1
|
Wang J, Hou J, Wang L, Zhu Z, Han B, Chen L, Liu W. Pollution characteristics, environmental issues, and green development of neonicotinoid insecticides in China: Insights from Imidacloprid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125394. [PMID: 39586452 DOI: 10.1016/j.envpol.2024.125394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Imidacloprid (IMI), a leading neonicotinoid insecticide, is widely used in China. Nevertheless, owing to its high toxicity to pollinators, regulatory scrutiny of its usage has increased in recent years. Despite this, no relevant issues have been announced in China, and its usage continues to rise. In this study, we systematically reviewed the development history, pollution characteristics, and environmental problems associated with IMI in China, which is imperative to promote its green development. The results show that most IMI products (97.1%) in China are registered for agricultural use. Owing to its extensive use and strong migration ability in different environmental matrices, IMI has been broadly detected in multiple environmental media. The average detection rate (DR) of IMI in soils, ambient water, and sediments were 90.7%, 81.3% and 84.5%, respectively, and the corresponding concentrations were 54.6 ± 83.8 ng/g dry weight (dw), 32.8 ± 103 ng/L, and 1.7 ± 2.9 ng/g dw, respectively, indicating high IMI abundance in multiple environmental media in China. The spatiotemporal distribution of IMI was generally determined by its application modes, transport, and degradation rates. IMI is commonly overused in China, leading to the development of high IMI resistance in many pests, and a high DR of IMI in food, drinking water, and human bodies. To alleviate IMI pollution in China, the joint efforts of the government, farmers, and scientists are necessary, including but not limited to formulating laws and regulations, strengthening governmental supervision, improving farmers' knowledge of IMI use, and promoting technological innovation in IMI and application methods.
Collapse
Affiliation(s)
- JinZe Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jie Hou
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - LiXi Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - ZiYang Zhu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - BingJun Han
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - LiYuan Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - WenXin Liu
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Chen X, Wen P, Sun Y, Ding P, Chen H, Li H, Li X, Cai L, Yu Y, Hu G. Ecological risks caused by neonicotinoid pesticides in sediments: A case study of freshwater basins in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177547. [PMID: 39542272 DOI: 10.1016/j.scitotenv.2024.177547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Neonicotinoid insecticides (NNIs) are extensively used in agricultural production in China due to their selective neurotoxicity towards target insects. In recent years, the rapid development of agriculture has increased the use and residue of NNIs. Consequently, the sediment environment, serving as the ultimate sink, is significantly impacted by NNIs. Upon release into the environment, NNIs can enter the human body through the food chain, posing potential ecological and human health risks. This study analyzed 79 sediment samples from two major river basins in North and South China, the Liaohe River basin in Liaoning Province and the Jianjiang River basin in Guangdong Province. The content, composition, distribution, and source of eight NNIs were analyzed, and assess the ecological and human health risks of the target compounds in these regions. The results indicated that the average concentration of NNIs in the sediments of the Jianjiang River basin (2.34 μg/kg) is slightly higher than that of the Liaohe River basin (2.32 μg/kg), and the sources of NNIs in the two areas were different, with differences in the sources of NNIs likely attributable to varying types of agricultural production. The risk assessment revealed that the ecotoxicological and public health risks were more pronounced in the Jianjiang River basin compared to the Liaohe River basin, underscoring the critical need for surveillance and management of hazardous substances like NNIs. The insights findings from this study can provide scientific guidance for the risk evaluation and environmental management of NNIs.
Collapse
Affiliation(s)
- Xiaoxia Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Pengchong Wen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yanan Sun
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Limei Cai
- Hubei Key Laboratory of Petroleum Geochemistry and Environment (Yangtze University), Wuhan 430100, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
3
|
Lu XM, Zhang ZZ, Xiao MY, Meng B, Kolodeznikov VE, Petrova NN, Mukhin VV, Liu BF, Zhang ZF. Screening and quantification of pesticides in wetland water, ice, sediment and soil: Occurrence, transport and risk assessment. ENVIRONMENTAL RESEARCH 2024; 263:120143. [PMID: 39406284 DOI: 10.1016/j.envres.2024.120143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/20/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Current researches on pesticides in wetlands are limited in terms of screening and quantification of many types of pesticides. Understanding the spatial and temporal dynamics, distribution patterns, and environmental risks of pesticides in multiple media is important for wetland ecological conservation. In this study, 222 pesticides were determined in multimedia samples collected simultaneously from the Songhua Wetland during four seasons. Concentrations of target pesticides in water, ice, sediment and soil ranged from 94.1 to 7445 ng/L, 62.6-953 ng/L, 0.82-50.2 ng/g dw, and 4.32-146 ng/g dw. Large spatial differences (p < 0.05) in pesticide concentrations in ice were found. However, there were no significant differences in the spatial and temporal distribution of pesticides in water, sediment, and soil (p > 0.05), suggesting that there were no correlation between the spatial and temporal use of pesticides. The dynamic exchange of pesticides between water-ice indicated that most pesticides were more enriched in water. However, there were still some pesticides (Dichlorvos and Biphenyl) that showed a stronger tendency to transfer from water to ice. Sediment-water exchange suggested that sediment is a source of secondary releases of most pesticides in wetland ecology, but is a sink for Biphenyl and Oxadiazon. The correlation between concentration ratios and fugacity fraction supported this finding. Most individual pesticides in wetland water and ice had shown low or moderate ecological risk conducted using risk quotient. The cumulative toxic effects of multiple pesticides had a high potential to pose a threat to wetland aquatic organisms.
Collapse
Affiliation(s)
- Xi-Mei Lu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhi-Zhong Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China
| | - Meng-Yuan Xiao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China
| | - Bo Meng
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Cold Region Wetland Ecology and Environment Research Key Laboratory, Harbin University, Harbin, 150086, China
| | | | - Natalia Nikolaevna Petrova
- Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University (NEFU), Yakutsk, 677000, Russia
| | - Vasilii Vasilevich Mukhin
- Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University (NEFU), Yakutsk, 677000, Russia
| | - Bing-Feng Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China.
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
4
|
Zhang X, Cao Y, Zhang Z, Li Q, Yan Y. Residues of neonicotinoid insecticides in artificial waterways of the Eastern Route of the South-to North water diversion project, China: Implications for environmental risks and human health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125132. [PMID: 39414065 DOI: 10.1016/j.envpol.2024.125132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/22/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
Neonicotinoids (NEOs) are ubiquitous in global surface waters. However, the occurrence of NEOs in artificial waterways is unclear. The South-to-North Water Diversion Project (SNWDP) is the largest water diversion project in the world. Water samples from the Luoma Lake to Dongping Lake section of the Eastern Route (ER)-SNWDP were collected and analyzed for eight widely used NEOs to study their spatiotemporal distribution, ecological risks, and health risks. The total NEO concentration was 9-666, 34-138, 8-126, and 7-103 ng L-1 in the water diversion channel, Luoma Lake, Nansi Lake, and Dongping Lake, respectively. The average total NEO concentration in the water diversion channel in the dry season was twice as high as it was in the wet season, due to the precipitation dilution effect. Rather than Luoma Lake, Nansi Lake and Dongping Lake showed a seasonal difference in the average total NEO concentration. NEO concentrations in the three lakes were influenced by the inputs from natural rivers and the water diversion channels under artificial regulation. The seasonal variation in NEO composition between the water diversion channel and the three lakes suggested the channel water was not the only source for NEOs in lakes. For individual NEO ecological risks, thiamethoxam, clothianidin, and imidacloprid in the two seasons would result in high chronic risks in the water diversion channel, and moderate to high risks in Nansi Lake and Luoma Lake. Thiacloprid would result in high chronic risks in Dongping Lake in the two seasons and Luoma Lake in the wet season. For the integral NEO risks, none of the lake water sites exceeded the acute ecological threshold. Health risk assessment suggested drinking water obtained from the ER-SNWDP was safe for public health. The health risks for children exposed to NEOs from the water intake and dermal intake were higher than that for adults.
Collapse
Affiliation(s)
- Xiaoxin Zhang
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China
| | - Yuanxin Cao
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China.
| | - Zhijie Zhang
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China
| | - Qiao Li
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China
| | - Yubo Yan
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China
| |
Collapse
|
5
|
Cao Y, Zhang X, Zhang Z, Li Q, Yan Y. Neonicotinoid insecticides in waters of Hongze lake, the largest impounded lake on the South-to-North water diversion project, China: Implications for environmental and public health. ENVIRONMENTAL RESEARCH 2024; 262:119818. [PMID: 39168430 DOI: 10.1016/j.envres.2024.119818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/24/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Contamination by neonicotinoid (NEO) insecticides in surface waters is a global problem. Nevertheless, the occurrence of NEOs in lakes is not well known. Hongze Lake, the largest impounded lake on the Eastern Route of the South-to-North Water Diversion Project, was selected to investigate the distribution, ecological risks, and health risks of NEOs. Water samples from the lake and nearby rivers were collected and analyzed for 8 widely used NEOs in three seasons. The results indicated the average total NEO concentration in summer, winter, and spring was 222, 211, and 244 ng L-1 for the river water, and 265, 213, and 181 ng L-1 for the lake water, respectively, with no statistical seasonal difference. For the river water, the highest total NEO concentration in the three seasons was observed in the Andong River. For the lake water, the total NEO concentrations in summer were relatively high in sites near the inflow river estuaries due to the high riverine inputs during the flood period. The spatial difference in NEO concentration was relatively low in winter, which may be related to the wind-driven lake current. The seasonal variation in NEO compositions in the lake was generally similar to that in the river, indicating riverine input was the important source for the lake. Huai River was the largest contributor to the NEO inputs to the lake, and Sanhe Gate was the major output pathway. Clothianidin and imidacloprid in the river and lake water would produce moderate acute ecological risks in summer. Thus, the usage of the above two NEOs should be decreased or restricted. For integral NEO risks, 53% and 58% of the river and lake water sites exceeded the acute ecological threshold, respectively. Health risk assessment suggested drinking the water obtained from the lake would not produce a negative impact on public health.
Collapse
Affiliation(s)
- Yuanxin Cao
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China
| | - Xiaoxin Zhang
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China.
| | - Zhijie Zhang
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China
| | - Qiao Li
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China
| | - Yubo Yan
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China.
| |
Collapse
|
6
|
Yan XT, Cai YY, Zhang QQ, Guo Z, Ying GG. Neonicotinoid insecticides in a large-scale agricultural basin system-Use, emission, transportation, and their contributions to the ecological risks in the Pearl River Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174392. [PMID: 38955277 DOI: 10.1016/j.scitotenv.2024.174392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Neonicotinoid pollution has increased rapidly and globally in recent years, posing significant risks to agricultural areas. Quantifying use and emission, transport and fate of these contaminants, and risks is critical for proper management of neonicotinoids in river basin. This study elucidates use and emissions of neonicotinoid pesticides in a typical large-scale agriculture basin of China, the Pearl River Basin, as well as the resulting agricultural non-point source pollution and related ecological risks using market surveys, data analysis, and the Soil and Water Assessment Tool. Neonicotinoid use in the basin was estimated at 1361 t in 2019, of which 83.1 % was used in agriculture. After application, approximately 99.1 t neonicotinoids were transported to the Pearl River, accounting for 7.2 % of the total applied. Estimated aquatic concentrations of neonicotinoids showed three seasonal peaks. Several distinct groups of neonicotinoid chemicals can be observed in the Pearl River, as estimated by the model. An estimated 3.9 % of the neonicotinoids used were transported to the South China Sea. Based on the present risk assessment result, several neonicotinoids posed risks to aquatic organism. Therefore, the use of alternative products and/or reduced use is deemed necessary. This study provides novel insights into the fate and ecological risks of neonicotinoid insecticides in large-scale watersheds, and underscores the need for greater efficiency of use and extensive environmental monitoring.
Collapse
Affiliation(s)
- Xiao-Ting Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Ya-Ya Cai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Qian-Qian Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Zhao Guo
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
7
|
Cui S, Lv J, Hough R, Fu Q, An L, Zhang Z, Ke Y, Liu Z, Li YF. Recent advances and prospects of neonicotinoid insecticides removal from aquatic environments using biochar: Adsorption and degradation mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173509. [PMID: 38815835 DOI: 10.1016/j.scitotenv.2024.173509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
In recent years, neonicotinoid insecticides (NNIs), representing a new era of pest control, have increasingly replaced traditional classes such as organophosphorus compounds, carbamates, and pyrethroids due to their precise targeting and broad-spectrum efficacy. However, the high water solubility of NNIs has led to their pervasion in aquatic ecosystems, raising concerns about potential risks to non-target organisms and human health. Therefore, there is an urgent need for research on remediating NNI contamination in aquatic environments. This study demonstrates that biochar, characterized by its extensive surface area, intricate pore structure, and high degree of aromaticity holds significant promise for removing NNIs from water. The highest reported adsorption capacity of biochar for NNIs stands at 738.0 mg·g-1 with degradation efficiencies reaching up to 100.0 %. This review unveils that the interaction mechanisms between biochar and NNIs primarily involve π-π interactions, electrostatic interactions, pore filling, and hydrogen bonding. Additionally, biochar facilitates various degradation pathways including Fenton reactions, photocatalytic, persulfate oxidations, and biodegradation predominantly through radical (such as SO4-, OH, and O2-) as well as non-radical (such as 1O2 and electrons transfer) processes. This study emphasizes the dynamics of interaction between biochar surfaces and NNIs during adsorption and degradation aiming to elucidate mechanistic pathways involved as well as assess the overall efficacy of biochar in NNI removal. By comparing the identification of degradation products and degradation pathways, the necessity of advanced oxidation process is confirmed. This review highlights the significance of harnessing biochar's potential for mitigating NNI pollution through future application-oriented research and development endeavors, while simultaneously ensuring environmental integrity and promoting sustainable practices.
Collapse
Affiliation(s)
- Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Jialin Lv
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - LiHui An
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zulin Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yuxin Ke
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhikun Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
8
|
Liao L, Sun T, Gao Z, Lin J, Gao M, Li A, Gao T, Gao Z. Neonicotinoids as emerging contaminants in China's environment: a review of current data. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51098-51113. [PMID: 39110283 DOI: 10.1007/s11356-024-34571-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2024] [Indexed: 09/06/2024]
Abstract
Neonicotinoids (NEOs), the most widely used class of insecticides, are pervasive in the environment, eliciting concerns due to their hydrophilicity, persistence, and potential ecological risks. As the leading pesticide consumer, China shows significant regional disparities in NEO contamination. This review explores NEO distribution, sources, and toxic risks across China. The primary NEO pollutants identified in environmental samples include imidacloprid, thiamethoxam, and acetamiprid. In the north, corn cultivation represents the principal source of NEOs during wet seasons, while rice dominates in the south year-round. The high concentration levels of NEOs have been detected in the aquatic environment in the southern regions (130.25 ng/L), the urban river Sects. (157.66 ng/L), and the downstream sections of the Yangtze River (58.9 ng/L), indicating that climate conditions and urban pollution emissions are important drivers of water pollution. Neonicotinoids were detected at higher levels in agricultural soils compared to other soil types, with southern agricultural areas showing higher concentrations (average 27.21 ng/g) than northern regions (average 12.77 ng/g). Atmospheric NEO levels were lower, with the highest concentration at 1560 pg/m3. The levels of total neonicotinoid pesticides in aquatic environments across China predominantly exceed the chronic toxicity ecological threshold of 35 ng/L, particularly in the regions of Beijing and the Qilu Lake Basin, where they likely exceed the acute toxicity ecological threshold of 200 ng/L. In the future, efforts should focus on neonicotinoid distribution in agriculturally developed regions of Southwest China, while also emphasizing their usage in urban greening and household settings.
Collapse
Affiliation(s)
- Lingzhi Liao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, PR China
| | - Ting Sun
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Zhenhui Gao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jianing Lin
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China.
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Meng Gao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Ao Li
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Teng Gao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Ziqin Gao
- Fuxin Experimental Middle School, Fuxin, 123099, PR China
| |
Collapse
|
9
|
Liu Z, Zhang F, Gao S, Zhang L, Fu Q, Cui S. Neonicotinoid insecticides in paddy fields: Dissipation dynamics, migration, and dietary risk. CHEMOSPHERE 2024; 359:142371. [PMID: 38768784 DOI: 10.1016/j.chemosphere.2024.142371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/20/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
Neonicotinoid insecticides (NNIs) have caused widespread contamination of multiple environmental media and posed a serious threat to ecosystem health by accidently injuring non-target species. This study collected samples of water, soil, and rice plant tissues in a water-soil-plant system of paddy fields after spaying imidacloprid (IMI), thiamethoxam (THM), and clothianidin (CLO) to analyze their distribution characteristics and migration procedures and to assess related dietary risks of rice consumption. In the paddy water, the concentrations of NNIs showed a dynamic change of increasing and then decreasing during about a month period, and the initial deposition of NNIs showed a trend of CLO (3.08 μg/L) > THM (2.74 μg/L) > IMI (0.97 μg/L). In paddy soil, the concentrations of the three NNIs ranged from 0.57 to 68.3 ng/g, with the highest residual concentration at 2 h after application, and the concentration trend was opposite to that in paddy water. The initial deposition amounts of IMI, THM, and CLO in the root system were 5.19, 3.02, and 5.24 μg/g, respectively, showing a gradual decrease over time. In the plant, the initial deposition amounts were 19.3, 9.36, and 52.6 μg/g for IMI, THM, and CLO, respectively, exhibiting concentration trends similar to those in the roots. Except for IMI in soil, the dissipation of the NNIs conformed to the first-order kinetic equation in paddy water, soil, and plant. The results of bioconcentration factors (BCFs) and translocation factor (TF) indicated that NNIs can be bi-directionally transported in plants through leaf absorption and root uptake. The risk of NNIs intake through rice consumption was low for all age groups, with a slightly higher risk of exposure in males than in females.
Collapse
Affiliation(s)
- Zhikun Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; School of Advanced Agricultural Sciences, Weifang University, Weifang, Shandong, 261061, China
| | - Fuxiang Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Shang Gao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
10
|
Cui S, Lv J, Hough R, Fu Q, Zhang Z, Dong X, Fan X, Li YF. Imidacloprid removal by modified graphitic biochar with Fe/Zn bimetallic oxides. ENVIRONMENTAL RESEARCH 2024; 258:119444. [PMID: 38914251 DOI: 10.1016/j.envres.2024.119444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
Coping with the critical challenge of imidacloprid (IMI) contamination in sewage treatment and farmland drainage purification, this study presents a pioneering development of an advanced modified graphitic white melon seed shells biochar (Fe/Zn@WBC). The Fe/Zn@WBC demonstrates a substantial enhancement in adsorption efficiency for IMI, achieving a remarkable removal rate of 87.69% within 30 min and a significantly higher initial adsorption rate parameter h = 4.176 mg g-1·min-1. This significant improvement outperforms WBC (12.22%, h = 0.115 mg g-1·min-1) and highlights the influence of optimized adsorption conditions at 900 °C and the graphitization degree resulting from Fe/Zn bimetallic oxide modification. Characterization analysis and batch sorption experiments including kinetics, isotherms, thermodynamics and pH factors illustrate that chemical adsorption is the main type of adsorption mechanism responsible for this superior ability to remove IMI through pore filling, hydrogen bonding, hydrophobic interaction, electrostatics interaction, π-π interactions as well as complexation processes. Furthermore, we demonstrate exceptional stability of Fe/Zn@WBC across a broad pH range (pH = 3-11), co-existing ions presence along with humic acid under various real water conditions while maintaining high removal efficiency. This study presents an advanced biochar adsorbent, Fe/Zn@WBC, with efficient adsorption capacity and easy preparation. Through three regeneration cycles via pyrolysis method, it demonstrates excellent pyrolysis regeneration capabilities with an average removal efficiency of 92.02%. The magnetic properties enable rapid separation facilitated by magnetic analysis. By elucidating the efficacy and mechanistic foundations of Fe/Zn@WBC, this research significantly contributes to the field of environmental remediation by providing a scalable solution for IMI removal and enhancing scientific understanding of bimetallic oxides-hydrophilic organic pollutant interactions.
Collapse
Affiliation(s)
- Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Jialin Lv
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Zulin Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Xiaolong Dong
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Xiaohu Fan
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
11
|
Zhang X, Cao Y, Cao J, Feng X, Zhang Z, Li Q, Yan Y. Neonicotinoid insecticides in waters of the northern Jiangsu segment of the Beijing-Hangzhou Grand Canal: Environmental and health implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171455. [PMID: 38438029 DOI: 10.1016/j.scitotenv.2024.171455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/18/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Neonicotinoid (NEO) insecticides have been frequently detected in natural aquatic environments. Nevertheless, the distribution of NEOs in artificial environments is not clear. The Beijing-Hangzhou Grand Canal is the longest canal in the world. The northern Jiangsu segment of the Grand Canal was selected to study the spatiotemporal variation and source of eight NEOs in the canal water and assess their ecological and health risks. The total NEO concentration in the canal water was 12-289 ng L-1 in the dry season and 18-373 ng L-1 in the wet season, which were within the concentration range in other 11 natural rivers worldwide. The average total NEO concentrations were not statistically different between the seasons; only the concentrations of imidaclothiz, thiacloprid (THI), acetamiprid, and dinotefuran were different. At city scale, the total NEO concentration in the dry season showed a decreasing trend along the water flow from Xuzhou City to Yangzhou City. The total NEO concentrations were found to be positively correlated with the sown area of farm crops and the rural labour force, indicating the agricultural influence on the spatial distribution of NEO concentrations. In the wet season, relatively high NEO concentrations were distributed in downstream sites under the influence of artificial regulation. The primary contributor to the NEO inputs into the canal was the nonpoint source in the dry and wet seasons, with a relative contribution of 68 %. THI, imidacloprid, clothianidin and thiamethoxan would produce chronic ecological risks in both seasons. Further consideration needs to be given to the above four NEOs and NEO mixtures. The human health risks that NEOs posed by drinking water were assessed based on the chronic daily intake (CDI). The maximum CDI for adults and children was lower than the reference doses. This suggested public health would not be at risk from canal water consumption.
Collapse
Affiliation(s)
- Xiaoxin Zhang
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Yuanxin Cao
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China.
| | - Jiachen Cao
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Xiao Feng
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Zhijie Zhang
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Qiao Li
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Yubo Yan
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| |
Collapse
|
12
|
Chen Y, Tan Y, Feng Y, Dong T, Jiang C, Wang C, Yang Y, Zhang Z. Selected legacy and emerging organic contaminants in sediments of China's Yangtze - the world's third longest river: Response to anthropogenic activities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123608. [PMID: 38428792 DOI: 10.1016/j.envpol.2024.123608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/03/2024]
Abstract
To explore contaminant concerns as a result of anthropogenic disturbance of the river system, this study provided the first extensive investigation of the contamination profiles, possible driving factors, and ecological risks of 40 target compounds including pharmaceuticals and personal care products (PPCPs), neonicotinoid pesticides (NNIs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) in sediments of the whole Yangtze River (the world's third longest river). Among these target compounds, PPCPs were the dominant contaminants with a total concentration (∑15PPCPs) of 2.13-14.99 ng/g, followed by ∑7PCBs (
Collapse
Affiliation(s)
- Yulin Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Yang Tan
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuying Feng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Tao Dong
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chunxia Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Chen Wang
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
13
|
Tsegay G, Lartey-Young G, Mariye M, Gao Y, Meng XZ. Assessing neonicotinoid accumulation and ecological risks in the aquatic environment of Yangtze River Basin, China. CHEMOSPHERE 2024; 351:141254. [PMID: 38272140 DOI: 10.1016/j.chemosphere.2024.141254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/26/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Neonicotinoids (NNIs) constitute commonly used pesticides across various regions, however, the lack of research and data on its long-term effects and threshold levels within specific ecosystems have left an important knowledge gap. This study aimed to comprehensively examine NNI concentrations and their potential impacts on human health and aquatic organisms in the region of the Yangtze River Basin (YRB). The study employed datasets on seven commonly applied NNIs across 244 surface water samples collected from 12 distinct geographic sites within the YRB. The relative potency factor was used to evaluate human exposure risks, while the species sensitivity distribution could estimate acute and chronic hazardous concentrations for 5% of species (HC5) for NNIs impacting aquatic organisms. Analysis revealed varying NNI concentrations across the sampled sites, with thiacloprid recording the lowest concentration at 0.1 ng L-1, and dinotefuran recording a high concentration of 408 ng L-1. The observation indicated NNI concentration declined at sampling sites downstream of the YRB. Infants were identified as the most vulnerable to NNI exposure, with an estimated daily intake of 40.8 ng kg-1 bw d-1. The acute HC5 was determined at 946 ng L-1 and a chronic HC5 at 338 ng L-1, to NNI hazards. These findings highlight the urgent need for a more comprehensive understanding of the ecological implications and hazards posed by NNIs within the YRB. Variations in NNI concentrations across sites, potential risks to human health, and increased vulnerability of aquatic organisms from this study underscore the necessity for further research and concerted efforts to mitigate these ecological threats in the region.
Collapse
Affiliation(s)
- Gedion Tsegay
- UNEP-TONGJI Institute of Environment for Sustainable Development (IESD), College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - George Lartey-Young
- UNEP-TONGJI Institute of Environment for Sustainable Development (IESD), College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Mehari Mariye
- UNEP-TONGJI Institute of Environment for Sustainable Development (IESD), College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yunze Gao
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xiang-Zhou Meng
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
14
|
Okeke ES, Olisah C, Malloum A, Adegoke KA, Ighalo JO, Conradie J, Ohoro CR, Amaku JF, Oyedotun KO, Maxakato NW, Akpomie KG. Ecotoxicological impact of dinotefuran insecticide and its metabolites on non-targets in agroecosystem: Harnessing nanotechnology- and bio-based management strategies to reduce its impact on non-target ecosystems. ENVIRONMENTAL RESEARCH 2024; 243:117870. [PMID: 38072111 DOI: 10.1016/j.envres.2023.117870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/26/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
The class of insecticides known as neonicotinoid insecticides has gained extensive application worldwide. Two characteristics of neonicotinoid pesticides are excellent insecticidal activity and a wide insecticidal spectrum for problematic insects. Neonicotinoid pesticides can also successfully manage pest insects that have developed resistance to other insecticide classes. Due to its powerful insecticidal properties and rapid plant absorption and translocation, dinotefuran, the most recent generation of neonicotinoid insecticides, has been widely used against biting and sucking insects. Dinotefuran has a wide range of potential applications and is often used globally. However, there is growing evidence that they negatively impact the biodiversity of organisms in agricultural settings as well as non-target organisms. The objective of this review is to present an updated summary of current understanding regarding the non-target effects of dinotefuran; we also enumerated nano- and bio-based mitigation and management strategies to reduce the impact of dinotefuran on non-target organisms and to pinpoint knowledge gaps. Finally, future study directions are suggested based on the limitations of the existing studies, with the goal of providing a scientific basis for risk assessment and the prudent use of these insecticides.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China.
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00, Brno, Czech Republic
| | - Alhadji Malloum
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa; Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Kayode A Adegoke
- Department of Industrial Chemistry, First Technical University, Ibadan, Nigeria
| | - Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Nigeria; Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - Chinemerem R Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11, Hoffman St, Potchefstroom, 2520, South Africa
| | - James F Amaku
- Department of Applied Science, Faculty of Science Engineering and Technology, Walter Sisulu University, Old King William Town Road, Potsdam Site, East London 5200, South Africa
| | - Kabir O Oyedotun
- College of Science, Engineering and Technology (CSET), University of South Africa, Florida Campus, Johannesburg, 1710, South Africa
| | - Nobanathi W Maxakato
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa; Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
15
|
Hou J, Hu C, Yang L, Wang X. Aquatic ecological risk assessment of imidacloprid and thiacloprid in an urban river of Qingdao, China. MARINE POLLUTION BULLETIN 2024; 199:116013. [PMID: 38183835 DOI: 10.1016/j.marpolbul.2023.116013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024]
Abstract
Imidacloprid and thiacloprid, two neonicotinoid insecticides that are extensively used in urban areas, are potentially toxic to non-target aquatic organisms. In this study, the concentrations of imidacloprid and thiacloprid in surface runoff after rainfall were 20.79-43.77 ng/L and 25.13-63.84 ng/L, respectively, whereas the levels for the Licun River were 10.78-41.70 ng/L and 2.66-39.68 ng/L, respectively. The acute and chronic criteria for imidacloprid and thiacloprid are 0.865, 0.006, 0.83, and 0.012 μg/L, respectively. Tiered ecological risk assessments revealed the chronic ecological risks of these micropollutants to local aquatic species. There was a moderate chronic toxicity risk associated with imidacloprid and thiacloprid in the Licun River, and the joint probability curves showed a probability of chronic ecological risk to 5 % of the aquatic organisms at 68 %-97 %. The results provide evidence of urban surface runoff transporting micropollutants from surface into rivers and estuaries, highlighting the ecological risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Jinlong Hou
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Changqin Hu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Lei Yang
- Key Laboratory of Eco-Environmental Geochemistry of Ministry of Natural Resources, National Research Center for Geoanalysis, Beijing 100037, China; School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xiaocui Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
16
|
Zhang X, Cao Y, Cao J, Li Q, Yan Y. Occurrence, source, and risk assessment of neonicotinoid insecticides in the Huai River, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122068. [PMID: 37330189 DOI: 10.1016/j.envpol.2023.122068] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/19/2023]
Abstract
Neonicotinoids (NEOs) are the most widely used insecticides in the world. Nevertheless, the occurrence and distribution of NEOs in agricultural areas are not well understood. This study investigated the concentration, sources, ecological risks, and health risks of eight NEOs in the water of the Huai River, which flows through a typical agricultural area in China. The total concentration of NEOs in the river water ranged from 1.02 to 191.2 ng L-1, with an average of 64.1 ng L-1. Thiamethoxam was the dominant compound, with an average relative contribution of 42.5%. The average concentration of the total NEOs in downstream was significantly higher than that in upstream (p < 0.05). This may be related to the intensity of agricultural activities. The riverine NEO fluxes increased by approximately 12 times from the upper site to the lower site. More than 1.3 tons of NEOs in 2022 were transferred into Lake Hongze, the largest regulative lake on the Eastern Route of the South-to-North Water Diversion Project. Nonpoint sources were the major contributor to the total NEO inputs, and water use was the main output pathway. The risk assessment indicated that the individual NEOs in the river water presented low ecological risks. The NEO mixtures would produce chronic risks to aquatic invertebrates in 50% of the sampling sites, which were mostly distributed in downstream. Thus, more attention should be given to the downstream. Based on the Monte Carlo simulation, the health risks of NEOs via water consumption were estimated. The maximum chronic daily intakes were 8.4 × 10-4, 2.25 × 10-4, 1.27 × 10-4, 1.88 × 10-4 mg kg-1 day-1 for boys, girls, men, and women, respectively, which were approximately 2 orders of magnitude lower than the acceptable daily intake. Therefore, river water consumption would not be a concern for the public health.
Collapse
Affiliation(s)
- Xiaoxin Zhang
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China
| | - Yuanxin Cao
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China.
| | - Jiachen Cao
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China
| | - Qiao Li
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China
| | - Yubo Yan
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China
| |
Collapse
|
17
|
Liu Z, Cui S, Fu Q, Zhang F, Zhang Z, Hough R, An L, Li YF, Zhang L. Transport of neonicotinoid insecticides in a wetland ecosystem: Has the cultivation of different crops become the major sources? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117838. [PMID: 37027902 DOI: 10.1016/j.jenvman.2023.117838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Extensive application of neonicotinoid insecticides (NNIs) in agricultural production has resulted in widespread contamination of multiple environmental media. To investigate the occurrence and fate of NNIs in the largest marsh distribution area in Northeast China, an integrated ecosystem covering farmlands, rivers, and marshes, referred to as the farmland-river-marsh continuum in this study, was chosen for soil, water, and sediment sampling. Five NNIs were detected, with imidacloprid (IMI), thiamethoxam (THM), and clothianidin (CLO) being the most frequently detected ones in different samples. Concentrations of target NNIs in soil, surface water, and sediment samples were 2.23-136 ng/g dry weight (dw), 3.20-51.7 ng/L, and 1.53-8.40 ng/g dw, respectively. In soils, NNIs were detected more often and at higher concentrations in upland fields, while the concentration of NNIs in the soybean-growing soils (71.5 ng/g dw) was significantly higher than in the rice-growing soils (18.5 ng/g dw) (p < 0.05). Total concentration of NNIs in surface water was lower in the Qixing River channel than inside the marsh, while that in sediments showed an opposite trend. Total migration mass of IMI from approximately 157,000 ha of farmland soil by surface runoff was estimated to be 2636-3402 kg from the application time to the sampling period. The storage of NNIs in sediments was estimated to range from 45.9 to 252 ng/cm2. The estimated environmental risks, calculated as the risk quotients (RQs), revealed low risks to aquatic organisms (RQs <0.1) from the residual concentrations of NNIs in water.
Collapse
Affiliation(s)
- Zhikun Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fuxiang Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Lihui An
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4 Canada.
| |
Collapse
|
18
|
Liu S, Wang T, Lu J, Li Z. Seawater quality criteria derivation and ecological risk assessment for the neonicotinoid insecticide imidacloprid in China. MARINE POLLUTION BULLETIN 2023; 190:114871. [PMID: 37023546 DOI: 10.1016/j.marpolbul.2023.114871] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
As a broad-spectrum nicotinoid insecticide, imidacloprid (IMI) has been frequently recorded in seawater environments. Water quality criteria (WQC) is the maximum concentration of chemicals, which will not pose harmful effects on aquatic species in the studied water body. Nevertheless, the WQC is not available for IMI in China, which hinders the risk assessment of this emerging pollutant. This study, therefore, aims to derive the WQC for IMI through the toxicity percentile rank (TPR) and species sensitivity distribution (SSD) methodology, and to assess its ecological risk in aquatic environments. Results showed that the recommended short-term water quality criterion (SWQC) and long-term criterion (LWQC) in seawater were derived as 0.8 μg/L and 0.056 μg/L, respectively. The ecological risk of IMI in seawater shows a wide range with hazard quotient (HQ) values of up to 11.4. The environmental monitoring, risk management and pollution control for IMI, therefore, warrant further study.
Collapse
Affiliation(s)
- Shuai Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Teng Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jinyu Lu
- College of Environment, Nanjing University, Nanjing 210000, China
| | - Zhengyan Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
19
|
Gu S, Li Z, Yang L, Bao X, Ying C, Zhang Q. The distribution and human health risk assessment of eight neonicotinoid residues in agricultural soils from four provinces, south China. CHEMOSPHERE 2023; 322:138143. [PMID: 36791816 DOI: 10.1016/j.chemosphere.2023.138143] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
The widespread use of neonicotinoid (neonic) insecticides in China's agricultural sector has led to high residual concentrations in the agroecosystem. Since soil is the primary source of direct pesticide exposure, soil contamination is a significant concern, particularly in regions with extensive agricultural production. This study aims to determine the spatial distribution of neonics in farmlands from four southern provinces that are home to China's crucial commercial grain bases. By combining eight neonics into imidacloprid-equivalent total neonics (IMIRPF) using the relative potency factor method, the ecological risks to humans were also assessed. The results showed that imidacloprid had the highest detection rate (96%-100%), followed by thiamethoxam and clothianidin, which ranged from 44% to 64%. Maximum and average IMIRPF values in soil samples from Zhejiang Province were 277.02 and 46.05 μg kg-1 (dry weight), respectively. Guangdong (maximum = 191.62 μg kg-1, mean = 39.70 μg kg-1) and Jiangxi (maximum = 199.13 μg kg-1, mean = 28.95 μg kg-1) had comparable IMIRPF while Jiangsu had the lowest level of total neonics, with a maximum of 86.07 μg kg-1 and a mean of 19.49 μg kg-1. A significant positive correlation between IMIRPF and total organic carbon in soils was also found. The average daily doses of neonics from soil-borne exposure through food intake, soil ingestion, inhalation, and dermal contact calculated for adults and children in each province were all lower than the reference dose (RfD, 57 μg kg-1 d-1) of imidacloprid. However, the potential health risk to human health cannot be disregarded, given their increasing use and pervasiveness in the environment. Our results help to raise concerns about the safety of the agroecological environment under neonic exposure in the major agricultural provinces of southern China.
Collapse
Affiliation(s)
- Sijia Gu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Zhe Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Liuqing Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Xiaoqi Bao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Chengfeng Ying
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China.
| |
Collapse
|
20
|
Xiong Z, Wu Y, Zhou Y, He S, Huang D, Zhang M, Jiang Y, Cheng L, Zhao Z, Zhao H, Lin H. Rapid determination and health risk assessment of neonicotinoids in source water and tap water of the tropical Hainan Island, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27026-w. [PMID: 37121946 DOI: 10.1007/s11356-023-27026-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Neonicotinoids (NEOs) pesticides are widely used around the world, especially in the tropics with greater frequency and intensity. However, little is known about NEOs residue in drinking water of tropics. In this study, a highly efficient method using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established for determining eight NEOs in source water and tap water of Hainan Island, China. The method adopted a high-throughput direct aqueous injection without sample concentration steps, with a rapid analyzing period of 5.0 min, method detection limits (MDLs) in the range of 0.84-1.82 ng/L and the average recoveries ranged from 83% to 116%. NEOs were detected in all source water samples and at an upper level as compared with other parts of China. The most frequently detected NEO was imidacloprid with a detection frequency of 94%, followed by clothianidin (88%) and thiamethoxam (78%), with maximum concentrations of 86.4, 164, and 188 ng/L, respectively. Moreover, seasonal and spatial variations had remarkable impacts on NEO contamination in source water. Drinking water treatment processes removed approximately 20% of NEOs from surface water. However, 90% of tap water samples contained at least one NEO, With 3 samples' concentration of single NEO exceeding the acceptable value recommended by the European Union (100 ng/L). Therefore, the risk of human exposure through drinking water was evaluated for 4 age group and 2 genders. Young children aged 9 months to 3 years old were found to have the highest risk, with the median exposure up to 4 times greater than teenagers and adults. Next, water intake is likely only a small part of the daily intake of these individuals, thus the potential health problems caused by NEOs present in the tap water of Hainan should not be ignored.
Collapse
Affiliation(s)
- Zengheng Xiong
- Hainan Ecological Environmental Monitoring Center, Haikou, 571126, Hainan, China
| | - Yan Wu
- Hainan Ecological Environmental Monitoring Center, Haikou, 571126, Hainan, China
| | - Yang Zhou
- Hainan University, Haikou, 570228, Hainan, China
| | - Shuhai He
- Hainan Ecological Environmental Monitoring Center, Haikou, 571126, Hainan, China.
| | - Danyu Huang
- Hainan Ecological Environmental Monitoring Center, Haikou, 571126, Hainan, China
| | - Mingshan Zhang
- Hainan Ecological Environmental Monitoring Center, Haikou, 571126, Hainan, China
| | - Yanjun Jiang
- Hainan University, Haikou, 570228, Hainan, China
| | - Long Cheng
- SCIEX Analytical Instrument Trading Co., Ltd, Shanghai, 200335, China
| | | | - Hongwei Zhao
- Hainan University, Haikou, 570228, Hainan, China
| | - Huan Lin
- Hainan University, Haikou, 570228, Hainan, China
| |
Collapse
|
21
|
Tan H, Wang C, Zhu S, Liang Y, He X, Li Y, Wu C, Li Q, Cui Y, Deng X. Neonicotinoids in draining micro-watersheds dominated by rice-vegetable rotations in tropical China: Multimedia occurrence, influencing factors, transport, and associated ecological risks. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130716. [PMID: 36610339 DOI: 10.1016/j.jhazmat.2022.130716] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Multimedia contamination by neonicotinoid (NEO) residues has attracted global attention. However, data regarding the multimedia polluted status under certain typical cropping scenarios and the associated risks are scarce. Here, the multimedia occurrence, spatiotemporal distribution, driving factors, transport, and ecological risks of NEOs from tropical rice-vegetable rotation fields were characterized. The heavy NEOs resided in multiple media, and imidacloprid and acetamiprid were the prevailing NEOs, with concentration contributions of 65-80%. The pollution levels of the NEOs, rather than their compositions, exhibited significant spatiotemporal heterogeneity and were highly correlated with the collective (agricultural practices and climate conditions) and differential (e.g., media properties) factors identified using an auto linear regression model. Furthermore, the multimedia transport of NEOs was largely similar but non-negligibly different during the rainy and dry seasons. A new multimedia ecological risk assessment revealed that 50.6% sites were at high risk, and the risk hotspots occurred in the central areas and the winter planting period. The risks were largely contributed by imidacloprid and thiamethoxam, indicating that there were non-ignorable ecological risks. Our results highlight the differential pollution patterns (distribution, transport, and driving factors) of the prevailing NEOs under tropical agricultural scenarios, and the fact that special attention should be paid to the risks posed by NEOs.
Collapse
Affiliation(s)
- Huadong Tan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou 571737, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou 571737, PR China
| | - Chuanmi Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; College of Plant Protection, Hainan University, Haikou 570228, PR China
| | - Sipu Zhu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; School of Resources and Environment, Central China Agricultural University, Wuhan 430070, PR China
| | - Yuefu Liang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; School of Resources and Environment, Central China Agricultural University, Wuhan 430070, PR China
| | - Xiaoyu He
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; School of Resources and Environment, Central China Agricultural University, Wuhan 430070, PR China
| | - Yi Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou 571737, PR China
| | - Chunyuan Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou 571737, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou 571737, PR China.
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou 571737, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou 571737, PR China
| | - Yanmei Cui
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou 571737, PR China
| | - Xiao Deng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou 571737, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou 571737, PR China
| |
Collapse
|
22
|
Liu L, Li X, Wang X, Wang Y, Shao Z, Liu X, Shan D, Liu Z, Dai Y. Metolachlor adsorption using walnut shell biochar modified by soil minerals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119610. [PMID: 35700880 DOI: 10.1016/j.envpol.2022.119610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The removal of pesticide residues in soil is a research hotspot. The metolachlor (MET) adsorption by walnut shell biochar (BC) modified with montmorillonite (MBC), illite (IBC), and kaolinite (KBC), as well as the original BC (OBC) was investigated. The characteristics of samples were studied by scanning electron microscopy and mapping analysis, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetry, and chemical stability analysis. The effects of the dosage, ionic strength, and pH, and determined the adsorption kinetics and isotherms for MET with the BCs were analyzed. In addition, response surface methodology regression model analysis was conducted and the adsorption mechanisms were investigated. The results showed that the thermal stability and chemical stability of MBC, IBC, and KBC were higher than those of OBC, and MBC had the greatest stability. The MET adsorption rates of OBC, MBC, IBC, and KBC were 62.15%, 92.47%, 87.97%, and 83.31%, respectively. The kinetic fitting results and adsorption mechanisms showed that the modification of BC with minerals enhanced the physical adsorption of MET. The maximum MET adsorption capacities by OBC, MBC, IBC, and KBC were 39.68 mg g-1, 68.49 mg g-1, 65.79 mg g-1, and 65.36 mg g-1, respectively. Hydrogen bonds, π-π bonds, coordination bonds, and hydrophobic interactions were the key adsorption mechanisms. Therefore, the mineral-modified BCs were characterized by high adsorption rates and stability. This approach can make BC more efficient, with higher performance as a low cost soil amendment.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Agricultural Renewable Resource Utilization Technology of Heilongjiang Province, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China; School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China; School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin, 150090, China
| | - Xiaohan Li
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Xiaorou Wang
- Environment Research Institute, Shandong University, No.72 Binhai Road, Jimo District, Qingdao, 266237, China
| | - Yuxin Wang
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Ziyi Shao
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Xiao Liu
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Dexin Shan
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, No.319 Honghe Road, Yongchuan District, Chongqing, 402168, China
| | - Zhihua Liu
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Yingjie Dai
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
23
|
Du C, Zhang Y, Zhang Z, Song D, Cao J, Yu H, Yu G, Zhou L, Su Y, Lv Y, Zhu H, Deng F. Highly efficient removal of oxytetracycline using activated magnetic MIL-101(Fe)/γ-Fe 2O 3 heterojunction catalyst. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115327. [PMID: 35660831 DOI: 10.1016/j.jenvman.2022.115327] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
A novel magnetic nanocomposite MIL-101(Fe)/γ-Fe2O3 was synthesized by hydrothermal method. The physical structure and chemical property of the as-obtained magnetic nanocomposite was characterized. The ability of MIL-101(Fe)/γ-Fe2O3 to promote photo-assisted peroxydisulfate (PDS) activation was investigated by using oxytetracycline (OTC) as the target pollutant. The results showed that the composite with a FeCl3•6H2O: γ-Fe2O3 mass ratio of 10:1 exhibited the highest degradation efficiency (up to 91.2%). Influencing factors such as pH, catalyst dosage, PDS concentration and OTC concentration on the catalytic performance of MIL-101(Fe)/γ-Fe2O3 were also investigated to determine the optimum conditions. More importantly, the MIL-101(Fe)/γ-Fe2O3 can be magnetically recovered and reused for 4 cycles. Based on radical quenching and electron spin resonance (ESR), the possible degradation mechanism of OTC in photo-assisted PDS activation (PPA) system was proposed. This research provided novel insights for the design and preparation of a new type of magnetic Fe-MOFs for environmental remediation.
Collapse
Affiliation(s)
- Chunyan Du
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China
| | - Yin Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Zhuo Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Demin Song
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Jiao Cao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China.
| | - Hanbo Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China
| | - Guanlong Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China
| | - Lu Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China
| | - Yihai Su
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Yinchu Lv
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Hao Zhu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Fangfang Deng
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| |
Collapse
|
24
|
Liu Z, Zhang L, Zhang Z, An L, Hough R, Hu P, Li YF, Zhang F, Wang S, Zhao Y, Ke Y, Cui S. A review of spatiotemporal patterns of neonicotinoid insecticides in water, sediment, and soil across China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55336-55347. [PMID: 35665457 DOI: 10.1007/s11356-022-21226-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Neonicotinoid insecticides (NNIs) have been widely used to control insect pests, while their environmental residues and associated hazardous impacts on human and ecosystem health have attracted increasing attention worldwide. In this study, we examined the current levels and associated spatial and temporal patterns of NNIs in multiple environmental media across China. Concentrations of NNIs in surface water, sediment, and soil were in the range of 9.94-755 ng·L-1, 0.07-8.30 ng·g-1 DW, and 0.009-356 ng·g-1 DW, respectively. The high levels of NNIs in surface water, such as in Yangtze River (755 ng·L-1), North River (539 ng·L-1), Nandu River (519 ng·L-1), and Minjiang River (514 ng·L-1), were dominated by imidacloprid, thiamethoxam, and acetamiprid due to their extensive use. The levels of NNIs in sediments were relatively low, and the highest concentration (8.30 ng·g-1 DW) was observed in Dongguan ditch. Sediment-water exchange calculated from fugacity fraction indicated that NNIs in sediment can be released back into the water due to their high solubility and low KOW. Soils from agricultural zones contained the largest residual NNIs, with imidacloprid concentrations in cultivated soil reaching 119 ng·g-1 DW. The calculated leaching potential showed that clothianidin has the highest migration potential to deep soil or groundwater. The monitored data of NNIs presented a decreasing trend from 2016 to 2018, which might be caused by the implementation of relevant control policies for NNI applications. The high levels of NNIs mainly occurred in southern China due to frequent agricultural activities and warm and humid meteorological conditions. The results from this study improve our understanding of the pollution levels and environmental behavior of NNIs in different environmental media across China and provide new knowledge that is needed for making future control policies for NNIs production and application.
Collapse
Affiliation(s)
- Zhikun Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Lihui An
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Peng Hu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Yi-Fan Li
- IJRC-PTS, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fuxiang Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Shuang Wang
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yunqing Zhao
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yuxin Ke
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
25
|
Ke Y, Cui S, Fu Q, Hough R, Zhang Z, Li YF. Effects of pyrolysis temperature and aging treatment on the adsorption of Cd 2+ and Zn 2+ by coffee grounds biochar. CHEMOSPHERE 2022; 296:134051. [PMID: 35216977 DOI: 10.1016/j.chemosphere.2022.134051] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
As an in-situ immobilization material for heavy metals, biochar can exist in the environment for thousands of years, while whether the natural aging would affect its heavy metals adsorption performance still remains unclear. Therefore, the coffee grounds biochar (CGB) was prepared under different pyrolysis temperatures (300, 500 and 700 °C) in this study, and the simulated artificial aging treatment was carried out to investigate the effects of pyrolysis temperature and aging treatment on Cd2+ and Zn2+ (both separate and combined conditions) adsorption performance of CGB. The result revealed that Fresh-CGB adsorption performance increased with increasing pyrolysis temperature, while the relationship was not so clear with Aged-CGB where adsorption performance peaked at medium pyrolysis temperature (500 °C) but reduced again as pyrolysis temperature increased to 700 °C. The changes of Aged-CGB adsorption performance for Cd2+ and Zn2+ represented the long-term performance of naturally aging biochar in environment, and a mid-range pyrolysis temperature would seem most appropriate for long-term application of biochar. The X-ray Diffraction (XRD) result revealed that the degree of graphitization of CGB increased with increasing pyrolysis temperature, which represents a stronger environmental stability as the weight loss of CGB300, CGB500 and CGB700 after aging treatment was 2.38%, 0.66%, and 0%, respectively. The EDS and FTIR results suggested that ion-exchange and complexation between CGB/Aged-CGB with Cd2+/Zn2+ played a dominant role in adsorption processes. In addition, the selectivity for Cd2+ was significantly improved after the aging treatment. This is desirable given the stronger toxicity of Cd2+ relative to Zn2+. In general, this study provides new insights into the practical application of biochar from the perspective of long-term effects.
Collapse
Affiliation(s)
- Yuxin Ke
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Zulin Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|