1
|
Zhang Y, Wang X, Su D, Zhao L, Leng K, Miao J, Yu Y. Enhancing astaxanthin accumulation in immobilized Haematococcus pluvialis via alginate hydrogel membrane. Int J Biol Macromol 2024; 292:139145. [PMID: 39725098 DOI: 10.1016/j.ijbiomac.2024.139145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/02/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Immobilized cultivation is anticipated to be effective for enhancing both biomass and astaxanthin accumulation in Haematococcus pluvialis (H. pluvialis). A novel fabrication method of alginate hydrogel membrane (AHM) was introduced for immobilized cultivation of H. pluvialis. This method incorporates cotton gauze into a hydrogel with a low sodium alginate (SA) concentration of 0.5 %, utilizing endogenous calcification. The optimized culture strategy achieved a peak astaxanthin productivity of 256.3 mg·m-2·d-1 with an inoculum of 16 g·m-2 under light irradiation of 300 μmol·m-2·s-1 on day 4, resulting in a 70.8 % increase in astaxanthin yield over the control group. Furthermore, a recovery method for H. pluvialis and SA from AHM was explored, using Na2CO3 to disintegrate AHM to recover all the microalgal cells and SA with a recovery rate of 88.7 %. Collectively, these findings suggest that immobilized cultivation using AHM is an effective strategy for boosting biomass and astaxanthin accumulation in H. pluvialis.
Collapse
Affiliation(s)
- Yating Zhang
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Qingdao Engineering Research Center of Polar Fishery Resources Exploitation, Key Laboratory of Sustainable Marine Fishery Development of Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xixi Wang
- Qingdao Engineering Research Center of Polar Fishery Resources Exploitation, Key Laboratory of Sustainable Marine Fishery Development of Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Dong Su
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ling Zhao
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Qingdao Engineering Research Center of Polar Fishery Resources Exploitation, Key Laboratory of Sustainable Marine Fishery Development of Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Kailiang Leng
- Qingdao Engineering Research Center of Polar Fishery Resources Exploitation, Key Laboratory of Sustainable Marine Fishery Development of Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | - Junkui Miao
- Qingdao Engineering Research Center of Polar Fishery Resources Exploitation, Key Laboratory of Sustainable Marine Fishery Development of Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Yueqin Yu
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
2
|
Zhao J, Peng L, Ma X. Innovative microalgae technologies for mariculture wastewater treatment: Single and combined microalgae treatment mechanisms, challenges and future prospects. ENVIRONMENTAL RESEARCH 2024; 266:120560. [PMID: 39647683 DOI: 10.1016/j.envres.2024.120560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The discharge of aquaculture wastewater, comprising nitrogen, phosphorus, heavy metals, and antibiotics from large-scale aquaculture, poses a significant threat to marine ecosystems and human health. Consequently, addressing the treatment of marine aquaculture wastewater is imperative. Conventional physicochemical treatment methods have various limitations, whereas microalgae-based biological treatment technologies have gained increasing attention in the field of water purification due to their ability to efficiently absorb organic matter from mariculture wastewater and convert CO₂ into biomass products. Microalgae offer potential for highly efficient and cost-effective mariculture wastewater treatment, with particularly noteworthy advancements in the application of combined microalgae technologies. This paper explores the research hotspots in this field through bibliometric analysis and systematically discusses the following aspects: (1) summarizing the current pollution status of mariculture wastewater, including the types and sources of pollutants in various forms of mariculture wastewater, treatment methods, and associated treatment efficiencies; (2) analyzing the factors contributing to the gradual replacement of single microalgae technology with combined microalgae technology, highlighting its synergistic effects, enhanced pollutant removal efficiencies, resource recovery potential, and alignment with sustainable development goals; (3) exploring the mechanisms of pollutant removal by combined microalgae technologies, focusing on their technical advantages in bacterial-algal coupling, immobilized microalgae systems, and microalgal biofilm technologies; (4) discussing the challenges faced by the three main categories of combined microalgae technologies and proposing future improvement strategies to further enhance their application effectiveness. In conclusion, this paper offers a detailed analysis of these emerging technologies, providing a forward-looking perspective on the future development of microalgae-based mariculture wastewater treatment solutions.
Collapse
Affiliation(s)
- Jinjin Zhao
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/School of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Xiangmeng Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi Nanning, 530004, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, China.
| |
Collapse
|
3
|
Abdullah M, Ali Z, Yasin MT, Amanat K, Sarwar F, Khan J, Ahmad K. Advancements in sustainable production of biofuel by microalgae: Recent insights and future directions. ENVIRONMENTAL RESEARCH 2024; 262:119902. [PMID: 39222730 DOI: 10.1016/j.envres.2024.119902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Microalgae is considered as sustainable and viable feedstock for biofuel production due to its significant advantages over terrestrial plants. Algal biofuels have received significant attention among researchers and energy experts owing to an upsurge in global energy issues emanating from depletion in fossil fuel reserves increasing greenhouse gases emission conflict among agricultural crops, traditional biomass feedstock, and potential futuristic energy security. Further, the exploration of value-added microalgae as sustainable and viable feedstock for the production of variety of biofuels such as biogas, bio-hydrogen, bioethanol, and biodiesel are addressed. Moreover, the assessment of life-cycle, energy balance, and environmental impacts of biofuel production from microalgae are briefly discussed. The present study focused on recent advancements in synthetic biology, metabolic engineering tools, algal bio refinery, and the optimization of algae growth conditions. This paper also elucidates the function of microalgae as bio refineries, the conditions of algae-based cultures, and other operational factors that must be adjusted to produce biofuels that are price-competitive with fossil fuels.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Industrial Biotechnology Division, National Institute for Biotechnology & Genetic Engineering, P.O. Box 577-Jhang Road, Faisalabad, Pakistan; Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Zain Ali
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Muhammad Talha Yasin
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Kinza Amanat
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Fatima Sarwar
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Jallat Khan
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan; Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| |
Collapse
|
4
|
Ogawa M, Moreno-García J, Barzee TJ. Filamentous fungal pellets as versatile platforms for cell immobilization: developments to date and future perspectives. Microb Cell Fact 2024; 23:280. [PMID: 39415192 PMCID: PMC11484145 DOI: 10.1186/s12934-024-02554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
Filamentous fungi are well-known for their efficiency in producing valuable molecules of industrial significance, but applications of fungal biomass remain relatively less explored despite its abundant and diverse opportunities in biotechnology. One promising application of mycelial biomass is as a platform to immobilize different cell types such as animal, plant, and microbial cells. Filamentous fungal biomass with little to no treatment is a sustainable biomaterial which can also be food safe compared to other immobilization supports which may otherwise be synthetic or heavily processed. Because of these features, the fungal-cell combination can be tailored towards the targeted application and be applied in a variety of fields from bioremediation to biomedicine. Optimization efforts to improve cell loading on the mycelium has led to advancements both in the applied and basic sciences to understand the inter- and intra-kingdom interactions. This comprehensive review compiles for the first time the current state of the art of the immobilization of animal, yeast, microalgae, bacteria, and plant cells in filamentous fungal supports and presents outlook of applications in intensified fermentations, food and biofuel production, and wastewater treatment. Opportunities for further research and development were identified to include elucidation of the physical, chemical, and biological bases of the immobilization mechanisms and co-culture dynamics; expansion of the cell-fungus combinations investigated; exploration of previously unconsidered applications; and demonstration of scaled-up operations. It is concluded that the potential exists to leverage the unique qualities of filamentous fungus as a cellular support in the creation of novel materials and products in support of the circular bioeconomy.
Collapse
Affiliation(s)
- Minami Ogawa
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA
| | - Jaime Moreno-García
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA.
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 14014, Córdoba, Spain.
| | - Tyler J Barzee
- Department of Biosystems and Agricultural Engineering, University of Kentucky, 128 C.E. Barnhart Building, Lexington, KY, 40546-0276, USA.
| |
Collapse
|
5
|
Im H, Nguyen HT, Jeong D, Jang A. Wastewater treatment optimization utilizing polyvinyl alcohol cryogel immobilized microalgae for nutrient removal. CHEMOSPHERE 2024; 366:143426. [PMID: 39341394 DOI: 10.1016/j.chemosphere.2024.143426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
This study investigated the use of polyvinyl alcohol (PVA) cryogels to immobilize microalgae for wastewater treatment. Chlorella sorokiniana was successfully entrapped in PVA cryogels via repeated freeze/thaw cycles. The nutrient removal efficiency of these cryogels was tested in a continuously stirred photobioreactor under varying conditions, both with and without the addition of an organic carbon source (sodium acetate). The presence of organic carbon significantly enhanced nutrient removal. Specifically, PVA cryogels with immobilized C. sorokiniana achieved 100% nitrogen removal and 97.2% phosphorus removal under mixotrophic conditions. Furthermore, the maximum nutrient removal capacities of the PVA cryogels were found to be 0.033 mg-N/cube·day for nitrogen and 0.0047 mg-P/cube·day for phosphorus. As the inorganic carbon (bicarbonate) concentration increased from 5 to 100 mg/L, the N/P ratio rose from 6 to 8, with a higher N/P ratio of 10 observed when nitrate nitrogen was used as the nitrogen source, compared to ammonia nitrogen, at 100 mg/L bicarbonate. This study offers an effective method for using microalgae immobilized in PVA cryogels for wastewater treatment. The findings highlight the potential for PVA cryogels to significantly improve nutrient removal efficiency, particularly in the presence of organic carbon sources, thereby enhancing bioreactor performance. High nitrogen and phosphorus removal efficiencies can help reduce eutrophication in water bodies, protect aquatic ecosystems, and enable nutrient recovery and reuse, supporting a circular economy in wastewater treatment practices.
Collapse
Affiliation(s)
- Hongrae Im
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Hoang Tam Nguyen
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Dawoon Jeong
- Disposal Safety Evaluation R&D Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 Beon-gil, Yuseong-gu, Daejeon-si, 34057, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
6
|
Cheng S, Liu X, Pastore C, di Bitonto L, Li A. Low-carbon wastewater treatment and resource recovery of recirculating aquaculture system by immobilized chlorella vulgaris based on machine learning optimization. BIORESOURCE TECHNOLOGY 2024; 408:131208. [PMID: 39098355 DOI: 10.1016/j.biortech.2024.131208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Immobilized microalgae biotechnologies can conserve water and space by low-carbon wastewater treatment and resource recovery in a recirculating aquaculture system (RAS). However, technical process parameters have been unoptimized considering the mutual interaction between factors. In this study, machine learning optimized the parameters of alginate-immobilized Chlorella vulgaris (C. vulgaris), that is, 474 μmol/(m2·s) of light intensity, 23 × 106 cells/mL for initial cell number, and 2.07 mm particle size. Importantly, under continuous illumination, the immobilized C. vulgaris and microalgal-bacterial consortium improved water purification and biomass reutilization. Transcriptomics of C. vulgaris showed enhanced nitrogen removal by increasing pyridine nucleotide and lipid accumulation via enhanced triacylglycerol synthesis. Symbiotic bacteria upregulated genes for nitrate reduction and organic matter degradation, which stimulated biomass accumulation through CO2 fixation and starch synthesis. The recoverable microalgae (1.94 g/L biomass, 47 % protein, 26.23 % lipids), struvite (64.79 % phosphorus), and alginate (79.52 %) every two weeks demonstrates a low-carbon resource recovery in RAS.
Collapse
Affiliation(s)
- Shuqian Cheng
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaolei Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Carlo Pastore
- Italian National Research Council, Water Research Institute (IRSA-CNR), Bari, Italy
| | - Luigi di Bitonto
- Italian National Research Council, Water Research Institute (IRSA-CNR), Bari, Italy
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
7
|
Khan MUA, Aslam MA, Abdullah MFB, Abdal-Hay A, Gao W, Xiao Y, Stojanović GM. Recent advances of bone tissue engineering: carbohydrate and ceramic materials, fundamental properties and advanced biofabrication strategies ‒ a comprehensive review. Biomed Mater 2024; 19:052005. [PMID: 39105493 DOI: 10.1088/1748-605x/ad6b8a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Bone is a dynamic tissue that can always regenerate itself through remodeling to maintain biofunctionality. This tissue performs several vital physiological functions. However, bone scaffolds are required for critical-size damages and fractures, and these can be addressed by bone tissue engineering. Bone tissue engineering (BTE) has the potential to develop scaffolds for repairing critical-size damaged bone. BTE is a multidisciplinary engineered scaffold with the desired properties for repairing damaged bone tissue. Herein, we have provided an overview of the common carbohydrate polymers, fundamental structural, physicochemical, and biological properties, and fabrication techniques for bone tissue engineering. We also discussed advanced biofabrication strategies and provided the limitations and prospects by highlighting significant issues in bone tissue engineering. There are several review articles available on bone tissue engineering. However, we have provided a state-of-the-art review article that discussed recent progress and trends within the last 3-5 years by emphasizing challenges and future perspectives.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
| | - Abdalla Abdal-Hay
- Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- School of Dentistry, University of Queensland, 288 Herston Road, Herston QLD 4006, Australia
| | - Wendong Gao
- School of Medicine and Dentistry , Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Yin Xiao
- School of Medicine and Dentistry , Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Goran M Stojanović
- Faculty of Technical Sciences, University of Novi Sad, T. D. Obradovica 6, 21000 Novi Sad, Serbia
| |
Collapse
|
8
|
Aguiar Severo I, Azevedo OGDA, da Silva PAS, Jacob-Furlan B, Mariano AB, Ordonez JC, Vargas JVC. Wastewater treatment process using immobilized microalgae. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1306-1320. [PMID: 39215740 DOI: 10.2166/wst.2024.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Microalgae biomass products are gaining popularity due to their diverse applications in various sectors. However, the costs associated with media ingredients and cell harvesting pose challenges to the scale-up of microalgae cultivation. This study evaluated the growth and nutrient removal efficiency (RE) of immobilized microalgae Tetradesmus obliquus in sodium alginate beads cultivated in swine manure-based wastewater compared to free cells. The main findings of this research include (i) immobilized cells outperformed free cells, showing approximately 2.3 times higher biomass production, especially at 10% effluent concentration; (ii) enhanced organic carbon removal was observed, with a significant 62% reduction in chemical oxygen demand (383.46-144.84 mg L-1) within 48 h for immobilized cells compared to 6% in free culture; (iii) both immobilized and free cells exhibited efficient removal of total nitrogen and total phosphorus, with high REs exceeding 99% for phosphorus. In addition, microscopic analysis confirmed successful cell dispersion within the alginate beads, ensuring efficient light and substrate transfer. Overall, the results highlight the potential of immobilization techniques and alternative media, such as biodigested swine manure, to enhance microalgal growth and nutrient RE, offering promising prospects for sustainable wastewater treatment processes.
Collapse
Affiliation(s)
- Ihana Aguiar Severo
- Graduate Program in Materials Science Engineering (PIPE), Federal University of Parana (UFPR), Curitiba, PR 81531-980, Brazil; Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil; Department of Mechanical Engineering, FAMU-FSU College of Engineering, Energy and Sustainability Center, Center for Advanced Power Systems (CAPS), Florida A&M University, Florida State University, 32310-6046, Tallahassee, FL, USA E-mail:
| | - Otto Gustavo de Avila Azevedo
- Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil
| | - Paulo Alexandre Silveira da Silva
- Graduate Program in Materials Science Engineering (PIPE), Federal University of Parana (UFPR), Curitiba, PR 81531-980, Brazil; Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil
| | - Beatriz Jacob-Furlan
- Graduate Program in Materials Science Engineering (PIPE), Federal University of Parana (UFPR), Curitiba, PR 81531-980, Brazil; Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil
| | - André Bellin Mariano
- Graduate Program in Materials Science Engineering (PIPE), Federal University of Parana (UFPR), Curitiba, PR 81531-980, Brazil; Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil
| | - Juan C Ordonez
- Department of Mechanical Engineering, FAMU-FSU College of Engineering, Energy and Sustainability Center, Center for Advanced Power Systems (CAPS), Florida A&M University, Florida State University, 32310-6046, Tallahassee, FL, USA
| | - José Viriato Coelho Vargas
- Graduate Program in Materials Science Engineering (PIPE), Federal University of Parana (UFPR), Curitiba, PR 81531-980, Brazil; Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil
| |
Collapse
|
9
|
Torres MJ, Bellido-Pedraza CM, Llamas A. Applications of the Microalgae Chlamydomonas and Its Bacterial Consortia in Detoxification and Bioproduction. Life (Basel) 2024; 14:940. [PMID: 39202682 PMCID: PMC11355400 DOI: 10.3390/life14080940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
The wide metabolic diversity of microalgae, their fast growth rates, and low-cost production make these organisms highly promising resources for a variety of biotechnological applications, addressing critical needs in industry, agriculture, and medicine. The use of microalgae in consortia with bacteria is proving valuable in several areas of biotechnology, including the treatment of various types of wastewater, the production of biofertilizers, and the extraction of various products from their biomass. The monoculture of the microalga Chlamydomonas has been a prominent research model for many years and has been extensively used in the study of photosynthesis, sulphur and phosphorus metabolism, nitrogen metabolism, respiration, and flagellar synthesis, among others. Recent research has increasingly recognised the potential of Chlamydomonas-bacteria consortia as a biotechnological tool for various applications. The detoxification of wastewater using Chlamydomonas and its bacterial consortia offers significant potential for sustainable reduction of contaminants, while facilitating resource recovery and the valorisation of microalgal biomass. The use of Chlamydomonas and its bacterial consortia as biofertilizers can offer several benefits, such as increasing crop yields, protecting crops, maintaining soil fertility and stability, contributing to CO2 mitigation, and contributing to sustainable agricultural practises. Chlamydomonas-bacterial consortia play an important role in the production of high-value products, particularly in the production of biofuels and the enhancement of H2 production. This review aims to provide a comprehensive understanding of the potential of Chlamydomonas monoculture and its bacterial consortia to identify current applications and to propose new research and development directions to maximise their potential.
Collapse
Affiliation(s)
- María J. Torres
- Correspondence: (M.J.T.); (A.L.); Tel.: +34-957-218352 (M.J.T. & A.L.)
| | | | - Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain;
| |
Collapse
|
10
|
Li L, Chai W, Sun C, Huang L, Sheng T, Song Z, Ma F. Role of microalgae-bacterial consortium in wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121226. [PMID: 38795468 DOI: 10.1016/j.jenvman.2024.121226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/17/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
In the global effort to reduce CO2 emissions, the concurrent enhancement of pollutant degradation and reductions in fossil fuel consumption are pivotal aspects of microalgae-mediated wastewater treatment. Clarifying the degradation mechanisms of bacteria and microalgae during pollutant treatment, as well as regulatory biolipid production, could enhance process sustainability. The synergistic and inhibitory relationships between microalgae and bacteria are introduced in this paper. The different stimulators that can regulate microalgal biolipid accumulation are also reviewed. Wastewater treatment technologies that utilize microalgae and bacteria in laboratories and open ponds are described to outline their application in treating heavy metal-containing wastewater, animal husbandry wastewater, pharmaceutical wastewater, and textile dye wastewater. Finally, the major requirements to scale up the cascade utilization of biomass and energy recovery are summarized to improve the development of biological wastewater treatment.
Collapse
Affiliation(s)
- Lixin Li
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China.
| | - Wei Chai
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Caiyu Sun
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Linlin Huang
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Tao Sheng
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Zhiwei Song
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
11
|
Yemele OM, Zhao Z, Nkoh JN, Ymele E, Usman M. A systematic review of polycyclic aromatic hydrocarbon pollution: A combined bibliometric and mechanistic analysis of research trend toward an environmentally friendly solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171577. [PMID: 38521268 DOI: 10.1016/j.scitotenv.2024.171577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Pollution caused by polycyclic aromatic hydrocarbons (PAHs) is a significant concern. This concern has become more problematic given the rapid modification of PAHs in the environment during co-contamination to form substituted PAHs. This review aims to integrate bibliometric analysis with a rigorous study of mechanistic insights, resulting in a more comprehensive knowledge of evolving research trends on PAH remediation. The results show that research in this field has progressed over the years and peaked in 2022, potentially due to the redirection of resources toward emerging pollutants, hinting at the dynamic nature of environmental research priorities. During this year, 158,147 documents were published, representing 7 % of the total publications in the field between 2000 and 2023. The different remediation methods used for PAH remediation were identified and compared. Bioremediation, having >90 % removal efficiency, has been revealed to be the best technique because it is cost-effective and easy to operate at large scale in situ and ex-situ. The current challenges in PAH remediation have been detailed and discussed. Implementing innovative and sustainable technologies that target pollutant removal and valuable compound recovery is necessary to build a more robust future for water management.
Collapse
Affiliation(s)
- Olive Mekontchou Yemele
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jackson Nkoh Nkoh
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China; Department of Chemistry, University of Buea, PO Box 63, Buea, Cameroon
| | - Ervice Ymele
- Department of Chemistry, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Muhammad Usman
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
12
|
Tran DT, Nguyen NK, Yadav AS, Chuang A, Burford M, Ooi CH, Sreejith KR, Nguyen NT. Calcium alginate elastic capsules for microalgal cultivation. RSC Adv 2024; 14:15441-15448. [PMID: 38741954 PMCID: PMC11090016 DOI: 10.1039/d4ra00519h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Calcium alginate elastic capsules with a core-shell structure are versatile spherical solid beads that can be produced in large quantities using various techniques. This type of capsule is a promising platform for cell culture applications, owing to its mechanical elasticity and transparency. This paper reports the production of calcium alginate capsules with high consistency, and for the first time, demonstrates the feasibility of the capsules for microalgal cultivation. Cell growth analysis reveals that the vibrationally-shaken calcium alginate elastic capsule platform yielded a higher maximum cell number (4.86 × 108 cells per mL) during the cultivation period than the control solution platforms. Aquafeed and food supplements for humans are the targeted applications of this novel platform.
Collapse
Affiliation(s)
- Du Tuan Tran
- Queensland Micro- and Nanotechnology Centre, Griffith University 170 Kessels Road Nathan 4111 Queensland Australia
| | - Nhat-Khuong Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University 170 Kessels Road Nathan 4111 Queensland Australia
| | - Ajeet Singh Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University 170 Kessels Road Nathan 4111 Queensland Australia
| | - Ann Chuang
- Australian Rivers Institute, Griffith University 170 Kessels Road Nathan 4111 Queensland Australia
| | - Michele Burford
- Australian Rivers Institute, Griffith University 170 Kessels Road Nathan 4111 Queensland Australia
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University 170 Kessels Road Nathan 4111 Queensland Australia
| | - Kamalalayam Rajan Sreejith
- Queensland Micro- and Nanotechnology Centre, Griffith University 170 Kessels Road Nathan 4111 Queensland Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University 170 Kessels Road Nathan 4111 Queensland Australia
| |
Collapse
|
13
|
Rady HA, Ali SS, El-Sheekh MM. Strategies to enhance biohydrogen production from microalgae: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120611. [PMID: 38508014 DOI: 10.1016/j.jenvman.2024.120611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/30/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Microalgae represent a promising renewable feedstock for the sustainable production of biohydrogen. Their high growth rates and ability to fix carbon utilizing just sunlight, water, and nutrients make them well-suited for this application. Recent advancements have focused on improving microalgal hydrogen yields and cultivation methods. This review aims to summarize recent developments in microalgal cultivation techniques and genetic engineering strategies for enhanced biohydrogen production. Specific areas of focus include novel microalgal species selection, immobilization methods, integrated hybrid systems, and metabolic engineering. Studies related to microalgal strain selection, cultivation methods, metabolic engineering, and genetic manipulations were compiled and analyzed. Promising microalgal species with high hydrogen production capabilities such as Synechocystis sp., Anabaena variabilis, and Chlamydomonas reinhardtii have been identified. Immobilization techniques like encapsulation in alginate and integration with dark fermentation have led to improved hydrogen yields. Metabolic engineering through modulation of hydrogenase activity and photosynthetic pathways shows potential for enhanced biohydrogen productivity. Considerable progress has been made in developing microalgal systems for biohydrogen. However, challenges around process optimization and scale-up remain. Future work involving metabolic modeling, photobioreactor design, and genetic engineering of electron transfer pathways could help realize the full potential of this renewable technology.
Collapse
Affiliation(s)
- Hadeer A Rady
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
14
|
Han M, Xie P, Ren N, Ho SH. Cytoprotective alginate microcapsule serves as a shield for microalgal encapsulation defensing sulfamethoxazole threats and safeguarding nutrient recovery. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133454. [PMID: 38198867 DOI: 10.1016/j.jhazmat.2024.133454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Microalgal encapsulation technology is expected to broaden more possibilities for employing microalgae for upgrading conventional biological wastewater treatment. However, only limited and fragmented information is currently available on microalgal encapsulation and pollutant removal. It is ambiguous whether it hold potential for wastewater treatment. Particularly, it remains to be determined whether this technology can provide more possibilities in harsh sewage environments. Here, potential of encapsulated technology to recover nutrients from wastewater was examined, simultaneously compared with commonly adopted suspended system. Results indicate the encapsulated microalgal system showed outstanding advantages in nutrient recovery and defense against antibiotic threats. Moreover, by examining the cellular oxidative stress response and changes of the photosynthetic system, the encapsulated system exhibited potential cytoprotective advantages to microalgal cells for defensing antibiotic threats. Molecular dynamics simulation revealed that the differences among superficial aggregation between the nutrients' ions and molecular sulfamethoxazole on the cross-linked alginate microcapsule surface dominated the nutrient recovery and cytoprotective functions. Ultimately, the molecular nature of pollutants was found to be the most critical aspect for predicting application of this microalgal microcapsule. Cytoprotective systems created with alginate microcapsules can potentially handle more diverse threats with a single type of surface charge in their outermost layer.
Collapse
Affiliation(s)
- Meina Han
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
15
|
Zhao X, Lu S, Guo X, Wang R, Li M, Fan C, Wu H. Effects of disturbance modes and carbon sources on the physiological traits and nutrient removal performance of microalgae (S. obliquus) for treating low C/N ratio wastewater. CHEMOSPHERE 2024; 347:140672. [PMID: 37963498 DOI: 10.1016/j.chemosphere.2023.140672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/12/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Wastewater treatment with microalgae is an ecologically sustainable process. In this study, the growth characteristics, nutrient removal, and spectral changes of dissolved organic matter (DOM) in microalgae bioreactors were investigated for treating low C/N ratio wastewater under different disturbance modes (agitation and aeration) and carbon sources (sucrose and humic acid). The results showed that the biomass and chlorophyll-a contents of Scenedesmus obliquus in the aeration condition (725.32-811.16 × 104 cells mL-1, 1.58-1.69 mg L-1) were higher than those in the agitation condition (426.06-465.14 × 104 cells mL-1, 1.48-1.61 mg L-1). The better removal of nutrients (TN, 29.62-36.39 mg L-1, TP, 1.84-2.30 mg L-1) by microalgae in sucrose-containing wastewater under agitation conditions occurred on the second day, with removal efficiencies of 21.33-30.67% and 44.84-58.51%, respectively; while it was on the fifth day both in sucrose and humic acid-containing wastewater under aeration conditions (TN, 19.56-31.20 mg L-1, TP, 0.26-0.30 mg L-1), with removal efficiencies of 13.92-46.75% and 88.36-90.50%, respectively. The wastewater DOM primarily consisted of humic-like substances under agitation and aeration conditions characterized by high levels of aromaticity, molecular weight and humification. Furthermore, the aromatization and humification properties of DOM in humic acid wastewater were higher than those in sucrose wastewater, which was corresponding with the lower removal and availability of pollutants by algae. Microalgae showed good biomass accumulation and nutrients removal at incubation time of 2 days (agitation condition) and 5 days (aeration condition), respectively. Consequently, a technical reference is provided for the microalgae coupled with other treatment processes.
Collapse
Affiliation(s)
- Xin Zhao
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China
| | - Shaoyong Lu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xiaochun Guo
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ruigang Wang
- Shanxi Laboratory for Yellow River, College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China
| | - Ming Li
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunzhen Fan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Key Laboratory of Zhejiang Province for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
16
|
Mao X, Zhou X, Fan X, Jin W, Xi J, Tu R, Naushad M, Li X, Liu H, Wang Q. Proteomic analysis reveals mechanisms of mixed wastewater with different N/P ratios affecting the growth and biochemical characteristics of Chlorella pyrenoidosa. BIORESOURCE TECHNOLOGY 2023; 381:129141. [PMID: 37169198 DOI: 10.1016/j.biortech.2023.129141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Effects of different nutrient ratios on the biochemical compositions of microalgae and the changes were rarely studied at the molecular level. In this study, the impacts of various nitrogen to phosphorus (N/P) ratios on growing of C. pyrenoidosa, as well as biochemical compositions and the metabolic regulation mechanism in mixed sewage, were investigated. The results suggested that 18 was optimal N/P ratio, while the dry weight (1.0 g/L), chlorophyll-a (Chla) (3.63 mg/L), and lipid production (0.28 g/L) were all the highest comparing with other groups. In contrast, the protein production (0.37 g/L) was the least. The nature of the regulatory mechanisms inthe metabolic pathways of these biochemical compositions was revealed by proteomic results, and there were 62 different expression proteins (DEPs) taken part in fatty acid and lipid biosynthesis metabolism (FA), amino acid biosynthesis metabolism (AA), photosynthesis (PHO), carbon fixation in photosynthetic organisms (CFP), and central carbon metabolism (CCM).
Collapse
Affiliation(s)
- Xinrui Mao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
| | - Xiumin Fan
- Shenzhen ecological and environmental intelligent management and control center, Shenzhen, 518034, China
| | - Wenbiao Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Jingjing Xi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Renjie Tu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|