1
|
Abstract
The COVID-19 pandemic has affected over 772 million people globally. While lung damage is the major contributor to the morbidity and mortality of this disease, the involvement of multiple organs, including the endocrine glands, has been reported. This Review aims to provide an updated summary of evidence regarding COVID-19 and thyroid dysfunction, incorporating highlights of recent advances in the field, particularly in relation to long COVID and COVID-19 vaccination. Since subacute thyroiditis following COVID-19 was first reported in May 2020, thyroid dysfunction associated with COVID-19 has been increasingly recognized, secondary to direct and indirect effects on the hypothalamic-pituitary-thyroid axis. Here, we summarize the epidemiological evidence, pattern and clinical course of thyroid dysfunction following COVID-19 and examine radiological, molecular and histological evidence of thyroid involvement in SARS-CoV-2 infection. Beyond acute SARS-CoV-2 infection, it is also timely to examine the course and implication of thyroid dysfunction in the context of long COVID owing to the large population of survivors of COVID-19 worldwide. This Review also analyses the latest evidence on the relationship between the therapeutics and vaccination for COVID-19 and thyroid dysfunction. To conclude, evidence-based practice recommendations for thyroid function testing during and following COVID-19 and concerning COVID-19 vaccination are proposed.
Collapse
Affiliation(s)
- David Tak Wai Lui
- Division of Endocrinology and Metabolism, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chi Ho Lee
- Division of Endocrinology and Metabolism, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Cho Woo
- Division of Endocrinology and Metabolism, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ivan Fan Ngai Hung
- Division of Infectious Diseases, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Karen Siu Ling Lam
- Division of Endocrinology and Metabolism, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Emiroglu C, Dicle M, Yesiloglu C, Gorpelioglu S, Aypak C. Association between newly diagnosed hyperglycemia/diabetes mellitus, atherogenic index of plasma and obesity in post-COVID-19 syndrome patients. Endocrine 2024; 84:470-480. [PMID: 38001321 DOI: 10.1007/s12020-023-03611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
PURPOSE The COVID-19 pandemic represents a great global concern and its associated morbidities. The goal of this study was to determine the incidence of newly diagnosed hyperglycemia and diabetes among COVID-19 survivors and to evaluate whether obesity and lipid profile have an effect on this group using the atherogenic index of plasma (AIP). METHODS In the retrospective study, 511 adults with a previously diagnosed "Severe Acute Respiratory Syndrome Coronavirus 2" who admitted to COVID-19 follow-up outpatient clinic were evaluated. Data was collected on patient demographics, comorbidities, and some laboratory results. Logistic regression was used to estimate associated factors. RESULTS Newly diagnosed type 2 diabetes mellitus (T2DM) was defined in 17 patients (3.32%), hyperglycemia in 86 patients (16.82%). The results of analysis were examined, gender, age, BMI and triglyceride variables were found to be significant risk factors together. Fasting blood glucose values of 22 out of 86 patients with hyperglycemia returned to normal after six months of follow-up. Undiagnosed-preexisting DM in 4 out of 17 patients diagnosed with T2DM at their first visit and in 7 out of 8 hyperglycemia patients diagnosed with T2DM at the end of six-month follow-up. CONCLUSION COVID-19, may directly/indirectly, predispose to hyperglycemia. Obesity and hyperlipidemia are risk factors for newly diagnosed T2DM/hyperglycemia in post-COVID-19 syndrome patients. Since that some metabolic variables were found to be significantly higher in the group with high AIP values, we suggest that AIP might be used as a reference to predict the development of obesity and T2DM.
Collapse
Affiliation(s)
- Canan Emiroglu
- Dışkapı Yıldırım Beyazıt Training and Research Hospital, Depatment of Family Medicine, Ziraat Mahallesi, University of Health Sciences, Şehit Ömer Halisdemir Cad. No:20 Dışkapı Altındağ, Ankara, Turkey.
| | - Murat Dicle
- Dışkapı Yıldırım Beyazıt Training and Research Hospital, Depatment of Family Medicine, Ziraat Mahallesi, University of Health Sciences, Şehit Ömer Halisdemir Cad. No:20 Dışkapı Altındağ, Ankara, Turkey
| | - Cem Yesiloglu
- Dışkapı Yıldırım Beyazıt Training and Research Hospital, Depatment of Family Medicine, Ziraat Mahallesi, University of Health Sciences, Şehit Ömer Halisdemir Cad. No:20 Dışkapı Altındağ, Ankara, Turkey
| | - Suleyman Gorpelioglu
- Dışkapı Yıldırım Beyazıt Training and Research Hospital, Depatment of Family Medicine, Ziraat Mahallesi, University of Health Sciences, Şehit Ömer Halisdemir Cad. No:20 Dışkapı Altındağ, Ankara, Turkey
| | - Cenk Aypak
- Dışkapı Yıldırım Beyazıt Training and Research Hospital, Depatment of Family Medicine, Ziraat Mahallesi, University of Health Sciences, Şehit Ömer Halisdemir Cad. No:20 Dışkapı Altındağ, Ankara, Turkey
| |
Collapse
|
3
|
Kumar M, Mazumder P, Silori R, Manna S, Panday DP, Das N, Sethy SK, Kuroda K, Mahapatra DM, Mahlknecht J, Tyagi VK, Singh R, Zang J, Barceló D. Prevalence of pharmaceuticals and personal care products, microplastics and co-infecting microbes in the post-COVID-19 era and its implications on antimicrobial resistance and potential endocrine disruptive effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166419. [PMID: 37625721 DOI: 10.1016/j.scitotenv.2023.166419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
The COVID-19 (coronavirus disease 2019) pandemic's steady condition coupled with predominance of emerging contaminants in the environment and its synergistic implications in recent times has stoked interest in combating medical emergencies in this dynamic environment. In this context, high concentrations of pharmaceutical and personal care products (PPCPs), microplastics (MPs), antimicrobial resistance (AMR), and soaring coinfecting microbes, tied with potential endocrine disruptive (ED) are critical environmental concerns that requires a detailed documentation and analysis. During the pandemic, the identification, enumeration, and assessment of potential hazards of PPCPs and MPs and (used as anti-COVID-19 agents/applications) in aquatic habitats have been attempted globally. Albeit receding threats in the magnitude of COVID-19 infections, both these pollutants have still posed serious consequences to aquatic ecosystems and the very health and hygiene of the population in the vicinity. The surge in the contaminants post-COVID also renders them to be potent vectors to harbor and amplify AMR. Pertinently, the present work attempts to critically review such instances to understand the underlying mechanism, interactions swaying the current health of our environment during this post-COVID-19 era. During this juncture, although prevention of diseases, patient care, and self-hygiene have taken precedence, nevertheless antimicrobial stewardship (AMS) efforts have been overlooked. Unnecessary usage of PPCPs and plastics during the pandemic has resulted in increased emerging contaminants (i.e., active pharmaceutical ingredients and MPs) in various environmental matrices. It was also noticed that among COVID-19 patients, while the bacterial co-infection prevalence was 0.2-51%, the fungi, viral, protozoan and helminth were 0.3-49, 1-22, 2-15, 0.4-15% respectively, rendering them resistant to residual PPCPs. There are inevitable chances of ED effects from PPCPs and MPs applied previously, that could pose far-reaching health concerns. Furthermore, clinical and other experimental evidence for many newer compounds is very scarce and demands further research. Pro-active measures targeting effective waste management, evolved environmental policies aiding strict regulatory measures, and scientific research would be crucial in minimizing the impact and creating better preparedness towards such events among the masses fostering sustainability.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo Leon, Mexico.
| | - Payal Mazumder
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Rahul Silori
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Suvendu Manna
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Durga Prasad Panday
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Nilotpal Das
- ENCORE Insoltech Pvt. Ltd, Randesan, Gandhinagar, Gujarat 382421, India
| | - Susanta Kumar Sethy
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu 939 0398, Japan
| | - Durga Madhab Mahapatra
- Department of Chemical and Petroleum Engineering, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Jürgen Mahlknecht
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| | - Vinay Kumar Tyagi
- Wastewater Division, National Institute of Hydrology Roorkee, Roorkee, Uttranchal, India
| | - Rajesh Singh
- Wastewater Division, National Institute of Hydrology Roorkee, Roorkee, Uttranchal, India
| | - Jian Zang
- Department of Civil Engineering, Chongqing University, China
| | - Damià Barceló
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 1826, Barcelona 08034, Spain
| |
Collapse
|
4
|
Wu J, Yang H, Yu D, Yang X. Blood-derived product therapies for SARS-CoV-2 infection and long COVID. MedComm (Beijing) 2023; 4:e426. [PMID: 38020714 PMCID: PMC10651828 DOI: 10.1002/mco2.426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/15/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is capable of large-scale transmission and has caused the coronavirus disease 2019 (COVID-19) pandemic. Patients with COVID-19 may experience persistent long-term health issues, known as long COVID. Both acute SARS-CoV-2 infection and long COVID have resulted in persistent negative impacts on global public health. The effective application and development of blood-derived products are important strategies to combat the serious damage caused by COVID-19. Since the emergence of COVID-19, various blood-derived products that target or do not target SARS-CoV-2 have been investigated for therapeutic applications. SARS-CoV-2-targeting blood-derived products, including COVID-19 convalescent plasma, COVID-19 hyperimmune globulin, and recombinant anti-SARS-CoV-2 neutralizing immunoglobulin G, are virus-targeting and can provide immediate control of viral infection in the short term. Non-SARS-CoV-2-targeting blood-derived products, including intravenous immunoglobulin and human serum albumin exhibit anti-inflammatory, immunomodulatory, antioxidant, and anticoagulatory properties. Rational use of these products can be beneficial to patients with SARS-CoV-2 infection or long COVID. With evidence accumulated since the pandemic began, we here summarize the progress of blood-derived product therapies for COVID-19, discuss the effective methods and scenarios regarding these therapies, and provide guidance and suggestions for clinical treatment.
Collapse
Affiliation(s)
- Junzheng Wu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd.ChengduChina
| | | | - Ding Yu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd.ChengduChina
- Beijing Tiantan Biological Products Co., Ltd.BeijingChina
| | | |
Collapse
|
5
|
Szczerbiński Ł, Okruszko MA, Szabłowski M, Sołomacha S, Sowa P, Kiszkiel Ł, Gościk J, Krętowski AJ, Moniuszko-Malinowska A, Kamiński K. Long-term effects of COVID-19 on the endocrine system - a pilot case-control study. Front Endocrinol (Lausanne) 2023; 14:1192174. [PMID: 37790604 PMCID: PMC10544976 DOI: 10.3389/fendo.2023.1192174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) has permanently changed the world. Despite having been a pandemic for nearly 3 years, the mid- and long-term complications of this disease, including endocrine disorders, remain unclear. Our study aimed to evaluate the lasting effects of COVID-19 on the endocrine system 6 months after initial infection. Methods We compared patients who underwent COVID-19 to age- and sex-matched subjects from a population-based study conducted before the pandemic. We evaluated differences in multiple parameters related to metabolism and the endocrine system including fasting glucose, insulin, lipids, body composition, thyroid stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), anti-thyroglobulin (aTG) and anti-thyroid peroxidase (aTPO) antibodies, prolactin, cortisol, testosterone, and estradiol. Results We found significantly lower levels of fT3 and fT4, accompanied by higher levels of TSH and aTPO antibodies, in COVID-19 survivors. Moreover, we found that patients who underwent SARS-CoV2 infection had higher levels of prolactin and lower levels of testosterone than controls. Interestingly, differences in testosterone levels were observed only in male subjects. We did not detect significant differences in body composition or metabolic and glycemic parameters between cases and controls, except for significantly higher values of the HOMA2-B index in COVID-19 survivors. Conclusion Our study indicates that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection might have long-term consequences on the endocrine system, including the suppressed function of the thyroid gland, prolactin, and male sex hormone secretion. Moreover, we showed that in a 6-month follow-up, COVID-19 had no consequences on glycemic parameters, lipid profiles, liver function, body composition, cortisol levels, and estradiol levels.
Collapse
Affiliation(s)
- Łukasz Szczerbiński
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Diseases, Medical University of Bialystok, Bialystok, Poland
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Michał Andrzej Okruszko
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Doctoral School at the Medical University of Bialystok, Bialystok, Poland
| | - Maciej Szabłowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Sebastian Sołomacha
- Doctoral School at the Medical University of Bialystok, Bialystok, Poland
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Białystok, Poland
| | - Paweł Sowa
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Białystok, Poland
| | - Łukasz Kiszkiel
- Society and Cognition Unit, University of Bialystok, Bialystok, Poland
| | - Joanna Gościk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Białystok, Poland
| | - Karol Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Białystok, Poland
- Department of Cardiology, University Hospital of Bialystok, Białystok, Poland
| |
Collapse
|
6
|
Prasad TN, Pal R. Woes of ethnic minority groups suffering from diabetes during the COVID-19 pandemic: high time to address the same. Evid Based Nurs 2023; 26:94. [PMID: 36549876 DOI: 10.1136/ebnurs-2022-103629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Trupti N Prasad
- Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rimesh Pal
- Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
7
|
Gameil MA, Marzouk RE, El-Sebaie AH, Ahmed Eldeeb AA. Influence of time factor and albuminuria on characteristics of patients with type 2 diabetes Mellitus before, during and 1 year after COVID-19 recovery. Diabetol Metab Syndr 2023; 15:126. [PMID: 37312131 DOI: 10.1186/s13098-023-01104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/03/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND The potential effects of time factor and albuminuria on the morbid alterations in patients with type 2 diabetes (T2D) and COVID-19 are still unclear. We aimed to address the morbid alterations and the potential effects of time factor and albuminuria on the patients' characteristics before, during, and 1 year after COVID-19 recovery. METHODS 83 patients with T2D were included, at Mansoura University Hospital, Egypt (July 2021-December 2021). Data of detailed history, physical examination, laboratory tests were recruited from files of the patients. Diagnosis and resolution of COVID-19 were established by Real time polymerase chain reaction (RT-PCR) test of SARS-CoV2. Complete blood count (CBC), renal and hepatic function tests, multiple measures of morning spot urine albumin to creatinine ratio (urine ACR), glycosylated hemoglobin (HBA1c), lipid profile, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), Ferritin, neutrophil to lymphocyte ratio (NLR), vitamin D3, intact parathyroid hormone (intact PTH), serum calcium were applied to all participants. RESULTS Our participants had a mean age of 45 years, 60.2% male, 56.6% were hospitalized, and 25.3% were admitted to ICU for severe COVID-19. Albuminuria was prevalent in 71.1% before, 98.8% during, and 92.8% after COVID-19 recovery. Patients with albuminuria showed older age, longer duration of T2D, more frequent severe COVID-19 and hospitalization (p = 0.03, p < 0.001, p = 0.023& p = 0.025) respectively. Body mass index (BMI), mean arterial blood pressure, ESR, CRP, ferritin, NLR, HBA1c, triglycerides to high-density lipoprotein cholesterol (TG/HDL-C) ratio, vitamin D3, serum calcium, alkaline phosphatase (ALP), hepatic aminotransferases, and urine ACR showed significant alterations throughout the study (p < 0.001 for all). Although the interaction between time and albuminuria showed non-significant effect on all studied parameters, we noticed relevant main effects of time factor on Body mass index (BMI), HBA1c, glomerular filtration rate (eGFR), TG/HDL ratio, NLR, vitamin D3, (p < 0.001 for all). Moreover, albuminuria showed main effects on BMI, serum creatinine, and intact PTH (p = 0.019, 0.005 & <0.001), respectively. CONCLUSION The characteristics of patients with T2D significantly altered throughout the study. Time factor and albuminuria exerted relevant main effects on the patients' characteristics without significant effect of their interaction.
Collapse
Affiliation(s)
- Mohammed Ali Gameil
- Endocrinology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia, Egypt.
| | - Rehab Elsayed Marzouk
- Lecturer of Medical Biochemistry, Medical Biochemistry Department, Faculty of Medicine, Helwan University, Helwan, 0000-0002, 5551- 1540, Cairo, Egypt
| | - Ahmed Hassan El-Sebaie
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Ahmed Ahmed Ahmed Eldeeb
- Associate professor of Internal medicine, Nephrology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, 0000-0002, 3238-3064, Dakahlia, Egypt
| |
Collapse
|
8
|
Anindya R, Rutter GA, Meur G. New-onset type 1 diabetes and severe acute respiratory syndrome coronavirus 2 infection. Immunol Cell Biol 2023; 101:191-203. [PMID: 36529987 PMCID: PMC9877852 DOI: 10.1111/imcb.12615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Type 1 diabetes (T1D) is a condition characterized by an absolute deficiency of insulin. Loss of insulin-producing pancreatic islet β cells is one of the many causes of T1D. Viral infections have long been associated with new-onset T1D and the balance between virulence and host immunity determines whether the viral infection would lead to T1D. Herein, we detail the dynamic interaction of pancreatic β cells with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the host immune system with respect to new-onset T1D. Importantly, β cells express the crucial entry receptors and multiple studies confirmed that β cells are infected by SARS-CoV-2. Innate immune system effectors, such as natural killer cells, can eliminate such infected β cells. Although CD4+ CD25+ FoxP3+ regulatory T (TREG ) cells provide immune tolerance to prevent the destruction of the islet β-cell population by autoantigen-specific CD8+ T cells, it can be speculated that SARS-CoV-2 infection may compromise self-tolerance by depleting TREG -cell numbers or diminishing TREG -cell functions by repressing Forkhead box P3 (FoxP3) expression. However, the expansion of β cells by self-duplication, and regeneration from progenitor cells, could effectively replace lost β cells. Appearance of islet autoantibodies following SARS-CoV-2 infection was reported in a few cases, which could imply a breakdown of immune tolerance in the pancreatic islets. However, many of the cases with newly diagnosed autoimmune response following SARS-CoV-2 infection also presented with significantly high HbA1c (glycated hemoglobin) levels that indicated progression of an already set diabetes, rather than new-onset T1D. Here we review the potential underlying mechanisms behind loss of functional β-cell mass as a result of SARS-CoV-2 infection that can trigger new-onset T1D.
Collapse
Affiliation(s)
- Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore.,Centre of Research of Centre Hospitalier de l'Université de Montréal (CRCHUM), Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| | - Gargi Meur
- ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| |
Collapse
|
9
|
Lui DTW, Tsoi KH, Lee CH, Cheung CYY, Fong CHY, Lee ACH, Tam AR, Pang P, Ho TY, Law CY, Lam CW, To KKW, Chow WS, Woo YC, Hung IFN, Tan KCB, Lam KSL. A prospective follow-up on thyroid function, thyroid autoimmunity and long COVID among 250 COVID-19 survivors. Endocrine 2023; 80:380-391. [PMID: 36596904 PMCID: PMC9810240 DOI: 10.1007/s12020-022-03281-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/01/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE We evaluated the evolution of thyroid function and autoimmunity among COVID-19 survivors over 6 months in relation to interferon beta-1b treatment and long COVID. METHODS We included COVID-19 survivors managed in a major COVID-19 centre between July 2020 and May 2021 who were reassessed three and/or six months after acute COVID-19. Thyroid function tests (TFTs) and anti-thyroid antibody titres were measured at acute COVID-19, 3-month and 6-month. RESULTS 250 COVID-19 survivors were included (mean age 52.7 years, 50.4% men). Persistent thyroid function abnormalities were more likely in those with abnormal TFTs in acute COVID-19 (P < 0.001). Among 51 patients with abnormal TFTs in acute COVID-19, 82.4% resolved upon follow-up. Of 199 patients with normal TFTs in acute COVID-19, only 4.5% had incident abnormal TFTs, more likely in interferon-treated patients (P = 0.044) and none clinically overt. Among 129 patients with complete 6-month follow-up for anti-thyroid antibody titres, there was no significant change overall, except for modest increase in anti-thyroid antibody titres among the 84 interferon-treated patients (P < 0.05 at both 3 months and 6 months). Long COVID occurred in 19.5% and 10.4% at 3 and 6 months respectively, where TFTs and anti-thyroid antibody titres were not predictive of its occurrence. CONCLUSION Over 6 months, most abnormal TFTs in acute COVID-19 resolved, with no significant incident thyroid dysfunction. SARS-CoV-2 infection did not lead to change in thyroid autoimmunity, while interferon treatment was associated with modest increase in anti-thyroid antibody titres. Thyroid function and anti-thyroid antibodies did not play a significant role in long COVID.
Collapse
Affiliation(s)
- David Tak Wai Lui
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Kimberly Hang Tsoi
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Chi Ho Lee
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Chloe Yu Yan Cheung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Carol Ho Yi Fong
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Alan Chun Hong Lee
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Anthony Raymond Tam
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Polly Pang
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Tip Yin Ho
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Chun Yiu Law
- Division of Chemical Pathology, Queen Mary Hospital, Hong Kong, China
| | - Ching Wan Lam
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Kelvin Kai Wang To
- Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Wing Sun Chow
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Yu Cho Woo
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Ivan Fan Ngai Hung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Kathryn Choon Beng Tan
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Karen Siu Ling Lam
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China.
| |
Collapse
|
10
|
Fung MHM, Lui DTW, Chiu KWH, Lee SH, Lee CH, Chow WS, Lee ACH, Tam AR, Pang P, Ho TY, Fong CHY, Loong CHN, Law CY, To KKW, Lam CW, Tan KCB, Woo YC, Hung IFN, Lam KSL, Lang B. A prospective follow-up of thyroid volume and thyroiditis features on ultrasonography among survivors of predominantly mild to moderate COVID-19. PeerJ 2023; 11:e15034. [PMID: 36949763 PMCID: PMC10026714 DOI: 10.7717/peerj.15034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/19/2023] [Indexed: 03/19/2023] Open
Abstract
Background We previously showed that higher SARS-CoV-2 viral load correlated with smaller thyroid volumes among COVID-19 survivors at 2 months after acute COVID-19. Our current follow-up study evaluated the evolution of thyroid volumes and thyroiditis features within the same group of patients 6 months later. Methods Adult COVID-19 survivors who underwent thyroid ultrasonography 2 months after infection (USG1) were recruited for follow-up USG 6 months later (USG2). The primary outcome was the change in thyroid volume. We also reassessed thyroiditis features on USG, thyroid function and anti-thyroid antibodies. Results Fifty-four patients were recruited (mean age 48.1 years; 63% men). The mean thyroid volume increased from USG1 to USG2 (11.9 ± 4.8 to 14.5 ± 6.2 mL, p < 0.001). Thirty-two patients (59.3%) had significant increase in thyroid volume by ≥15%, and they had a median increase of +33.3% (IQR: +20.0% to +45.0%). Multivariable logistic regression analysis showed that only higher baseline SARS-CoV-2 viral load independently correlated with significant thyroid volume increase on USG2 (p = 0.022). Among the seven patients with thyroiditis features on USG1, six (85.7%) had the features resolved on USG2. None had new thyroiditis features on USG2. All abnormal thyroid function during acute COVID-19 resolved upon USG1 and USG2. Conclusion Most COVID-19 survivors had an increase in thyroid volume from early convalescent phase to later convalescent phase. This increase correlated with high initial SARS-CoV-2 viral load. Together with the resolution of thyroiditis features, these may suggest a transient direct atrophic effect of SARS-CoV-2 on the thyroid gland with subsequent recovery of thyroid volume and thyroiditis features.
Collapse
Affiliation(s)
- Man Him Matrix Fung
- Department of Surgery, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - David Tak Wai Lui
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Keith Wan Hang Chiu
- Department of Diagnostic Radiology, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Sherman Haynam Lee
- Department of Surgery, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Chi Ho Lee
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Wing Sun Chow
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Alan Chun Hong Lee
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Anthony Raymond Tam
- Department of Microbiology, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Polly Pang
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Tip Yin Ho
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Carol Ho Yi Fong
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Connie Hong Nin Loong
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Chun Yiu Law
- Division of Chemical Pathology, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Kelvin Kai Wang To
- Department of Microbiology, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Ching Wan Lam
- Department of Pathology, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | | | - Yu Cho Woo
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Ivan Fan Ngai Hung
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Karen Siu Ling Lam
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Brian Lang
- Department of Surgery, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
di Filippo L, Frara S, Doga M, Giustina A. The osteo-metabolic phenotype of COVID-19: an update. Endocrine 2022; 78:247-254. [PMID: 35857271 PMCID: PMC9297261 DOI: 10.1007/s12020-022-03135-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/03/2022] [Indexed: 11/10/2022]
Abstract
CONTEXT In the multifaceted COVID-19 clinical scenario characterized by a multi-system disorder with negative implications not only on respiratory function but also on cardiac, hematological, neurological and endocrine-metabolic systems, a distinctive osteo-metabolic phenotype with an independent influence on disease severity and recovery of patients affected was early reported. AIM To summarize and update the main evidences regarding the distinct components of this phenotype in acute and Long COVID-19, reinforcing its clinical relevance and discussing the main pathophysiological and clinical-therapeutic implications of the most recent reported findings. RESULTS This emerging phenotype is characterized by a widespread acute hypocalcemia and hypovitaminosis D with an impaired compensatory parathyroid hormone response, and a high prevalence of skeletal complications such as vertebral fractures. The clinical relevance of this osteo-metabolic phenotype on acute COVID-19 is well characterized, and novel seminal evidences are progressively highlighting its importance also in predicting patient's long-term outcomes and Long COVID-19 occurrence. CONCLUSIONS These findings reinforced the central role of a multidisciplinary team, including endocrinologists, in evaluating these patients for a proactive search of each aspect of the osteo-metabolic phenotype components since they may represent suitable therapeutic targets to prevent SARS-CoV-2 infection, poor COVID-19 outcomes, Long COVID-19 occurrence and even possibly better responses to COVID-19 vaccination.
Collapse
Affiliation(s)
- Luigi di Filippo
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Frara
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Mauro Doga
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
12
|
Banerjee M, Pal R, Dutta S. Risk of incident diabetes post-COVID-19: A systematic review and meta-analysis. Prim Care Diabetes 2022; 16:591-593. [PMID: 35654679 PMCID: PMC9148988 DOI: 10.1016/j.pcd.2022.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 01/17/2023]
Abstract
It remains undetermined whether burden of diabetes newly detected during acute COVID-19 persist in post-acute COVID phase. This meta-analysis was conducted to summarize the available literature and provide a pooled estimate of the risk of developing incident diabetes following hospital discharge or at least 28 days after the COVID-19 diagnosis compared to matched controls or severity matched influenza/ non-COVID-19 acute upper respiratory tract infections (AURI). Pooled analysis of 5787,027 subjects from four observational studies showed 59 % higher risk of developing incident diabetes in post-acute COVID-19 phase versus healthy controls (HR:1.59; 95 % CI:1.40-1.81, p < 0.001, I2=94 %, random-effects model). The high degree of heterogeneity in pooled estimate can be attributed to difference in demographic characteristics, hospitalization rates or disease severity between study subjects. Pooling data from three studies, higher risk of incident diabetes was also observed following COVID-19 versus severity matched non-COVID-19 respiratory tract infections (moderate-severe/hospitalized cases, HR 1.52; 95 % CI: 1.36-1.70, p < 0.01, I2=0 %, fixed-effects model; mild cases, HR 1.22; 95 % CI: 1.14-1.31, p < 0.001; I2=0 %, fixed-effects model). Majority of studies had median follow-up period of around 4 months. In view of several limitations due to retrospective design of these studies, prospective studies with long term follow-up are warranted.
Collapse
Affiliation(s)
- Mainak Banerjee
- Department of Endocrinology, Institute of Post Graduate Medical Education and Research, Kolkata 700020, India.
| | - Rimesh Pal
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Sulagna Dutta
- Department of Pediatrics, AMRI Hospitals, Salt Lake, Kolkata 700098, India
| |
Collapse
|
13
|
Vekic J, Silva-Nunes J, Rizzo M. Glucose Metabolism Disorders: Challenges and Opportunities for Diagnosis and Treatment. Metabolites 2022; 12:metabo12080712. [PMID: 36005584 PMCID: PMC9412650 DOI: 10.3390/metabo12080712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 01/01/2023] Open
Affiliation(s)
- Jelena Vekic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - José Silva-Nunes
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário de Lisboa Central, 1069-166 Lisbon, Portugal;
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
- Correspondence:
| |
Collapse
|
14
|
Boaventura P, Macedo S, Ribeiro F, Jaconiano S, Soares P. Post-COVID-19 Condition: Where Are We Now? Life (Basel) 2022; 12:life12040517. [PMID: 35455008 PMCID: PMC9029703 DOI: 10.3390/life12040517] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 is currently considered a systemic infection involving multiple systems and causing chronic complications. Compared to other post-viral fatigue syndromes, these complications are wider and more intense. The most frequent symptoms are profound fatigue, dyspnea, sleep difficulties, anxiety or depression, reduced lung capacity, memory/cognitive impairment, and hyposmia/anosmia. Risk factors for this condition are severity of illness, more than five symptoms in the first week of the disease, female sex, older age, the presence of comorbidities, and a weak anti-SARS-CoV-2 antibody response. Different lines of research have attempted to explain these protracted symptoms; chronic persistent inflammation, autonomic nervous system disruption, hypometabolism, and autoimmunity may play a role. Due to thyroid high ACE expression, the key molecular complex SARS-CoV-2 uses to infect the host cells, thyroid may be a target for the coronavirus infection. Thyroid dysfunction after SARS-CoV-2 infection may be a combination of numerous mechanisms, and its role in long-COVID manifestations is not yet established. The proposed mechanisms are a direct effect of SARS-CoV-2 on target cells, an indirect effect of systemic inflammatory immune response, and a dysfunction of the hypothalamic-pituitary-thyroid (HPT) axis leading to decreased serum TSH. Only a few studies have reported the thyroid gland status in the post-COVID-19 condition. The presence of post-COVID symptoms deserves recognition of COVID-19 as a cause of post-viral fatigue syndrome. It is important to recognize the affected individuals at an early stage so we can offer them the most adequate treatments, helping them thrive through the uncertainty of their condition.
Collapse
Affiliation(s)
- Paula Boaventura
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; (S.M.); (F.R.); (P.S.)
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
- Correspondence:
| | - Sofia Macedo
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; (S.M.); (F.R.); (P.S.)
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Filipa Ribeiro
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; (S.M.); (F.R.); (P.S.)
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Sónia Jaconiano
- School of Architecture, Art and Design (EAAD), University of Minho, 4800-058 Guimarães, Portugal;
| | - Paula Soares
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; (S.M.); (F.R.); (P.S.)
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
| |
Collapse
|