1
|
Othmène YB, Hamdi H, Amara I, Abid-Essefi S. Tebuconazole induced oxidative stress and histopathological alterations in adult rat heart. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104671. [PMID: 32980069 DOI: 10.1016/j.pestbp.2020.104671] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
TEB belongs to the family of triazole fungicides and it is used to protect agricultural crop plants from fungal pathogens. The information regarding its cardiotoxic effects through different pathways particularly by perturbing the oxidative balance and causing damage to the myocardium is still limited. In the present study, oxidative and histopathologic damages caused by TEB in the cardiac tissue of male adult rats, were evaluated. Rats were exposed orally to TEB at 0.9, 9, 27 and 45 mg/kg b.w. for 28 days. Results showed that following TEB treatment malondialdehyde (MDA), protein carbonyl (PC), advanced oxidation protein product (AOPP), antioxidant enzyme activities (GPx and GR) and GSSG levels increased, while GSH levels and thus the GSH/GSSG ratio decreased. Superoxide dismutase (SOD) and catalase (CAT) initially increased at the doses of 0.9, 9 and 27 mg/kg b.w. and then decreased at the dose of 45 mg/kg b.w. Moreover, western blot analysis showed that TEB increased SOD1, CAT and HSP70 protein levels after 24 h. Furthermore, TEB induced various histological changes in the myocardium, including leucocytic infiltration, hemorrhage congestion of cardiac blood vessels and cytoplasmic vacuolization. Therefore, our investigation revealed, that TEB exhibits cardiotoxic effects by changing oxidative balance and damaging the cardiac tissue.
Collapse
Affiliation(s)
- Yosra Ben Othmène
- University of Monastir, Faculty of Dental Medicine of Monastir, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Rue Avicenne, 5000 Monastir, Tunisia
| | - Hiba Hamdi
- University of Monastir, Faculty of Dental Medicine of Monastir, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Rue Avicenne, 5000 Monastir, Tunisia
| | - Ines Amara
- University of Monastir, Faculty of Dental Medicine of Monastir, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Rue Avicenne, 5000 Monastir, Tunisia
| | - Salwa Abid-Essefi
- University of Monastir, Faculty of Dental Medicine of Monastir, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Rue Avicenne, 5000 Monastir, Tunisia..
| |
Collapse
|
2
|
Alshanwani AR, Faddah LM, Hagar H, Alhusaini AM, Shaheen S, Mohammad RA, Alharbi FMB, AlHarthii A, Badr AM. The beneficial effects of antioxidants combination on cardiac injury induced by tetrachloromethane. Drug Chem Toxicol 2020; 45:1364-1372. [PMID: 33059470 DOI: 10.1080/01480545.2020.1831012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The purpose of this research was to evaluate the efficacy of carsil (CAR) either alone or in combination with α-tocopherol (α-TOCO) and/or turmeric (TUMR) against tetrachloromethane (TCM)-induced cardiomyocyte injury in rats. Administration of CAR either alone or in combination with α-TOCO and/or TUMR post-TCM injection, significantly mitigated the increases in serum troponin T, creatine kinase-MB (CK-MB) as well as interleukin-6 (IL-6), interferon γ (IFN-γ), tumor necrosis factor-α (TNF-α), C-reactive protein (CRP). They also decline the elevation of caspase-3, vascular endothelial growth factor (VEGF) protein expression as well as DNA damage in cardiac tissues induced by TCM. The biochemical results were confirmed by histopathological investigation. Conclusion: The combination of the three antioxidants showed greater cardioprotective potential, compared to individual drugs. Therefore, this combination may be recommended as a complementary therapy to antagonize cardiac injury induced by different insults.
Collapse
Affiliation(s)
- Aliah R Alshanwani
- College of Medicine, Pharmacology and Physiology Department, King Saud University, Riyadh, Saudi Arabia
| | - Laila M Faddah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Hagar
- College of Medicine, Pharmacology and Physiology Department, King Saud University, Riyadh, Saudi Arabia
| | - Ahlam M Alhusaini
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sameerah Shaheen
- College of Medicine, Anatomy Department and Stem Cell Unit, King Saud University, Riyadh, Saudi Arabia
| | - Raeesa A Mohammad
- College of Science, Biochemistry Department, King Saud University, Riyadh, Saudi Arabia
| | - Fatima M B Alharbi
- College of Science, Biochemistry Department, King Saud University, Riyadh, Saudi Arabia
| | - Alaa AlHarthii
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amira M Badr
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Adebayo OL, Sandhir R, Adenuga GA. Protective roles of selenium and zinc against postnatal protein‐undernutrition‐induced alterations in Ca
2+
‐homeostasis leading to cognitive deficits in Wistar rats. Int J Dev Neurosci 2015; 43:1-7. [DOI: 10.1016/j.ijdevneu.2015.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/26/2015] [Accepted: 03/13/2015] [Indexed: 12/06/2022] Open
Affiliation(s)
- Olusegun L. Adebayo
- Department of Chemical SciencesCollege of Natural SciencesRedeemer's UniversityP.M.B. 230EdeOsun StateNigeria
- Department of Biochemistry, Basic Medical Science BuildingPanjab UniversityChandigarh160014India
- Department of Biochemistry, Faculty of Basic Medical SciencesOlabisi Onabanjo UniversityP.M.B. 2005, Remo CampusIkenneOgun StateNigeria
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science BuildingPanjab UniversityChandigarh160014India
| | - Gbenga A. Adenuga
- Department of Biochemistry, Faculty of Basic Medical SciencesOlabisi Onabanjo UniversityP.M.B. 2005, Remo CampusIkenneOgun StateNigeria
| |
Collapse
|
4
|
Ahsan H, Ahad A, Iqbal J, Siddiqui WA. Pharmacological potential of tocotrienols: a review. Nutr Metab (Lond) 2014; 11:52. [PMID: 25435896 PMCID: PMC4247006 DOI: 10.1186/1743-7075-11-52] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023] Open
Abstract
Tocotrienols, members of the vitamin E family, are natural compounds found in a number of vegetable oils, wheat germ, barley, and certain types of nuts and grains. Like tocopherols, tocotrienols are also of four types viz. alpha, beta, gamma and delta. Unlike tocopherols, tocotrienols are unsaturated and possess an isoprenoid side chain. Tocopherols are lipophilic in nature and are found in association with lipoproteins, fat deposits and cellular membranes and protect the polyunsaturated fatty acids from peroxidation reactions. The unsaturated chain of tocotrienol allows an efficient penetration into tissues that have saturated fatty layers such as the brain and liver. Recent mechanistic studies indicate that other forms of vitamin E, such as γ-tocopherol, δ-tocopherol, and γ-tocotrienol, have unique antioxidant and anti-inflammatory properties that are superior to those of α-tocopherol against chronic diseases. These forms scavenge reactive nitrogen species, inhibit cyclooxygenase- and 5-lipoxygenase-catalyzed eicosanoids and suppress proinflammatory signalling, such as NF-κB and STAT. The animal and human studies show tocotrienols may be useful against inflammation-associated diseases. Many of the functions of tocotrienols are related to its antioxidant properties and its varied effects are due to it behaving as a signalling molecule. Tocotrienols exhibit biological activities that are also exhibited by tocopherols, such as neuroprotective, anti-cancer, anti-inflammatory and cholesterol lowering properties. Hence, effort has been made to compile the different functions and properties of tocotrienols in experimental model systems and humans. This article constitutes an in-depth review of the pharmacology, metabolism, toxicology and biosafety aspects of tocotrienols. Tocotrienols are detectable at appreciable levels in the plasma after supplementations. However, there is inadequate data on the plasma concentrations of tocotrienols that are sufficient to demonstrate significant physiological effect and biodistribution studies show their accumulation in vital organs of the body. Considering the wide range of benefits that tocotrienols possesses against some common human ailments and having a promising potential, the experimental analysis accounts for about a small fraction of all vitamin E research. The current state of knowledge deserves further investigation into this lesser known form of vitamin E.
Collapse
Affiliation(s)
- Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025 India
| | - Amjid Ahad
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| | - Jahangir Iqbal
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203 USA
| | - Waseem A Siddiqui
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| |
Collapse
|
5
|
Ahsan H, Ahad A, Iqbal J, Siddiqui WA. Pharmacological potential of tocotrienols: a review. Nutr Metab (Lond) 2014. [PMID: 25435896 DOI: 10.1186/743-7075-11-52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Tocotrienols, members of the vitamin E family, are natural compounds found in a number of vegetable oils, wheat germ, barley, and certain types of nuts and grains. Like tocopherols, tocotrienols are also of four types viz. alpha, beta, gamma and delta. Unlike tocopherols, tocotrienols are unsaturated and possess an isoprenoid side chain. Tocopherols are lipophilic in nature and are found in association with lipoproteins, fat deposits and cellular membranes and protect the polyunsaturated fatty acids from peroxidation reactions. The unsaturated chain of tocotrienol allows an efficient penetration into tissues that have saturated fatty layers such as the brain and liver. Recent mechanistic studies indicate that other forms of vitamin E, such as γ-tocopherol, δ-tocopherol, and γ-tocotrienol, have unique antioxidant and anti-inflammatory properties that are superior to those of α-tocopherol against chronic diseases. These forms scavenge reactive nitrogen species, inhibit cyclooxygenase- and 5-lipoxygenase-catalyzed eicosanoids and suppress proinflammatory signalling, such as NF-κB and STAT. The animal and human studies show tocotrienols may be useful against inflammation-associated diseases. Many of the functions of tocotrienols are related to its antioxidant properties and its varied effects are due to it behaving as a signalling molecule. Tocotrienols exhibit biological activities that are also exhibited by tocopherols, such as neuroprotective, anti-cancer, anti-inflammatory and cholesterol lowering properties. Hence, effort has been made to compile the different functions and properties of tocotrienols in experimental model systems and humans. This article constitutes an in-depth review of the pharmacology, metabolism, toxicology and biosafety aspects of tocotrienols. Tocotrienols are detectable at appreciable levels in the plasma after supplementations. However, there is inadequate data on the plasma concentrations of tocotrienols that are sufficient to demonstrate significant physiological effect and biodistribution studies show their accumulation in vital organs of the body. Considering the wide range of benefits that tocotrienols possesses against some common human ailments and having a promising potential, the experimental analysis accounts for about a small fraction of all vitamin E research. The current state of knowledge deserves further investigation into this lesser known form of vitamin E.
Collapse
Affiliation(s)
- Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025 India
| | - Amjid Ahad
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| | - Jahangir Iqbal
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203 USA
| | - Waseem A Siddiqui
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| |
Collapse
|
6
|
Goines PE, Ashwood P. Cytokine dysregulation in autism spectrum disorders (ASD): possible role of the environment. Neurotoxicol Teratol 2013; 36:67-81. [PMID: 22918031 PMCID: PMC3554862 DOI: 10.1016/j.ntt.2012.07.006] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/03/2012] [Accepted: 07/31/2012] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental diseases that affect an alarming number of individuals. The etiological basis of ASD is unclear, and evidence suggests it involves both genetic and environmental factors. There are many reports of cytokine imbalances in ASD. These imbalances could have a pathogenic role, or they may be markers of underlying genetic and environmental influences. Cytokines act primarily as mediators of immunological activity but they also have significant interactions with the nervous system. They participate in normal neural development and function, and inappropriate activity can have a variety of neurological implications. It is therefore possible that cytokine dysregulation contributes directly to neural dysfunction in ASD. Further, cytokine profiles change dramatically in the face of infection, disease, and toxic exposures. Imbalances in cytokines may represent an immune response to environmental contributors to ASD. The following review is presented in two main parts. First, we discuss select cytokines implicated in ASD, including IL-1Β, IL-6, IL-4, IFN-γ, and TGF-Β, and focus on their role in the nervous system. Second, we explore several neurotoxic environmental factors that may be involved in the disorders, and focus on their immunological impacts. This review represents an emerging model that recognizes the importance of both genetic and environmental factors in ASD etiology. We propose that the immune system provides critical clues regarding the nature of the gene by environment interactions that underlie ASD pathophysiology.
Collapse
Affiliation(s)
- Paula E. Goines
- University of California, Davis, School of Veterinary Medicine, Department of Molecular Biosciences
| | - Paul Ashwood
- University of California, Davis, School of Medicine, Department of Medical Microbiology and Immunology
| |
Collapse
|
7
|
Jafari M, Salehi M, Ahmadi S, Asgari A, Abasnezhad M, Hajigholamali M. The role of oxidative stress in diazinon-induced tissues toxicity in Wistar and Norway rats. Toxicol Mech Methods 2012; 22:638-47. [DOI: 10.3109/15376516.2012.716090] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
8
|
Ribas GS, Pires R, Coelho JC, Rodrigues D, Mescka CP, Vanzin CS, Biancini GB, Negretto G, Wayhs CA, Wajner M, Vargas CR. Oxidative stress in Niemann‐Pick type C patients: a protective role of N‐butyl‐deoxynojirimycin therapy. Int J Dev Neurosci 2012; 30:439-44. [DOI: 10.1016/j.ijdevneu.2012.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/03/2012] [Accepted: 07/11/2012] [Indexed: 01/22/2023] Open
Affiliation(s)
- Graziela S. Ribas
- Programa de Pós‐Graduação em Ciências FarmacêuticasUFRGSIpiranga 2752Porto AlegreRS90610‐000Brazil
- Serviço de Genética MédicaHCPARamiro Barcelos 2350Porto AlegreRS90035‐903Brazil
| | - Ricardo Pires
- Programa de Pós‐Graduação em Genética e Toxicologia AplicadaULBRAAv. Farroupilha 8001CanoasRS92425‐900Brazil
| | - Janice Carneiro Coelho
- Programa de Pós‐Graduação em Ciências Biológicas: BioquímicaUFRGSRamiro Barcelos 2600 anexoPorto AlegreRS90035‐003Brazil
| | - Daiane Rodrigues
- Serviço de Genética MédicaHCPARamiro Barcelos 2350Porto AlegreRS90035‐903Brazil
| | - Caroline Paula Mescka
- Serviço de Genética MédicaHCPARamiro Barcelos 2350Porto AlegreRS90035‐903Brazil
- Programa de Pós‐Graduação em Ciências Biológicas: BioquímicaUFRGSRamiro Barcelos 2600 anexoPorto AlegreRS90035‐003Brazil
| | - Camila S. Vanzin
- Serviço de Genética MédicaHCPARamiro Barcelos 2350Porto AlegreRS90035‐903Brazil
- Programa de Pós‐Graduação em Ciências Biológicas: BioquímicaUFRGSRamiro Barcelos 2600 anexoPorto AlegreRS90035‐003Brazil
| | - Giovana B. Biancini
- Serviço de Genética MédicaHCPARamiro Barcelos 2350Porto AlegreRS90035‐903Brazil
- Programa de Pós‐Graduação em Ciências Biológicas: BioquímicaUFRGSRamiro Barcelos 2600 anexoPorto AlegreRS90035‐003Brazil
| | - Giovanna Negretto
- Programa de Pós‐Graduação em Ciências FarmacêuticasUFRGSIpiranga 2752Porto AlegreRS90610‐000Brazil
- Serviço de Genética MédicaHCPARamiro Barcelos 2350Porto AlegreRS90035‐903Brazil
| | - Carlos A.Y. Wayhs
- Programa de Pós‐Graduação em Ciências FarmacêuticasUFRGSIpiranga 2752Porto AlegreRS90610‐000Brazil
- Serviço de Genética MédicaHCPARamiro Barcelos 2350Porto AlegreRS90035‐903Brazil
| | - Moacir Wajner
- Serviço de Genética MédicaHCPARamiro Barcelos 2350Porto AlegreRS90035‐903Brazil
- Programa de Pós‐Graduação em Ciências Biológicas: BioquímicaUFRGSRamiro Barcelos 2600 anexoPorto AlegreRS90035‐003Brazil
| | - Carmen R. Vargas
- Serviço de Genética MédicaHCPARamiro Barcelos 2350Porto AlegreRS90035‐903Brazil
- Programa de Pós‐Graduação em Ciências Biológicas: BioquímicaUFRGSRamiro Barcelos 2600 anexoPorto AlegreRS90035‐003Brazil
- Departamento de Análises, Faculdade de FarmáciaUFRGSIpiranga 2752Porto AlegreRS90610‐000Brazil
| |
Collapse
|