1
|
Levin R, Villanueva CM, Beene D, Cradock AL, Donat-Vargas C, Lewis J, Martinez-Morata I, Minovi D, Nigra AE, Olson ED, Schaider LA, Ward MH, Deziel NC. US drinking water quality: exposure risk profiles for seven legacy and emerging contaminants. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:3-22. [PMID: 37739995 PMCID: PMC10907308 DOI: 10.1038/s41370-023-00597-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Advances in drinking water infrastructure and treatment throughout the 20th and early 21st century dramatically improved water reliability and quality in the United States (US) and other parts of the world. However, numerous chemical contaminants from a range of anthropogenic and natural sources continue to pose chronic health concerns, even in countries with established drinking water regulations, such as the US. OBJECTIVE/METHODS In this review, we summarize exposure risk profiles and health effects for seven legacy and emerging drinking water contaminants or contaminant groups: arsenic, disinfection by-products, fracking-related substances, lead, nitrate, per- and polyfluorinated alkyl substances (PFAS) and uranium. We begin with an overview of US public water systems, and US and global drinking water regulation. We end with a summary of cross-cutting challenges that burden US drinking water systems: aging and deteriorated water infrastructure, vulnerabilities for children in school and childcare facilities, climate change, disparities in access to safe and reliable drinking water, uneven enforcement of drinking water standards, inadequate health assessments, large numbers of chemicals within a class, a preponderance of small water systems, and issues facing US Indigenous communities. RESULTS Research and data on US drinking water contamination show that exposure profiles, health risks, and water quality reliability issues vary widely across populations, geographically and by contaminant. Factors include water source, local and regional features, aging water infrastructure, industrial or commercial activities, and social determinants. Understanding the risk profiles of different drinking water contaminants is necessary for anticipating local and general problems, ascertaining the state of drinking water resources, and developing mitigation strategies. IMPACT STATEMENT Drinking water contamination is widespread, even in the US. Exposure risk profiles vary by contaminant. Understanding the risk profiles of different drinking water contaminants is necessary for anticipating local and general public health problems, ascertaining the state of drinking water resources, and developing mitigation strategies.
Collapse
Affiliation(s)
- Ronnie Levin
- Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Cristina M Villanueva
- ISGlobal, Barcelona, Spain
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Daniel Beene
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- University of New Mexico Department of Geography & Environmental Studies, Albuquerque, NM, USA
| | | | - Carolina Donat-Vargas
- ISGlobal, Barcelona, Spain
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Johnnye Lewis
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Irene Martinez-Morata
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Darya Minovi
- Center for Science and Democracy, Union of Concerned Scientists, Washington, DC, USA
| | - Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Erik D Olson
- Natural Resources Defense Council, Washington, DC, USA
| | | | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | |
Collapse
|
2
|
Soriano MA, Warren JL, Clark CJ, Johnson NP, Siegel HG, Deziel NC, Saiers JE. Social Vulnerability and Groundwater Vulnerability to Contamination From Unconventional Hydrocarbon Extraction in the Appalachian Basin. GEOHEALTH 2023; 7:e2022GH000758. [PMID: 37064218 PMCID: PMC10100439 DOI: 10.1029/2022gh000758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Unconventional oil and gas (UOG) development, made possible by horizontal drilling and high-volume hydraulic fracturing, has been fraught with controversy since the industry's rapid expansion in the early 2000's. Concerns about environmental contamination and public health risks persist in many rural communities that depend on groundwater resources for drinking and other daily needs. Spatial disparities in UOG risks can pose distributive environmental injustice if such risks are disproportionately borne by marginalized communities. In this paper, we analyzed groundwater vulnerability to contamination from UOG as a physically based measure of risk in conjunction with census tract level sociodemographic characteristics describing social vulnerability in the northern Appalachian Basin. We found significant associations between elevated groundwater vulnerability and lower population density, consistent with UOG development occurring in less densely populated rural areas. We also found associations between elevated groundwater vulnerability and lower income, higher proportions of elderly populations, and higher proportion of mobile homes, suggesting a disproportionate risk burden on these socially vulnerable groups. We did not find a statistically significant association between elevated groundwater vulnerability and populations of racial/ethnic minorities in our study region. Household surveys provided empirical support for a relationship between sociodemographic characteristics and capacity to assess and mitigate exposures to potentially contaminated water. Further research is needed to probe if the observed disparities translate to differences in chemical exposure and adverse health outcomes.
Collapse
Affiliation(s)
- Mario A. Soriano
- School of the EnvironmentYale UniversityNew HavenCTUSA
- Integrated GroundWater Modeling CenterHigh Meadows Environmental InstitutePrinceton UniversityPrincetonNJUSA
| | - Joshua L. Warren
- Department of BiostatisticsSchool of Public HealthYale UniversityNew HavenCTUSA
| | - Cassandra J. Clark
- Department of Environmental Health SciencesSchool of Public HealthYale UniversityNew HavenCTUSA
| | - Nicholaus P. Johnson
- Department of Environmental Health SciencesSchool of Public HealthYale UniversityNew HavenCTUSA
| | | | - Nicole C. Deziel
- Department of Environmental Health SciencesSchool of Public HealthYale UniversityNew HavenCTUSA
| | | |
Collapse
|
3
|
Willis MD, Cushing LJ, Buonocore JJ, Deziel NC, Casey JA. It's electric! An environmental equity perspective on the lifecycle of our energy sources. Environ Epidemiol 2023; 7:e246. [PMID: 37064423 PMCID: PMC10097546 DOI: 10.1097/ee9.0000000000000246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/23/2023] [Indexed: 04/05/2023] Open
Abstract
Energy policy decisions are driven primarily by economic and reliability considerations, with limited consideration given to public health, environmental justice, and climate change. Moreover, epidemiologic studies relevant for public policy typically focus on immediate public health implications of activities related to energy procurement and generation, considering less so health equity or the longer-term health consequences of climate change attributable to an energy source. A more integrated, collective consideration of these three domains can provide more robust guidance to policymakers, communities, and individuals. Here, we illustrate how these domains can be evaluated with respect to natural gas as an energy source. Our process began with a detailed overview of all relevant steps in the process of extracting, producing, and consuming natural gas. We synthesized existing epidemiologic and complementary evidence of how these processes impact public health, environmental justice, and climate change. We conclude that, in certain domains, natural gas looks beneficial (e.g., economically for some), but when considered more expansively, through the life cycle of natural gas and joint lenses of public health, environmental justice, and climate change, natural gas is rendered an undesirable energy source in the United States. A holistic climate health equity framework can inform how we value and deploy different energy sources in the service of public health.
Collapse
Affiliation(s)
- Mary D. Willis
- Department of Epidemiology, School of Public Health, Boston University, Boston, Massachusetts
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon
| | - Lara J. Cushing
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California
| | - Jonathan J. Buonocore
- Center for Climate, Health, and the Global Environment, T.H. Chan School of Public Health, Harvard University, Cambridge, Massachusetts
- Department of Environmental Health, School of Public Health, Boston University, Boston, Massachusetts
| | - Nicole C. Deziel
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, Connecticut
| | - Joan A. Casey
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington
| |
Collapse
|
4
|
González DJX, Morton CM, Hill LAL, Michanowicz DR, Rossi RJ, Shonkoff SBC, Casey JA, Morello‐Frosch R. Temporal Trends of Racial and Socioeconomic Disparities in Population Exposures to Upstream Oil and Gas Development in California. GEOHEALTH 2023; 7:e2022GH000690. [PMID: 36968155 PMCID: PMC10035325 DOI: 10.1029/2022gh000690] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
People living near oil and gas development are exposed to multiple environmental stressors that pose health risks. Some studies suggest these risks are higher for racially and socioeconomically marginalized people, which may be partly attributable to disparities in exposures. We examined whether racially and socioeconomically marginalized people in California are disproportionately exposed to oil and gas wells and associated hazards. We longitudinally assessed exposure to wells during three time periods (2005-2009, 2010-2014, and 2015-2019) using sociodemographic data at the census block group-level. For each block group and time period, we assessed exposure to new, active, retired, and plugged wells, and cumulative production volume. We calculated risk ratios to determine whether marginalized people disproportionately resided near wells (within 1 km). Averaged across the three time periods, we estimated that 1.1 million Californians (3.0%) lived within 1 km of active wells. Nearly 9 million Californians (22.9%) lived within 1 km of plugged wells. The proportion of Black residents near active wells was 42%-49% higher than the proportion of Black residents across California, and the proportion of Hispanic residents near active wells was 4%-13% higher than their statewide proportion. Disparities were greatest in areas with the highest oil and gas production, where the proportion of Black residents was 105%-139% higher than statewide. Socioeconomically marginalized residents also had disproportionately high exposure to wells. Though oil and gas production has declined in California, marginalized communities persistently had disproportionately high exposure to wells, potentially contributing to health disparities.
Collapse
Affiliation(s)
- David J. X. González
- Division of Environmental Health SciencesSchool of Public HealthUniversity of California, BerkeleyBerkeleyCAUSA
- Department of Environmental Science, Policy, and ManagementUniversity of California, BerkeleyBerkeleyCAUSA
| | - Claire M. Morton
- Mathematical and Computational Science ProgramStanford UniversityStanfordCAUSA
| | | | | | | | - Seth B. C. Shonkoff
- Division of Environmental Health SciencesSchool of Public HealthUniversity of California, BerkeleyBerkeleyCAUSA
- PSE Healthy EnergyOaklandCAUSA
- Lawrence Berkeley National LaboratoryEnergy Technologies AreaBerkeleyCAUSA
| | - Joan A. Casey
- Department of Environmental Health SciencesColumbia UniversityNew YorkNYUSA
- Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleWAUSA
| | - Rachel Morello‐Frosch
- Division of Environmental Health SciencesSchool of Public HealthUniversity of California, BerkeleyBerkeleyCAUSA
- Department of Environmental Science, Policy, and ManagementUniversity of California, BerkeleyBerkeleyCAUSA
| |
Collapse
|
5
|
Soriano MA, Deziel NC, Saiers JE. Regional Scale Assessment of Shallow Groundwater Vulnerability to Contamination from Unconventional Hydrocarbon Extraction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12126-12136. [PMID: 35960643 PMCID: PMC9454823 DOI: 10.1021/acs.est.2c00470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 05/19/2023]
Abstract
Concerns over unconventional oil and gas (UOG) development persist, especially in rural communities that rely on shallow groundwater for drinking and other domestic purposes. Given the continued expansion of the industry, regional (vs local scale) models are needed to characterize groundwater contamination risks faced by the increasing proportion of the population residing in areas that accommodate UOG extraction. In this paper, we evaluate groundwater vulnerability to contamination from surface spills and shallow subsurface leakage of UOG wells within a 104,000 km2 region in the Appalachian Basin, northeastern USA. We test a computationally efficient ensemble approach for simulating groundwater flow and contaminant transport processes to quantify vulnerability with high resolution. We also examine metamodels, or machine learning models trained to emulate physically based models, and investigate their spatial transferability. We identify predictors describing proximity to UOG, hydrology, and topography that are important for metamodels to make accurate vulnerability predictions outside their training regions. Using our approach, we estimate that 21,000-30,000 individuals in our study area are dependent on domestic water wells that are vulnerable to contamination from UOG activities. Our novel modeling framework could be used to guide groundwater monitoring, provide information for public health studies, and assess environmental justice issues.
Collapse
Affiliation(s)
- Mario A. Soriano
- School
of the Environment, Yale University, New Haven, Connecticut 06511, United States
| | - Nicole C. Deziel
- School
of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - James E. Saiers
- School
of the Environment, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
6
|
Deziel NC, Clark CJ, Casey JA, Bell ML, Plata DL, Saiers JE. Assessing Exposure to Unconventional Oil and Gas Development: Strengths, Challenges, and Implications for Epidemiologic Research. Curr Environ Health Rep 2022; 9:436-450. [PMID: 35522388 PMCID: PMC9363472 DOI: 10.1007/s40572-022-00358-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Epidemiologic studies have observed elevated health risks in populations living near unconventional oil and gas development (UOGD). In this narrative review, we discuss strengths and limitations of UOG exposure assessment approaches used in or available for epidemiologic studies, emphasizing studies of children's health outcomes. RECENT FINDINGS Exposure assessment challenges include (1) numerous potential stressors with distinct spatiotemporal patterns, (2) critical exposure windows that cover long periods and occur in the past, and (3) limited existing monitoring data coupled with the resource-intensiveness of collecting new exposure measurements to capture spatiotemporal variation. All epidemiologic studies used proximity-based models for exposure assessment as opposed to surveys, biomonitoring, or environmental measurements. Nearly all studies used aggregate (rather than pathway-specific) models, which are useful surrogates for the complex mix of potential hazards. Simple and less-specific exposure assessment approaches have benefits in terms of scalability, interpretability, and relevance to specific policy initiatives such as set-back distances. More detailed and specific models and metrics, including dispersion methods and stressor-specific models, could reduce exposure misclassification, illuminate underlying exposure pathways, and inform emission control and exposure mitigation strategies. While less practical in a large population, collection of multi-media environmental and biological exposure measurements would be feasible in cohort subsets. Such assessments are well-suited to provide insights into the presence and magnitude of exposures to UOG-related stressors in relation to spatial surrogates and to better elucidate the plausibility of observed effects in both children and adults.
Collapse
Affiliation(s)
- Nicole C. Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St., New Haven, CT 06510 USA
| | - Cassandra J. Clark
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St., New Haven, CT 06510 USA
| | - Joan A. Casey
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 630 West 168th Street, Room 16-416, New York, NY 10032 USA
| | - Michelle L. Bell
- Yale School of the Environment, 195 Prospect St., New Haven, CT 06511 USA
| | - Desiree L. Plata
- Department of Civil and Environmental Engineering, Parsons Laboratory, Massachusetts Institute of Technology, 15 Vassar Street, Cambridge, MA 02139 USA
| | - James E. Saiers
- Yale School of the Environment, 195 Prospect St., New Haven, CT 06511 USA
| |
Collapse
|
7
|
The Effects of Residents’ Sense of Place on Their Willingness to Support Urban Renewal: A Case Study of Century-Old East Street Renewal Project in Shaoguan, China. SUSTAINABILITY 2022. [DOI: 10.3390/su14031385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the improvement of urbanization in China, urban renewal has become the main way to meet the increasing demand of residents for urban space and facilities. In this context, this study takes “sense of place” as the theoretical starting point, takes Shaoguan Century-old East Street as the case, and constructs a relationship model between local residents’ sense of place and their willingness to support urban business district reconstruction from a multiscale perspective. By introducing community concern as a mediating variable, this study uses a structural equation model to analyze the influence of residents’ sense of place, including place attachment and place identity, on their intention to support commercial district reconstruction. The results show that residents’ sense of place is significantly different on the scales of block, community, and urban area, and the difference is only in place attachment, not in place identity. Second, the enhancement of residents’ sense of place can not only directly strengthen their willingness to support the renovation of commercial areas, but indirectly improve their willingness to support the renovation of urban commercial areas by enhancing their attention to the community. The conclusion of this study is of great significance to promote the regeneration of historical and cultural blocks and the process of urban renewal.
Collapse
|
8
|
Clark CJ, Xiong B, Soriano MA, Gutchess K, Siegel HG, Ryan EC, Johnson NP, Cassell K, Elliott EG, Li Y, Cox AJ, Bugher N, Glist L, Brenneis RJ, Sorrentino KM, Plano J, Ma X, Warren JL, Plata DL, Saiers JE, Deziel NC. Assessing Unconventional Oil and Gas Exposure in the Appalachian Basin: Comparison of Exposure Surrogates and Residential Drinking Water Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1091-1103. [PMID: 34982938 PMCID: PMC10259677 DOI: 10.1021/acs.est.1c05081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Health studies report associations between metrics of residential proximity to unconventional oil and gas (UOG) development and adverse health endpoints. We investigated whether exposure through household groundwater is captured by existing metrics and a newly developed metric incorporating groundwater flow paths. We compared metrics with detection frequencies/concentrations of 64 organic and inorganic UOG-related chemicals/groups in residential groundwater from 255 homes (Pennsylvania n = 94 and Ohio n = 161). Twenty-seven chemicals were detected in ≥20% of water samples at concentrations generally below U.S. Environmental Protection Agency standards. In Pennsylvania, two organic chemicals/groups had reduced odds of detection with increasing distance to the nearest well: 1,2-dichloroethene and benzene (Odds Ratio [OR]: 0.46, 95% confidence interval [CI]: 0.23-0.93) and m- and p-xylene (OR: 0.28, 95% CI: 0.10-0.80); results were consistent across metrics. In Ohio, the odds of detecting toluene increased with increasing distance to the nearest well (OR: 1.48, 95% CI: 1.12-1.95), also consistent across metrics. Correlations between inorganic chemicals and metrics were limited (all |ρ| ≤ 0.28). Limited associations between metrics and chemicals may indicate that UOG-related water contamination occurs rarely/episodically, more complex metrics may be needed to capture drinking water exposure, and/or spatial metrics in health studies may better reflect exposure to other stressors.
Collapse
Affiliation(s)
- Cassandra J Clark
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College Street, New Haven, Connecticut 06510, United States
| | - Boya Xiong
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
- University of Minnesota, Department of Civil, Environmental and Geo-Engineering, 500 Pillsbury Dr. SE, Minneapolis, Minnesota 55455, United States
| | - Mario A Soriano
- Yale School of the Environment, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Kristina Gutchess
- Yale School of the Environment, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Helen G Siegel
- Yale School of the Environment, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Emma C Ryan
- Tufts University, Department of Public Health and Community Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Nicholaus P Johnson
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College Street, New Haven, Connecticut 06510, United States
| | - Kelsie Cassell
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, 60 College Street, New Haven, Connecticut 06510, United States
| | - Elise G Elliott
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College Street, New Haven, Connecticut 06510, United States
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yunpo Li
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Austin J Cox
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Nicolette Bugher
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Lukas Glist
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Rebecca J Brenneis
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Keli M Sorrentino
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale University Schools of Public Health and Medicine, 1 Church Street, New Haven, Connecticut 06510, United States
| | - Julie Plano
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale University Schools of Public Health and Medicine, 1 Church Street, New Haven, Connecticut 06510, United States
| | - Xiaomei Ma
- Yale School of Public Health, Department of Chronic Disease Epidemiology, 60 College Street, New Haven, Connecticut 06510, United States
| | - Joshua L Warren
- Yale School of Public Health, Department of Biostatistics, 60 College Street, New Haven, Connecticut 06510, United States
| | - Desiree L Plata
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - James E Saiers
- Yale School of the Environment, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Nicole C Deziel
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College Street, New Haven, Connecticut 06510, United States
| |
Collapse
|