included cerebrospinal fluid and serum HMGB1 data, which were distinguished by "a" and "b," respectively. The meta-analysis indicated that in comparison with the control group, the HMGB1 level was higher in epilepsy patients (SMD = 0.56, 95% CI = 0.27-0.85, P = 0.0002). Subgroup analysis of specimen types indicated that both serum HMGB1 and cerebrospinal fluid HMGB1 were higher in epilepsy patients than in the control group, with the increase in cerebrospinal fluid HMGB1 being more obvious. Subgroup analysis of disease types demonstrated that the serum HMGB1 level of epileptic seizure patients (including febrile and nonfebrile seizures) was significantly higher than that of matched controls. However, serum HMGB1 levels did not differ significantly between mild epilepsy patients and severe epilepsy patients. Patient age subgroup analysis showed higher HMGB1 in adolescents with epilepsy. Begg's test did not indicate publication bias. CONCLUSIONS This is the first meta-analysis to summarize the association between HMGB1 level and epilepsy. The results of this meta-analysis indicate that epilepsy patients have elevated HMGB1. Large-scale studies with a high level of evidence are needed to reveal the exact relationship between HMGB1 level and epilepsy.
Collapse
Affiliation(s)
- Yue Chen
- Department of Clinical Laboratory, General Hospital of the Yangtze River Shipping, Wuhan, 430005, China.
| | - Xilu Chen
- Department of Clinical Laboratory, General Hospital of the Yangtze River Shipping, Wuhan, 430005, China
| | - Ying Liang
- Department of Clinical Laboratory, General Hospital of the Yangtze River Shipping, Wuhan, 430005, China
| |
Collapse
|
11
|
Li Z, Cao W, Sun H, Wang X, Li S, Ran X, Zhang H. Potential clinical and biochemical markers for the prediction of drug-resistant epilepsy: A literature review. Neurobiol Dis 2022; 174:105872. [PMID: 36152944 DOI: 10.1016/j.nbd.2022.105872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/01/2022] Open
Abstract
Drug resistance is a major challenge in the treatment of epilepsy. Drug-resistant epilepsy (DRE) accounts for 30% of all cases of epilepsy and is a matter of great concern because of its uncontrollability and the high burden, mortality rate, and degree of damage. At present, considerable research has focused on the development of predictors to aid in the early identification of DRE in an effort to promote prompt initiation of individualized treatment. While multiple predictors and risk factors have been identified, there are currently no standard predictors that can be used to guide the clinical management of DRE. In this review, we discuss several potential predictors of DRE and related factors that may become predictors in the future and perform evidence rating analysis to identify reliable potential predictors.
Collapse
Affiliation(s)
- ZhiQiang Li
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Cao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - HuiLiang Sun
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Wang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - ShanMin Li
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - XiangTian Ran
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
12
|
Rubinos C, Waters B, Hirsch LJ. Predicting and Treating Post-traumatic Epilepsy. Curr Treat Options Neurol 2022. [DOI: 10.1007/s11940-022-00727-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Bonilla-Jaime H, Zeleke H, Rojas A, Espinosa-Garcia C. Sleep Disruption Worsens Seizures: Neuroinflammation as a Potential Mechanistic Link. Int J Mol Sci 2021; 22:12531. [PMID: 34830412 PMCID: PMC8617844 DOI: 10.3390/ijms222212531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep disturbances, such as insomnia, obstructive sleep apnea, and daytime sleepiness, are common in people diagnosed with epilepsy. These disturbances can be attributed to nocturnal seizures, psychosocial factors, and/or the use of anti-epileptic drugs with sleep-modifying side effects. Epilepsy patients with poor sleep quality have intensified seizure frequency and disease progression compared to their well-rested counterparts. A better understanding of the complex relationship between sleep and epilepsy is needed, since approximately 20% of seizures and more than 90% of sudden unexpected deaths in epilepsy occur during sleep. Emerging studies suggest that neuroinflammation, (e.g., the CNS immune response characterized by the change in expression of inflammatory mediators and glial activation) may be a potential link between sleep deprivation and seizures. Here, we review the mechanisms by which sleep deprivation induces neuroinflammation and propose that neuroinflammation synergizes with seizure activity to worsen neurodegeneration in the epileptic brain. Additionally, we highlight the relevance of sleep interventions, often overlooked by physicians, to manage seizures, prevent epilepsy-related mortality, and improve quality of life.
Collapse
Affiliation(s)
- Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Área de Biología Conductual y Reproductiva, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico CP 09340, Mexico;
| | - Helena Zeleke
- Neuroscience and Behavioral Biology Program, College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA;
| | - Asheebo Rojas
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Claudia Espinosa-Garcia
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Walker LE, Sills GJ, Jorgensen A, Alapirtti T, Peltola J, Brodie MJ, Marson AG, Vezzani A, Pirmohamed M. High-mobility group box 1 as a predictive biomarker for drug-resistant epilepsy: A proof-of-concept study. Epilepsia 2021; 63:e1-e6. [PMID: 34747496 DOI: 10.1111/epi.17116] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 01/22/2023]
Abstract
Currently no sensitive and specific biomarkers exist to predict drug-resistant epilepsy. We determined whether blood levels of high-mobility group box 1 (HMGB1), a mediator of neuroinflammation implicated in drug-resistant epilepsies, identifies patients with drug-resistant seizures. Patients with drug-resistant epilepsy express significantly higher levels of blood HMGB1 than those with drug-responsive, well-controlled seizures and healthy controls. No correlation existed between blood HMGB1 levels and total pretreatment seizure count or days since last seizure at new epilepsy diagnosis, indicating that blood HMGB1 does not solely reflect ongoing seizures. HMGB1 distinguishes with high specificity and selectivity drug-resistant versus drug-responsive patients. This protein therefore has potential clinical utility to act as a biomarker for predicting response to therapy, which should be addressed in prospective clinical studies.
Collapse
Affiliation(s)
| | - Graeme John Sills
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Andrea Jorgensen
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Tiina Alapirtti
- Department of Neurology and Rehabilitation, Tampere University Hospital, Tampere, Finland
| | - Jukka Peltola
- Department of Neurology and Rehabilitation, Tampere University Hospital, Tampere, Finland
| | | | - Anthony Guy Marson
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute of Pharmacological Research, Scientific Institute for Research and Health Care, Milan, Italy
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|