1
|
Liu M, Hu C, Li J, Zhou B, Lam PKS, Chen L. Thyroid Endocrine Disruption and Mechanism of the Marine Antifouling Pollutant 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-one. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19189-19198. [PMID: 39344067 DOI: 10.1021/acs.est.4c07614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The antifoulant 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) is an emerging pollutant in the marine environment, which may disrupt the thyroid endocrine system. However, DCOIT toxicity in relation to thyroid endocrine disruption and the underlying mechanisms remains largely unclear. In this study, in vivo, in silico, in vitro, and ex vivo assays were performed to clarify DCOIT's thyroid toxicity. First, marine medaka (Oryzias melastigma) were exposed to environmentally realistic concentrations of DCOIT for an entire life cycle. The results demonstrated that DCOIT exposure potently stimulated the hypothalamic-pituitary-thyroid axis, characterized by hyperthyroidism symptom induction and prevalent key gene and protein upregulation in the brain. Moreover, the in silico and in vitro results evidenced that DCOIT could bind to thyroid hormone receptor β (TRβ) and interact synergistically with triiodothyronine, thus promoting GH3 cell proliferation. The CUT&Tag experiment found that DCOIT interfered with the affinity fingerprint of TRβ to target genes implicated in thyroid hormone signaling cascade regulation. Furthermore, ex vivo, Chem-seq revealed that DCOIT directly bound to the genomic sequences of thyrotropin-releasing hormone receptor b and thyroid-stimulating hormone receptor in marine medaka brain tissues. In conclusion, the current multifaceted evidence confirmed that DCOIT has a strong potency for thyroid endocrine system disruption and provided comprehensive insights into its toxicity mechanisms.
Collapse
Affiliation(s)
- Mengyuan Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Jiali Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Paul K S Lam
- Office of the President, Hong Kong Metropolitan University, 30 Good Shepherd Street, Hong Kong SAR, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
2
|
Wang D, Gao P, Zheng M, Duan Z, Wang D, Ding D, Xia F. Mechanically durable plant-based composite surface towards enhanced antifouling properties. J Colloid Interface Sci 2024; 679:457-466. [PMID: 39490264 DOI: 10.1016/j.jcis.2024.10.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
The biofouling adhering to underwater facilities has a negative impact on the environment, energy, and economic development. However, conventional anti-adhesion organic silicon and organic fluorine materials often have poor adhesion properties and mechanical stability when combined with substrates. This work presents a novel strategy for preparing composite antifouling coatings that low surface energy plant-based carnauba wax (CW) covering through rough substrates and chemically bond with flexible polydimethylsiloxane (PDMS) oligomers or polymers. The CW coating adheres strongly to the substrate owing to the mobility of the liquated CW, which flows into the micro-nano structure of the substrate and solidifies on the solid surface. The polymerization reaction of (PDMS) oligomers compounded the coating, thereby creating a composite coating with superior lubricating and antifouling properties. This distinctive bonding process imbued the coating with exceptional characteristics, including remarkable mechanical stability in destructive tests as well as an impressive ability to repel fouling, such as protein attachment, bacterial adhesion, diatom deposition, and biofilm formation. This work systematically investigated the impact of the composition and structure of composite materials on their mechanical stability and resistance to fouling, and developed high-performance antifouling coatings in the real world.
Collapse
Affiliation(s)
- Dagui Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China; Sichuan Key Technology Engineering Research Center for All-electric Navigable Aircraft, Sichuan, Guanghan 618307, China
| | - Pengcheng Gao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China
| | - Mengmeng Zheng
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China
| | - Zhijuan Duan
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China.
| | - Dehui Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Defang Ding
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China.
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China
| |
Collapse
|
3
|
Nik Mohd Sukrri NNA, Farizan AF, Mohd Ramzi M, Rawi NN, Abd Rahman NI, Bakar K, Fu Siong JY, Azemi AK, Ismail N. Antifouling activity of Malaysian green seaweed Ulva lactuca and its isolated non-polar compound. Heliyon 2024; 10:e38366. [PMID: 39397965 PMCID: PMC11467595 DOI: 10.1016/j.heliyon.2024.e38366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Marine natural products especially seaweeds have gained much attention to combat biofouling. Ulva lactuca was determined for its antifouling activity and characterized the isolated non-polar metabolite involved. The methanolic crude extract (MCE) of U. lactuca was screened using crystal violet assay against biofilm-forming bacteria Pseudomonas aeruginosa and was further tested on laboratory and field tests. Then, it was fractionated and isolated using Liquid-Liquid Fractionation (LLE) and Column Chromatography (CC). The isolated compound was characterized using Liquid Chromatography-Mass Spectrometry (LC-MS), Nuclear Magnetic Resonance (NMR), and Fourier Transform-Infrared Spectroscopy (FTIR). The current study showed that the growth of biofilm produced by P. aeruginosa was inhibited by MCE at concentrations of 0.0156 mg/mL. The laboratory test indicated UL5% demonstrated a higher bacterial reduction of bacterial colonies with 1.903 × 106 CFU/mL better than blank paint. According to the field test, crude panels of UL5% were successful in reducing the settlement of fouling organisms due to less macrofouler growth compared to blank paint. The isolated compound A4 was identified as hexadecanoic acid (C16H32O2) through NMR with a molecular mass of 256 g/mol detected using LC-MS. The characterization through FTIR obtained functional groups consisting of CH3, CH2, C=O, and OH. Therefore, U. lactuca produced hexadecanoic acid as one of the promising compounds from the seaweed group as an eco-friendly antifouling agent.
Collapse
Affiliation(s)
| | - Ain Farina Farizan
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Malaysia
| | - Mujahidah Mohd Ramzi
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Malaysia
| | - Nurul Najihah Rawi
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Malaysia
| | - Nor Izzati Abd Rahman
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Malaysia
| | - Kamariah Bakar
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Malaysia
| | - Julius Yong Fu Siong
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Malaysia
| | - Ahmad Khusairi Azemi
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Malaysia
| | - Noraznawati Ismail
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Malaysia
| |
Collapse
|
4
|
Oliveira ICCS, Marinsek GP, Gonçalves ARN, Lopes BS, Correia LVB, Da Silva RCB, Castro IB, Mari RB. Investigating tributyltin's toxic effects: Intestinal barrier and neuroenteric disruption in rat's jejunum. Neurotoxicology 2024; 105:208-215. [PMID: 39396746 DOI: 10.1016/j.neuro.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
The expansion of economic activities in coastal areas has significantly increased chemical contamination, leading to major environmental challenges. Contaminants enter the human body through the food chain, particularly via seafood and water consumption, triggering biomagnification and bioaccumulation processes. The gastrointestinal tract (GIT) acts as a selective barrier, protecting against chemical pollutants and maintaining homeostasis through a complex network of cells and immune responses. This study assessed impact of tributyltin (TBT), a highly toxic organometallic compound used in antifouling coatings for ships, on the GIT and myenteric neural plasticity in young rats. TBT exposure leads to histopathological changes, including epithelial detachment and inflammatory foci, especially at lower environmental doses. The study found that TBT causes significant reductions in villi height, increases in goblet cells and intraepithelial lymphocytes, and disrupts the myenteric plexus, with higher densities of extraganglionic neurons in exposed animals.
Collapse
Affiliation(s)
- I C C S Oliveira
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil.
| | - G P Marinsek
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| | - A R N Gonçalves
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| | - B S Lopes
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| | - L V B Correia
- UNIFESP, Federal University of São Paulo, Institute of Health and Society, Baixada Santista Campus, Santos, SP, Brazil
| | - R C B Da Silva
- UNIFESP, Federal University of São Paulo, Institute of Health and Society, Baixada Santista Campus, Santos, SP, Brazil
| | - I B Castro
- UNIFESP, Federal University of São Paulo, Institute of Marine Science, Baixada Santista Campus, Santos, SP, Brazil
| | - R B Mari
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| |
Collapse
|
5
|
Birkeland MJ, Petersen JK, Timmermann K, Nielsen P, Hansen IS, Erichsen AC. Identification and application of quality elements, indicators, and criteria for assessment of impact on habitats in marine Natura 2000 areas. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122247. [PMID: 39208747 DOI: 10.1016/j.jenvman.2024.122247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The EU Habitat Directive adopted in 1992, requires member states of the European Union to protect species and habitats considered to be of 'Community Interest' and listed in annexes to the directive. The appropriate environmental assessment of "plans and projects" is an important part of the conservation process. Despite several amendments and guidelines supporting the implementation of the Habitat Directive, science based operational procedures, indicators, and impact criteria for assessing potential negative impacts on marine Natura 2000 areas are still lacking. The lack of a generic and operational methodology complicates the management of plans and projects with potential impact on marine Natura 2000 areas. In this study, generic methods for the assessment of marine aquaculture in the inner Danish waters in relation to Natura 2000 areas was developed and applied for assessment of nine existing marine fin fish farms, in accordance with the latest methodological guidance on the provisions of Article 6(3) and (4) of the Habitat Directive. The applied methodology is based on high resolution 3D hydrodynamic- and ecosystem modelling (MIKE by DHI), that describes the dynamical physical, chemical, and biogeochemical processes and changes of marine ecosystems in time and space. To our knowledge, this is the first study that formulates operational biological quality elements, key indicators, concrete and generic impact criteria, and assessment procedures for operational assessment across several distinct marine habitat types. The method represents a generic, operational, transparent, and science-based assessment tool, that simplifies management, and is widely applicable for quantification of environmental impacts from various marine activities and eutrophication related pressures across geographical zones and different marine habitat types in marine Natura 2000 areas.
Collapse
Affiliation(s)
| | - Jens Kjerulf Petersen
- DTU Aqua, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
| | - Karen Timmermann
- DTU Aqua, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
| | - Pernille Nielsen
- DTU Aqua, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
| | | | | |
Collapse
|
6
|
Neves AR, Godinho S, Gonçalves C, Gomes AS, Almeida JR, Pinto M, Sousa E, Correia-da-Silva M. A Chemical Toolbox to Unveil Synthetic Nature-Inspired Antifouling (NIAF) Compounds. Mar Drugs 2024; 22:416. [PMID: 39330297 PMCID: PMC11433177 DOI: 10.3390/md22090416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
The current scenario of antifouling (AF) strategies to prevent the natural process of marine biofouling is based in the use of antifouling paints containing different active ingredients, believed to be harmful to the marine environment. Compounds called booster biocides are being used with copper as an alternative to the traditionally used tributyltin (TBT); however, some of them were recently found to accumulate in coastal waters at levels that are deleterious for marine organisms. More ecological alternatives were pursued, some of them based on the marine organism mechanisms' production of specialized metabolites with AF activity. However, despite the investment in research on AF natural products and their synthetic analogues, many studies showed that natural AF alternatives do not perform as well as the traditional metal-based ones. In the search for AF agents with better performance and to understand which molecular motifs were responsible for the AF activity of natural compounds, synthetic analogues were produced and investigated for structure-AF activity relationship studies. This review is a comprehensive compilation of AF compounds synthesized in the last two decades with highlights on the data concerning their structure-activity relationship, providing a chemical toolbox for researchers to develop efficient nature-inspired AF agents.
Collapse
Affiliation(s)
- Ana Rita Neves
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Sara Godinho
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Catarina Gonçalves
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Ana Sara Gomes
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Joana R Almeida
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| |
Collapse
|
7
|
Forero-López AD, Colombo CV, Loperena AP, Morales-Pontet NG, Ronda AC, Lehr IL, De-la-Torre GE, Ben-Haddad M, Aragaw TA, Suaria G, Rimondino GN, Malanca FE, Botté SE. Paint particle pollution in aquatic environments: Current advances and analytical challenges. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135744. [PMID: 39270584 DOI: 10.1016/j.jhazmat.2024.135744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Paints, coatings and varnishes play a crucial role in various industries and daily applications, providing essential material protection and enhancing aesthetic characteristics. However, they sometimes present environmental challenges such as corrosion, wear, and biofouling which lead to economic losses and ecological harm. Paint particles (PPs), including antifouling/anticorrosive paint particles (APPs), originate from marine, industrial, and architectural activities, primarily due to paint leakage, wear, and removal, thus significantly contributing to marine pollution. These particles are often misclassified as microplastics (MPs) because of their polymeric content, so the abundance of these materials is often underestimated. Standardized assessment methodologies are imperative to accurately differentiate and quantify them. Since PPs/APPs incorporate hazardous substances like metals, biocides, and additives that leach into the environment, further investigation into their potential impacts on organisms is of utmost importance to understand their complex composition and toxicity. While essential characterization techniques are needed, a holistic approach, focusing on sustainable paint formulations, is crucial for effective pollution mitigation. This review delves into the intricate structure of paint systems, elucidating the mechanisms governing the aging and formation of PPs/APPs, their prevalence and subsequent environmental and ecotoxicological repercussions. Additionally, it addresses challenges in sampling, processing, and characterizing PPs/APPs, advocating standardized approaches to mitigate their environmental threats, and proposing new perspectives for the future.
Collapse
Affiliation(s)
- A D Forero-López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, Buenos Aires B8000FWB, Argentina.
| | - C V Colombo
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, Buenos Aires B8000FWB, Argentina
| | - A P Loperena
- Instituto de Ingeniería Electroquímica y Corrosión (INIEC), Departamento de Ingeniería Química, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - N G Morales-Pontet
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, Buenos Aires B8000FWB, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - A C Ronda
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, Buenos Aires B8000FWB, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - I L Lehr
- Instituto de Ingeniería Electroquímica y Corrosión (INIEC), Departamento de Ingeniería Química, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - G E De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - M Ben-Haddad
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - T A Aragaw
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - G Suaria
- Institute of Marine Sciences - National Research Council (CNR-ISMAR), Lerici, La Spezia 19032, Italy
| | - G N Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - F E Malanca
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - S E Botté
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, Buenos Aires B8000FWB, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca 8000, Argentina
| |
Collapse
|
8
|
Wen J, Liu X, Han Z, Wang Z, Saitoh H, Li H. Guanidine-modified polysaccharide conditioning layer designed for regulating bacterial attachment behaviors. Colloids Surf B Biointerfaces 2024; 245:114215. [PMID: 39243707 DOI: 10.1016/j.colsurfb.2024.114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/02/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024]
Abstract
Biofouling has been persisting as a global problem due to the difficulties in finding efficient and environmentally friendly antifouling coatings for long-term applications. Initial attachment of bacteria on material surface and subsequent formation of biofilm are the predominate phenomena accounting for subsequent occurrence of biofouling. Among the various factors influencing the bacterial attachment, conditioning layer formed by organic macromolecules usually plays the key role in mediating bacterial attachment through altering physicochemical properties of substrate surface. In this study, a guanidine-modified polysaccharide conditioning layer with the capability of tuning the bacterial attachment is constructed and characterized. Dextran, a polysaccharide widespread in bacteria extracellular polymeric substances (EPS), is oxidized by sodium periodate, and cationic polymer polyhexamethylene guanidine hydrochloride (PHMG) is anchored to oxidized dextran (ODEX) by Schiff base reaction. AFM characterization reveals morphological changes of the polysaccharide conditioning layer from tangled chain to island conformation after the PHMG modification. The guanidine-based dextran conditioning layer promotes attachment of both P. aeruginosa and S. aureus and disrupted bacterial cytomembranes are seen for the attached bacteria due to electrostatic interaction of the electropositive guanidine group with the electronegative bacteria. The guanidine-based dextran conditioning layer shows a low survival ratio of 22 %-34 % and 1 %-4 % for P. aeruginosa and S. aureus respectively after incubation in the bacterial suspension for 72 hours. The results would give insight into further exploring the potential applications of the newly designed polysaccharides conditioning layer for combating occurrence of biofouling.
Collapse
Affiliation(s)
- Jianxin Wen
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomei Liu
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhuoyue Han
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhijuan Wang
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Hidetoshi Saitoh
- Department of Materials Science and Technology, Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka, Niigata 940-2188, Japan
| | - Hua Li
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Marzullo P, Gruttadauria M, D’Anna F. Quaternary Ammonium Salts-Based Materials: A Review on Environmental Toxicity, Anti-Fouling Mechanisms and Applications in Marine and Water Treatment Industries. Biomolecules 2024; 14:957. [PMID: 39199346 PMCID: PMC11352365 DOI: 10.3390/biom14080957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
The adherence of pathogenic microorganisms to surfaces and their association to form antibiotic-resistant biofilms threatens public health and affects several industrial sectors with significant economic losses. For this reason, the medical, pharmaceutical and materials science communities are exploring more effective anti-fouling approaches. This review focuses on the anti-fouling properties, structure-activity relationships and environmental toxicity of quaternary ammonium salts (QAS) and, as a subclass, ionic liquid compounds. Greener alternatives such as QAS-based antimicrobial polymers with biocide release, non-fouling (i.e., PEG, zwitterions), fouling release (i.e., poly(dimethylsiloxanes), fluorocarbon) and contact killing properties are highlighted. We also report on dual-functional polymers and stimuli-responsive materials. Given the economic and environmental impacts of biofilms in submerged surfaces, we emphasize the importance of less explored QAS-based anti-fouling approaches in the marine industry and in developing efficient membranes for water treatment systems.
Collapse
Affiliation(s)
- Paola Marzullo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (M.G.); (F.D.)
- Sustainable Mobility Center (Centro Nazionale per la Mobilità Sostenibile—CNMS), Via Durando 39, 20158 Milano, Italy
| | - Michelangelo Gruttadauria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (M.G.); (F.D.)
- Sustainable Mobility Center (Centro Nazionale per la Mobilità Sostenibile—CNMS), Via Durando 39, 20158 Milano, Italy
| | - Francesca D’Anna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (M.G.); (F.D.)
- Sustainable Mobility Center (Centro Nazionale per la Mobilità Sostenibile—CNMS), Via Durando 39, 20158 Milano, Italy
| |
Collapse
|
10
|
Gudala S, Dong M, Lin X, Liu R, Vinothkanna A, Jha A, Sharma A, Wang D, Liu X, Yang J. 1,2,4-Triazolo-quinazolinones as Effective Antifoulants: Molecular Design, Synthesis, and Biological Evaluation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39012063 DOI: 10.1021/acs.langmuir.4c01393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
A series of 1,2,4-triazolo-quinazolinones and 1,2-benzisothiazolone derivatives (S1-S12) were successfully synthesized as environmentally friendly alternatives to copper-based antifouling paints using N-alkylation, cyclocondensation, and one-pot three-component and amide coupling reactions. The monoclinic structure of single-crystal 1,2,4-triazolo-quinazolin-acetic acid (S8) was confirmed by single-crystal X-ray diffraction analysis. All the synthesized molecules were studied for their in silico molecular docking interactions with three target proteins, namely, RbmA, ToxR, and Bap. Following that, the antialgal activity was assessed against two types of marine algae: Chlorella sp. and Chaetoceros curvisetus. The minimal inhibitory concentration and zone of inhibition have been used to evaluate the antibacterial activities of S1-S12 against both marine Gram-positive (Staphylococcus aureus) and Gram-negative (Vibrio parahemolyticus and Vibrio vulnificus) bacteria. Additionally, antifouling studies have been done on all the compounds, and among them, 1,2,4-triazolo-quinazolinyl-acetate (S7), 1,2,4-triazolo-quinazolinyl-acetic acid (S8), 1,2,4-triazolo-quinazolinyl-oxobutanoate (S9), benzo[d]isothiazolyl butanoate (S10), benzo[d]isothiazolyl-acetic acid (S11), and 1,2,4-triazolo-quinazolinyl-acetyl-benzo[d]isothiazolone (S12) exhibited good antialgal, antibacterial, and antifouling activities.
Collapse
Affiliation(s)
- Satish Gudala
- Key Laboratory of Green Catalysis and Reaction Engineering of Haikou, College of Chemistry and Chemical Engineering, Hainan University, Haikou 570228,People's Republic of China
| | - Miao Dong
- Key Laboratory of Green Catalysis and Reaction Engineering of Haikou, College of Chemistry and Chemical Engineering, Hainan University, Haikou 570228,People's Republic of China
| | - Xinrui Lin
- Key Laboratory of Green Catalysis and Reaction Engineering of Haikou, College of Chemistry and Chemical Engineering, Hainan University, Haikou 570228,People's Republic of China
| | - Ruotong Liu
- Key Laboratory of Green Catalysis and Reaction Engineering of Haikou, College of Chemistry and Chemical Engineering, Hainan University, Haikou 570228,People's Republic of China
| | | | - Anubhuti Jha
- Department of Biotechnology, St. Thomas College, Hemchand Yadav University, Durg,Chhattisgarh 490006,India
| | - Archi Sharma
- Department of Chemistry, Vardhman College of Engineering, Jawaharlal Nehru Technological University , Hyderabad 500085,India
| | - Dazhuang Wang
- Key Laboratory of Green Catalysis and Reaction Engineering of Haikou, College of Chemistry and Chemical Engineering, Hainan University, Haikou 570228,People's Republic of China
| | - Xinghua Liu
- Key Laboratory of Green Catalysis and Reaction Engineering of Haikou, College of Chemistry and Chemical Engineering, Hainan University, Haikou 570228,People's Republic of China
| | - Jianxin Yang
- Key Laboratory of Green Catalysis and Reaction Engineering of Haikou, College of Chemistry and Chemical Engineering, Hainan University, Haikou 570228,People's Republic of China
| |
Collapse
|
11
|
Cunha B, Garnier J, Araújo D, Tonhá M, Souto-Oliveira CE, Ruiz I, Feitas E Silva FH, Almeida T, Freydier R, Seyler P, Babinski M. Metal record of copper-based antifouling paints in sediment core following marina construction and operation. MARINE POLLUTION BULLETIN 2024; 204:116534. [PMID: 38850759 DOI: 10.1016/j.marpolbul.2024.116534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Marinas are central hubs of global maritime leisure and transport, yet their operations can deteriorate the environmental quality of sediments. In response, this study investigated the metal contamination history associated with antifouling paint uses in a sediment core collected from Bracuhy marina (Southeast Brazil). Analysis target major and trace elements (Cu, Zn, Pb, Cd and Sn), rare earth elements (REEs), and Pb isotopes. The modification in Pb isotopic ratios and REEs pattern unequivocally revealed sediment provenance disruption following the marina construction. Metal distribution in the sediment core demonstrates that concentrations of Cu and Zn increased by up to 15 and 5 times, respectively, compared to the local background. This severe Cu and Zn contamination coincides with the onset of marina operations and can be attributed to the use of antifouling paints.
Collapse
Affiliation(s)
- Bruno Cunha
- Center of Geochronological Research, Geoscience Institute, University of São Paulo, São Paulo, SP, Brazil.
| | - Jeremie Garnier
- Geoscience Institute, University of Brasilia, Asa Norte, 70910-900 Brasilia, DF, Brazil; Joint International Laboratory LMI OCE "Observatory of Environmental Change", UnB/IRD, Brasilia, DF, Brazil
| | - Daniel Araújo
- Ifremer, CCEM - Contamination Chimique des Ecosystèmes Marins, F-44000, Centre Atlantique, Nantes, France
| | - Myller Tonhá
- Geoscience Institute, University of Brasilia, Asa Norte, 70910-900 Brasilia, DF, Brazil; Joint International Laboratory LMI OCE "Observatory of Environmental Change", UnB/IRD, Brasilia, DF, Brazil
| | | | - Izabel Ruiz
- Center of Geochronological Research, Geoscience Institute, University of São Paulo, São Paulo, SP, Brazil
| | | | - Tati Almeida
- Geoscience Institute, University of Brasilia, Asa Norte, 70910-900 Brasilia, DF, Brazil
| | - Remi Freydier
- HSM, Université de Montpellier, CNRS, Montpellier, France
| | - Patrick Seyler
- Joint International Laboratory LMI OCE "Observatory of Environmental Change", UnB/IRD, Brasilia, DF, Brazil; Ifremer, CCEM - Contamination Chimique des Ecosystèmes Marins, F-44000, Centre Atlantique, Nantes, France; HSM, Université de Montpellier, CNRS, Montpellier, France
| | - Marly Babinski
- Center of Geochronological Research, Geoscience Institute, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Lee S, Kim J, Jung JH, Kim M, Park H, Rhee JS. Exposure to hull cleaning wastewater induces mortality through oxidative stress and cholinergic disturbance in the marine polychaete Perinereis aibuhitensis. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109922. [PMID: 38615807 DOI: 10.1016/j.cbpc.2024.109922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/17/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
While wastewater and paint particles discharged from the in-water cleaning process of ship hulls are consistently released into benthic ecosystems, their hazardous effects on non-target animals remain largely unclear. In this study, we provide evidence on acute harmful effects of hull cleaning wastewater in marine polychaete Perinereis aibuhitensis by analyzing physiological and biochemical parameters such as survival, burrowing activity, and oxidative status. Raw wastewater samples were collected during ship hull cleaning processes in the field. Two wastewater samples for the exposure experiment were prepared in the laboratory: 1) mechanically filtered in the in-water cleaning system (MF) and 2) additionally filtered with a 0.45 μm filter in the laboratory (LF). These wastewater samples contained high concentrations of metals (zinc and copper) and metal-based booster biocides (copper pyrithione and zinc pyrithione) compared to those analyzed in seawater. Polycheates were exposed to different concentrations of the two wastewater samples for 96 h. Higher mortality was observed in response to MF compared to LF-exposed polychaetes. Both wastewater samples dose-dependently decreased burrowing activity and AChE activity. Drastic oxidative stress was observed in response to the two wastewater samples. MDA levels were significantly increased by MF and LF samples. Significant GSH depletion was observed with MF exposure, while increased and decreased GSH contents were observed in LF-exposed polychaetes. Enzymatic activities of antioxidant components, catalase, superoxide dismutase, and glutathione S-transferase were significantly modulated by both wastewater samples. These results indicate that even filtered hull cleaning wastewater can have deleterious effects on the health status of polychaetes.
Collapse
Affiliation(s)
- Somyeong Lee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Jaehee Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Jee-Hyun Jung
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Moonkoo Kim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon 22012, Republic of Korea; Yellow Sea Research Institute, Incheon 22012, Republic of Korea.
| |
Collapse
|
13
|
Pereira D, Almeida JR, Cidade H, Correia-da-Silva M. Proof of Concept of Natural and Synthetic Antifouling Agents in Coatings. Mar Drugs 2024; 22:291. [PMID: 39057400 PMCID: PMC11278152 DOI: 10.3390/md22070291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Marine biofouling, caused by the deposition and accumulation of marine organisms on submerged surfaces, represents a huge concern for the maritime industries and also contributes to environmental pollution and health concerns. The most effective way to prevent this phenomenon is the use of biocide-based coatings which have proven to cause serious damage to marine ecosystems. Several research groups have focused on the search for new environmentally friendly antifoulants, including marine and terrestrial natural products and synthetic analogues. Some of these compounds have been incorporated into marine coatings and display interesting antifouling activities caused by the interference with the biofilm-forming species as well as by the inhibition of the settlement of macroorganisms. This review highlights the proof-of-concept studies of emerging natural or synthetic antifouling compounds in coatings, from lab-made to commercial ones, performed between 2019 and 2023 and their results in the field or in in vivo laboratorial tests.
Collapse
Affiliation(s)
- Daniela Pereira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal;
| | - Joana R. Almeida
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal;
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal;
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (CESPU), 4585-116 Gandra, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal;
| |
Collapse
|
14
|
Gan W, Zhang R, Cao Z, Liu H, Fan W, Sun A, Song S, Zhang Z, Shi X. Unveiling the hidden risks: Pesticide residues in aquaculture systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172388. [PMID: 38614356 DOI: 10.1016/j.scitotenv.2024.172388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/16/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
The present study systematically assessed the presence and ecological risks of 79 pesticides in various aquaculture systems, namely pond aquaculture (PA), greenhouse aquaculture (GA), and raceway aquaculture (RA) at different aquaculture stages, along with evaluating the pesticide removal of four tailwater treatment systems. Sixteen herbicides and two fungicides were identified, with the total concentrations ranging from 8.33 ng/L to 3248.45 ng/L. The PA system demonstrated significantly higher concentrations (p < 0.05) and a wider range of pesticide residues compared to the GA and RA systems. Prometryn, simetryn, atrazine, and thifluzamide were found to be the predominant pesticides across all three aquaculture modes, suggesting their significance as pollutants that warrant monitoring. Additionally, the findings indicated that the early aquaculture stage exhibits the highest levels of pesticide concentration, underscoring the importance of heightened monitoring and regulatory interventions during this phase. Furthermore, among the four tailwater treatment systems analyzed, the recirculating tailwater treatment system exhibited the highest efficacy in pesticide removal. A comprehensive risk assessment revealed minimal ecological risks in both the aquaculture and tailwater environments. However, the pesticide mixtures present high risks to algae and low to medium risks to aquatic invertebrates and fish, particularly during the early stages of aquaculture. Simetryn and prometryn were identified as high-risk pesticides. Based on the prioritization index, simetryn, prometryn, diuron, and ametryn are recommended for prioritization in risk assessment. This study offers valuable data for pesticide control and serves as a reference for the establishment of a standardized pesticide monitoring and management system at various stages of aquaculture.
Collapse
Affiliation(s)
- Weijia Gan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Rongrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Zhi Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Hao Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Aili Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Zeming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
15
|
Soleimani S, Jannesari A, Yousefzadi M, Ghaderi A, Shahdadi A. Fouling-Resistant Behavior of Hydrophobic Surfaces Based on Poly(dimethylsiloxane) Modified by Green rGO@ZnO Nanocomposites. ACS APPLIED BIO MATERIALS 2024; 7:2794-2808. [PMID: 38593040 DOI: 10.1021/acsabm.3c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In line with global goals to solve marine biofouling challenges, this study proposes an approach to developing a green synthesis inspired by natural resources for fouling-resistant behavior. A hybrid antifouling/foul release (HAF) coating based on poly(dimethylsiloxane) containing a green synthesized nanocomposite was developed as an environmentally friendly strategy. The nanocomposites based on graphene oxide (GO) and using marine sources, leaves, and stems of mangroves (Avicennia marina), brown algae (Polycladia myrica), and zinc oxide were compared. The effectiveness of this strategy was checked first in the laboratory and then in natural seawater. The performance stability of the coatings after immersion in natural seawater was also evaluated. With the lowest antifouling (17.95 ± 0.7%) and the highest defouling (51.2 ± 0.9%), the best fouling-resistant performance was for the coatings containing graphene oxide reduced with A. marina stem/zinc oxide (PrGZS) and graphene oxide reduced with A. marina leaves/zinc oxide with 50% multiwall carbon nanotubes (PrGZHC50), respectively. Therefore, the HAF coatings can be considered as developed and eco-friendly HAF coatings for the maritime industry.
Collapse
Affiliation(s)
- Soolmaz Soleimani
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
- Department of Resins and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Ali Jannesari
- Department of Resins and Additives, Institute for Color Science and Technology, Tehran, Iran
| | | | - Arash Ghaderi
- Department of Chemistry, College of Sciences, University of Hormozgan, Bandar Abbas 7916193145, Iran
| | - Adnan Shahdadi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| |
Collapse
|
16
|
Lee S, Nam SE, Jung JH, Kim M, Rhee JS. Hull-cleaning wastewater poses serious acute and chronic toxicity to a marine mysid-A multigenerational study. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133959. [PMID: 38457977 DOI: 10.1016/j.jhazmat.2024.133959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
We conducted a comprehensive assessment involving acute effects on 96-hour survival and biochemical parameters, as well as chronic effects on growth and reproduction spanning three generations of the marine mysid Neomysis awatschensis exposed to filtered wastewater to evaluate the potential impact of ship hull-cleaning wastewater on crustaceans. The analyzed wastewater exhibited elevated concentrations of metals, specifically zinc (Zn) and copper (Cu) and metal-based antifoulants, i.e., Cu pyrithoine (CuPT) and Zn pyrithoine (ZnPT). The results revealed dose-dependent reductions in survival rates, accompanied by a notable increase in oxidative stress, in response to the sublethal values of two wastewater samples: 1) mechanically filtered using the cleaning system (MF) and 2) additionally filtered in the laboratory (LF) for 96 h. Mysids exposed to MF displayed higher mortality than those exposed to LF. Furthermore, mysids subjected to continuous exposure of 0.001% LF across three generations exhibited significant inhibition of the feeding rate, more pronounced growth retardation along with an extended intermolt duration, and a diminished rate of reproduction compared to the control. A noteworthy inhibition of the feeding rate and growth was observed in the first generation exposed only to the LF sample. However, although the reproduction rate was not significantly affected. Collectively, these findings underscore the potential harm posed by sublethal concentrations of wastewater to the health of mysid populations under consistent exposure.
Collapse
Affiliation(s)
- Somyeong Lee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Sang-Eun Nam
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Jee-Hyun Jung
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Moonkoo Kim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon 22012, Republic of Korea; Yellow Sea Research Institute, Incheon 22012, Republic of Korea.
| |
Collapse
|
17
|
Hong H, Lv J, Deng A, Tang Y, Liu Z. A review of experimental Assessment Processes of material resistance to marine and freshwater biofouling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120766. [PMID: 38565032 DOI: 10.1016/j.jenvman.2024.120766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Biofouling presents hazards to a variety of freshwater and marine underwater infrastructures and is one of the direct causes of species invasion. These negative impacts provide a unified goal for both industry practitioners and researchers: the development of novel antifouling materials to prevent the adhesion of biofouling. The prohibition of tributyltin (TBT) by the International Maritime Organization (IMO) in 2001 propelled the research and development of new antifouling materials. However, the evaluation process and framework for these materials remain incomplete and unsystematic. This mini-review starts with the classification and principles of new antifouling materials, discussing and summarizing the methods for assessing their biofouling resistance. The paper also compiles the relevant regulations and environmental requirements from different countries necessary for developing new antifouling materials with commercial potential. It concludes by highlighting the current challenges in antifouling material development and future outlooks. Systematic evaluation of newly developed antifouling materials can lead to the emergence of more genuinely applicable solutions, transitioning from merely laboratory products to materials that can be effectively used in real-world applications.
Collapse
Affiliation(s)
- Heting Hong
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China; Wuhan Regional Climate Center, Hubei Meteorological Bureau, Wuhan, 430074, China.
| | - Jiawen Lv
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Aijuan Deng
- Wuhan Regional Climate Center, Hubei Meteorological Bureau, Wuhan, 430074, China
| | - Yang Tang
- Wuhan Regional Climate Center, Hubei Meteorological Bureau, Wuhan, 430074, China
| | - Zhixiong Liu
- Wuhan Regional Climate Center, Hubei Meteorological Bureau, Wuhan, 430074, China
| |
Collapse
|
18
|
Huenuvil-Pacheco I, Jaramillo A, Abreu N, Garrido-Miranda K, Sánchez-Sanhueza G, González-Rocha G, Medina C, Montoya L, Sanhueza J, Melendrez M. Biocidal effects of organometallic materials supported on ZSM-5 Zeolite: Influence of the physicochemical and surface properties. Heliyon 2024; 10:e27182. [PMID: 38455576 PMCID: PMC10918221 DOI: 10.1016/j.heliyon.2024.e27182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Antifouling coatings containing biocidal agents can be used to prevent the accumulation of biotic deposits on submerged surfaces; however, several commercial biocides can negatively affect the ecosystem. In this study, various formulations of a potential biocide product comprising copper nanoparticles and capsaicin supported on zeolite ZSM-5 were analyzed to determine the influence of the concentration of each component. The incorporation of copper was evidenced by scanning electron microscopy and energy dispersive spectroscopy. Similarly, Fourier-transform infrared spectroscopy confirmed that capsaicin was supported on the zeolite surface. The presence of capsaicin on the external zeolite surface significantly reduced the surface area of the zeolite. Finally, bacterial growth inhibition analysis showed that copper nanoparticles inhibited the growth of strains Idiomarina loihiensis UCO25, Pseudoalteromonas sp. UCO92, and Halomonas boliviensis UCO24 while the organic component acted as a reinforcing biocide.
Collapse
Affiliation(s)
- I. Huenuvil-Pacheco
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 01145 Francisco Salazar, Temuco 4780000, Chile
- Department of Chemical Engineering, University of Concepción, Concepción 4070386, Chile
| | - A.F. Jaramillo
- Department of Mechanical Engineering, Universidad de La Frontera, 01145 Francisco Salazar, Temuco 4780000, Chile
- Departamento de Ingeniería Mecánica, Universidad de Córdoba, Cr 6 #76-103, Montería 230002, Colombia
| | - N.J. Abreu
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 01145 Francisco Salazar, Temuco 4780000, Chile
- Centro de Manejo de Residuos y Bioenergía, BIOREN, Universidad de La Frontera, 01145 Francisco Salazar, Temuco 4780000, Chile
| | - K. Garrido-Miranda
- Agriaquaculture Nutritional Genomic Center (CGNA), Temuco 4780000, Chile
- Núcleo de Investigación en Bioproductos y Materiales Avanzados (BIOMA), Universidad Católica de Temuco, Avenida Rudecindo Ortega 02950, Campus San Juan Pablo II, Temuco 4780000, Chile
| | - G. Sánchez-Sanhueza
- Department of Restorative Dentistry, Faculty of Dentistry, Universidad de Concepción, 1550 Roosevelt St, Concepcion 4030000, Chile
| | - G. González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, P.O. Box C-160, Chile
| | - C. Medina
- Department of Mechanical Engineering (DIM), Faculty of Engineering, University of Concepción, Edmundo Larenas 219, Concepcion 4070409, Chile
| | - L.F. Montoya
- Department of Chemical Engineering, University of Concepción, Concepción 4070386, Chile
| | - J.P. Sanhueza
- Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, 315 Edmundo Larenas, Concepcion, 4070415, Chile
| | - M.F. Melendrez
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastían, Campus Las Tres Pascualas, Lientur 1457, Concepción, 4060000, Chile
| |
Collapse
|
19
|
Kim J, Lee S, Jung JH, Kim M, Rhee JS. Detrimental effects of hull cleaning wastewater on oxidative status, life cycle parameters, and population growth of the monogonont rotifer Brachionus manjavacas. MARINE POLLUTION BULLETIN 2024; 200:116121. [PMID: 38354590 DOI: 10.1016/j.marpolbul.2024.116121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/06/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
While wastewater discharged from in-water cleaning process of ship hulls on rotifer consistently released into aquatic ecosystem, its detrimental effects on non-target animals are largely unclear. In this study, we provide evidence on detrimental effects of hull cleaning wastewater in the monogonont rotifer Brachionus manjavacas by analyzing biochemical and physiological parameters in its oxidative status, survival, lifespan, growth, fecundity, and population. The wastewater contained high concentrations of metals (Zn and Cu) and metal-based antifoulants (CuPT and ZnPT). Significant oxidative stress was observed in response to two wastewater samples [1) raw wastewater (RW) and 2) mechanical filtrated in the cleaning system (MF)]. Higher detrimental effects in survival, lifespan, fecundity, and population growth for 10 days were measured in the RW-exposed rotifers than those results analyzed in the MF-exposed rotifers. Two growth parameters, lorica length and width were also significantly modulated by both wastewater samples. These results indicate that even filtered hull cleaning wastewater would have deleterious effects on the maintenance of the rotifer population when they exposed constantly.
Collapse
Affiliation(s)
- Jaehee Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Somyeong Lee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Jee-Hyun Jung
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Moonkoo Kim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon 22012, Republic of Korea; Yellow Sea Research Institute, Incheon 22012, Republic of Korea.
| |
Collapse
|
20
|
Lenchours Pezzano J, Rodriguez YE, Fernández-Gimenez AV, Laitano MV. Exploring fishery waste potential as antifouling component. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20159-20171. [PMID: 38372927 DOI: 10.1007/s11356-024-32491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
Marine biofouling is a global issue with economic and ecological implications. Existing solutions, such as biocide-based antifouling paints, are toxic for the environment. The search for better antifouling agents remains crucial. Recent research focuses on eco-friendly antifouling paints containing natural compounds like enzymes. This study evaluates enzymatic extracts from fishery residues for antifouling potential. Extracts from Pleoticus muelleri shrimp, Illex argentinus squid, and Lithodes santolla king crab were analyzed. Proteolytic activity and thermal stability were assessed, followed by bioassays on mussel byssus thread formation and barnacle cypris adhesive footprints. All three extracts demonstrated proteolytic activity and 24-h stability at temperate oceanic temperatures, except I. argentinus. P. muelleri extracts hindered cyprid footprint formation and mussel byssus thread generation. Further purification is required for L. santolla extract to assess its antifouling potential activity. This study introduces the use of fishery waste-derived enzyme extracts as a novel antifouling agent, providing a sustainable tool to fight against biofouling formation.
Collapse
Affiliation(s)
- Juliana Lenchours Pezzano
- Marine Science Department, Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Yamila E Rodriguez
- Marine Science Department, Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Argentina
- Marine and Coastal Research Institute (IIMyC), Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Scientific and Technological Research National Council, Mar del Plata, Argentina
| | - Analía V Fernández-Gimenez
- Marine Science Department, Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Argentina
- Marine and Coastal Research Institute (IIMyC), Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Scientific and Technological Research National Council, Mar del Plata, Argentina
| | - María V Laitano
- Marine Science Department, Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Argentina.
- Marine and Coastal Research Institute (IIMyC), Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Scientific and Technological Research National Council, Mar del Plata, Argentina.
| |
Collapse
|
21
|
Yılmaz Sezer İ, Koçak G, Tural R, Günal AÇ, Sepici Dinçel A. Environmental pollutant sodium omadine: toxic effects in zebra fish ( Danio rerio). Toxicol Mech Methods 2024; 34:256-261. [PMID: 37964616 DOI: 10.1080/15376516.2023.2279717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
In recent years one of the most striking results of over-population and consumption activities in the world is the rapid increase in environmental pollutants. Environmental pollutants, one of the harmful consequences of technological and modern life, threaten the health of people and other living organisms. In this study, we aimed to determine the effects of sodium omadine (NaOM) on superoxide dismutase enzyme (SOD) activity as an antioxidant and on 8-OHdG levels as oxidative DNA damage in zebrafish. Zebrafish, obtained from the aquarium fish producer, were stocked in experimental aquariums to ensure their adaptation period to the experimental conditions 15 days before the experiment. The fish were exposed to 1 ug/L and 5 ug/L concentrations of NaOM for 24, 72, and 96 h. SOD enzyme activity (U/100 mg tissue) and 8-OHdG (pg/100 mg tissue) were measured using commercial kits. The statistically significant differences in tissue SOD levels and data for DNA damage between the groups were determined as time and dose-dependent (p < 0.05). Biocidal products are environmental pollutants that cause changes in antioxidant enzyme activities, especially in non-target organisms. Marine pollution and the degradation of ecosystems directly affect people, and the results of the study offer awareness of health problems, environmental pollution, and marine pollution.
Collapse
Affiliation(s)
- İlknur Yılmaz Sezer
- Department of Environmental Sciences, Institute of Natural and Applied Sciences, Gazi University, Ankara, Türkiye
| | - Gülsüm Koçak
- Department of Environmental Sciences, Institute of Natural and Applied Sciences, Gazi University, Ankara, Türkiye
| | - Rabia Tural
- Health Services Vocational School, Sinop University, Sinop, Türkiye
| | - Aysel Çağlan Günal
- Gazi Education Faculty, Mathematics and Science Education, Biology Education, Gazi University, Ankara, Türkiye
| | - Aylin Sepici Dinçel
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Türkiye
| |
Collapse
|
22
|
Santos-Simón M, Ferrario J, Benaduce-Ortiz B, Ortiz-Zarragoitia M, Marchini A. Assessment of the effectiveness of antifouling solutions for recreational boats in the context of marine bioinvasions. MARINE POLLUTION BULLETIN 2024; 200:116108. [PMID: 38335634 DOI: 10.1016/j.marpolbul.2024.116108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The recreational boating sector is a major vector for the introduction of non-indigenous species (NIS) via biofouling. Despite applying control measures to prevent the growth of fouling communities, most vessels are NIS carriers. This study assessed the effectiveness of different antifouling strategies in a manipulative experiment by testing two common coating typologies (biocide-based and foul-release coatings), accompanied with simulated maintenance practices. The experiment was carried out in the Gulf of La Spezia (Italy) and samples were collected at two different periods. Results showed significant differences among antifouling treatments regarding community structure, diversity, coverage and biovolume of the sessile component, alongside a significant decrease in the performance of biocide-based coating with time. Interestingly, peracarid NIS/native species ratio was higher for biocide-based treatments, suggesting potential biocide resistance. This study highlights the urgent need to develop common and feasible biofouling management plans and provides insights towards identification of best practices for recreational vessels.
Collapse
Affiliation(s)
- Mar Santos-Simón
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; Department of Zoology and Animal Cell Biology, Faculty of Science and Research Centre for Experimental Marine Biology and Biotechnology PiE-UPV/EHU, University of the Basque Country, Spain.
| | - Jasmine Ferrario
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy
| | | | - Maren Ortiz-Zarragoitia
- Department of Zoology and Animal Cell Biology, Faculty of Science and Research Centre for Experimental Marine Biology and Biotechnology PiE-UPV/EHU, University of the Basque Country, Spain
| | - Agnese Marchini
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
23
|
Richards C, Ollero AD, Daly P, Delauré Y, Regan F. Disruption of diatom attachment on marine bioinspired antifouling materials based on Brill (Scophthalmus rhombus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169348. [PMID: 38104837 DOI: 10.1016/j.scitotenv.2023.169348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Bioinspired surfaces, due to their nano and micro topographical features, offer a promising approach for the development of novel antifouling solutions. The study of surface topography has gained popularity in recent years, demonstrating significant potential in mimicking natural structures that could be manufactured for application in the marine environment. This research focuses on investigating the antifouling (AF) performance of bio-inspired micro-textures inspired by Brill fish scales, Scophthalmus rhombus, under static laboratory conditions, using two common fouling diatom species, Amphora coffeaeformis and Nitzschia ovalis. In this study, we evaluate six engineered surfaces, inspired by Brill fish scales, fabricated through a 2-photon polymerization (2PP) process, for their potential as antifouling solutions. The investigation explores the settlement behaviour of microfouling organisms, comparing these mechanisms with theoretical models to guide the future design of antifouling materials. A key emphasis is placed on the impact of surface topography on the disruption of cellular response. Our results suggest that cells smaller than 10 μm, exceeding the peak-to-peak distances between surface features, comfortably position themselves between adjacent features. On the other hand, as peak-to-peak distances decrease, cells shift from settling within uniform gaps to resting on top of surface features. Surfaces with sharpened edges demonstrate a more substantial reduction in diatom attachments compared to those with rounded edges. Furthermore, all micro-textured surfaces exhibit a significant decrease in colony formation compared to control samples. In conclusion, this study shows the potential to manipulate cellular responses through topographical features, providing valuable insights for the design of effective antifouling materials. The results contribute to the growing body of knowledge in biomimetic antifouling strategies using a novel marine organism for inspiration to design practical structures that can be replicated.
Collapse
Affiliation(s)
- Chloe Richards
- DCU Water Institute, School of Chemical Sciences, DCU, Glasnevin, Dublin, Ireland
| | | | - Philip Daly
- School of Mechanical & Manufacturing Engineering, DCU, Glasnevin, Dublin, Ireland
| | - Yan Delauré
- School of Mechanical & Manufacturing Engineering, DCU, Glasnevin, Dublin, Ireland
| | - Fiona Regan
- DCU Water Institute, School of Chemical Sciences, DCU, Glasnevin, Dublin, Ireland.
| |
Collapse
|
24
|
Hu J, Zhang D, Li W, Li Y, Shan G, Zuo M, Song Y, Wu Z, Ma L, Zheng Q, Du M. Construction of a Soft Antifouling PAA/PSBMA Hydrogel Coating with High Toughness and Low Swelling through the Dynamic Coordination Bonding Provided by Al(OH) 3 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6433-6446. [PMID: 38289030 DOI: 10.1021/acsami.3c17580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Marine biofouling, resulting from the adhesion of marine organisms to ship surfaces, has long been a significant issue in the maritime industry. In this paper, we focused on utilizing soft and hydrophilic hydrogels as a potential approach for antifouling (AF) coatings. Acrylic acid (AA) with a polyelectrolyte effect and N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (SBMA) with an antipolyelectrolyte effect were selected as monomers. By adjusting the monomer ratio, we were able to create hydrogel coatings that exhibited low swelling ratio in both fresh water and seawater. The Al(OH)3 nanoparticle, as a physical cross-linker, provided better mechanical properties (higher tensile strength and larger elongation at break) than the chemical cross-linker through the dynamic coordination bonds and plentiful hydrogen bonds. Additionally, we incorporated trehalose into the hydrogel, enabling the repair of the hydrogel network through covalent-like hydrogen bonding. The zwitterion compound SBMA endowed the hydrogel with excellent AF performance. It was found that the highest SBMA content did not lead to the best antibacterial performance, as bacterial adhesion quantity was also influenced by the charge of the hydrogel. The hydrogel with appropriate SBMA content being close to electrical neutrality exhibits the strongest zwitterionic property of PSBMA chains, resulting in the best antibacterial adhesion performance. Furthermore, the pronounced hydrophilicity of SBMA enhanced the lubrication of the hydrogel surface, thereby reducing the friction resistance when applied to the hull surface during ship navigation.
Collapse
Affiliation(s)
- Jinpeng Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dezhi Zhang
- Hangzhou Applied Acoustics Research Institute, Hangzhou 310023, China
| | - Wenbao Li
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yan Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guorong Shan
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Min Zuo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yihu Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ziliang Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Qiang Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| | - Miao Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| |
Collapse
|
25
|
Pereira D, Pinto M, Almeida JR, Correia-da-Silva M, Cidade H. The Role of Natural and Synthetic Flavonoids in the Prevention of Marine Biofouling. Mar Drugs 2024; 22:77. [PMID: 38393048 PMCID: PMC10889971 DOI: 10.3390/md22020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Marine biofouling is a major concern for the maritime industry, environment, and human health. Biocides which are currently used in marine coatings to prevent this phenomenon are toxic to the marine environment, and therefore a search for antifoulants with environmentally safe properties is needed. A large number of scientific papers have been published showing natural and synthetic compounds with potential to prevent the attachment of macro- and microfouling marine organisms on submerged surfaces. Flavonoids are a class of compounds which are highly present in nature, including in marine organisms, and have been found in a wide range of biological activities. Some natural and synthetic flavonoids have been evaluated over the last few years for their potential to prevent the settlement and/or the growth of marine organisms on submerged structures, thereby preventing marine biofouling. This review compiles, for the first-time, natural flavonoids as well as their synthetic analogues with attributed antifouling activity against macrofouling and microfouling marine organisms.
Collapse
Affiliation(s)
- Daniela Pereira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Joana R. Almeida
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
26
|
Zmozinski AV, S Peres R, Macedo AJ, Mendes Becker E, Pasinato Napp A, Schneider R, Reisdörfer Silveira J, Ferreira CA, H Vainstein M, Schrank A. Silicone-geranium essential oil blend for long-term antifouling coatings. BIOFOULING 2024; 40:209-222. [PMID: 38500010 DOI: 10.1080/08927014.2024.2328611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
This study explores the potential of geranium essential oil as a natural solution for combating marine biofouling, addressing the environmental concerns associated with commercial antifouling coatings. Compounds with bactericidal activities were identified by 13Carbon nuclear magnetic resonance (13C NMR). Thermogravimetric analysis (TGA) revealed minimal impact on film thermal stability, maintaining suitability for antifouling applications. The addition of essential oil induced changes in the morphology of the film and Fourier transform infrared spectroscopy (FTIR) analysis indicated that oil remained within the film. Optical microscopy showed an increase in coating porosity after immersion in a marine environment. A total of 18 bacterial colonies were isolated, with Psychrobacter adeliensis and Shewanella algidipiscicola being the predominant biofilm-forming species. The geranium essential oil-based coating demonstrated the ability to reduce the formation of Psychrobacter adeliensis biofilms and effectively inhibit macrofouling adhesion for a duration of 11 months.
Collapse
Affiliation(s)
- Ariane V Zmozinski
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Rafael S Peres
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Porto Alegre, Brazil
| | - Alexandre José Macedo
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Emilene Mendes Becker
- Departamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Amanda Pasinato Napp
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Rafael Schneider
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Jade Reisdörfer Silveira
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Porto Alegre, Brazil
| | - Carlos Arthur Ferreira
- LAPOL/PPGE3M - Laboratório de Materiais Poliméricos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marilene H Vainstein
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Augusto Schrank
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| |
Collapse
|
27
|
das Mercês Pereira Ferreira A, de Matos JM, Silva LK, Viana JLM, Dos Santos Diniz Freitas M, de Amarante Júnior OP, Franco TCRDS, Brito NM. Assessing the spatiotemporal occurrence and ecological risk of antifouling biocides in a Brazilian estuary. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3572-3581. [PMID: 38085476 DOI: 10.1007/s11356-023-31286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024]
Abstract
Diuron and Irgarol are common antifouling biocides used in paints to prevent the attachment and growth of fouling organisms on ship hulls and other submerged structures. Concerns about their toxicity to non-target aquatic organisms have led to various restrictions on their use in antifouling paints worldwide. Previous studies have shown the widespread presence of these substances in port areas along the Brazilian coast, with a concentration primarily in the southern part of the country. In this study, we conducted six sampling campaigns over the course of 1 year to assess the presence and associated risks of Diuron and Irgarol in water collected from areas under the influence of the Maranhão Port Complex in the Brazilian Northeast. Our results revealed the absence of Irgarol in the study area, irrespective of the sampling season and site. In contrast, the mean concentrations of Diuron varied between 2.0 ng L-1 and 34.1 ng L-1 and were detected at least once at each sampling site. We conducted a risk assessment of Diuron levels in this area using the risk quotient (RQ) method. Our findings indicated that Diuron levels at all sampling sites during at least one campaign yielded an RQ greater than 1, with a maximum of 22.7, classifying the risk as "high" based on the proposed risk classification. This study underscores the continued concern regarding the presence of antifouling biocides in significant ports and marinas in Brazilian ports, despite international bans.
Collapse
Affiliation(s)
- Adriana das Mercês Pereira Ferreira
- Department of Chemistry, Campus São Luís - Monte Castelo, Federal Institute of Education, Science and Technology of Maranhão (IFMA), São Luís, MA, 65030-005, Brazil
| | - Jhuliana Monteiro de Matos
- Department of Chemistry, Campus São Luís - Monte Castelo, Federal Institute of Education, Science and Technology of Maranhão (IFMA), São Luís, MA, 65030-005, Brazil.
| | - Lanna Karinny Silva
- Department of Chemistry, Campus São Luís - Monte Castelo, Federal Institute of Education, Science and Technology of Maranhão (IFMA), São Luís, MA, 65030-005, Brazil
| | - José Lucas Martins Viana
- Universidade Estadual de Campinas, Instituto de Química, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - Marta Dos Santos Diniz Freitas
- Postgraduate Program in Technological and Environmental Chemistry, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Ozelito Possidônio de Amarante Júnior
- Department of Chemistry, Campus São Luís - Monte Castelo, Federal Institute of Education, Science and Technology of Maranhão (IFMA), São Luís, MA, 65030-005, Brazil
- Institute of Oceanography, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | | | - Natilene Mesquita Brito
- Department of Chemistry, Campus São Luís - Monte Castelo, Federal Institute of Education, Science and Technology of Maranhão (IFMA), São Luís, MA, 65030-005, Brazil
| |
Collapse
|
28
|
Karyani TZ, Ghattavi S, Homaei A. Application of enzymes for targeted removal of biofilm and fouling from fouling-release surfaces in marine environments: A review. Int J Biol Macromol 2023; 253:127269. [PMID: 37804893 DOI: 10.1016/j.ijbiomac.2023.127269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Biofouling causes adverse issues in underwater structures including ship hulls, aquaculture cages, fishnets, petroleum pipelines, sensors, and other equipment. Marine constructions and vessels frequently are using coatings with antifouling properties. During the previous ten years, several alternative strategies have been used to combat the biofilm and biofouling that have developed on different abiotic or biotic surfaces. Enzymes have frequently been suggested as a cost-effective, substitute, eco-friendly, for conventional antifouling and antibiofilm substances. The destruction of sticky biopolymers, biofilm matrix disorder, bacterial signal interference, and the creation of biocide or inhibitors are among the catalytic reactions of enzymes that really can successfully prevent the formation of biofilms. In this review we presented enzymes that have antifouling and antibiofilm properties in the marine environment like α-amylase, protease, lysozymes, glycoside hydrolase, aminopeptidases, oxidase, haloperoxidase and lipases. We also overviewed the function, benefits and challenges of enzymes in removing biofouling. The reports suggest enzymes are good candidates for marine environment. According to the findings of a review of studies in this field, none of the enzymes were able to inhibit the development of biofilm by a site marine microbial community when used alone and we suggest using other enzymes or a mixture of enzymes for antifouling and antibiofilm purposes in the sea environment.
Collapse
Affiliation(s)
- Tayebeh Zarei Karyani
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
29
|
Oh HN, Kim WK. Copper pyrithione and zinc pyrithione induce cytotoxicity and neurotoxicity in neuronal/astrocytic co-cultured cells via oxidative stress. Sci Rep 2023; 13:23060. [PMID: 38155222 PMCID: PMC10754844 DOI: 10.1038/s41598-023-49740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023] Open
Abstract
Previous studies on copper pyrithione (CPT) and zinc pyrithione (ZPT) as antifouling agents have mainly focused on marine organisms. Even though CPT and ZPT pose a risk of human exposure, their neurotoxic effects remain to be elucidated. Therefore, in this study, the cytotoxicity and neurotoxicity of CPT and ZPT were evaluated after the exposure of human SH-SY5Y/astrocytic co-cultured cells to them. The results showed that, in a co-culture model, CPT and ZPT induced cytotoxicity in a dose-dependent manner (~ 400 nM). Exposure to CPT and ZPT suppressed all parameters in the neurite outgrowth assays, including neurite length. In particular, exposure led to neurotoxicity at concentrations with low or no cytotoxicity (~ 200 nM). It also downregulated the expression of genes involved in neurodevelopment and maturation and upregulated astrocyte markers. Moreover, CPT and ZPT induced mitochondrial dysfunction and promoted the generation of reactive oxygen species. Notably, N-acetylcysteine treatment showed neuroprotective effects against CPT- and ZPT-mediated toxicity. We concluded that oxidative stress was the major mechanism underlying CPT- and ZPT-induced toxicity in the co-cultured cells.
Collapse
Affiliation(s)
- Ha-Na Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Woo-Keun Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
- Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
30
|
Gao JM, You J, Wu JC, Guo JS, Fu PT, Zhang LX. Factors affecting the accumulation of organotins by wild fish: A case study in the Three Gorges Reservoir, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124407-124415. [PMID: 37966645 DOI: 10.1007/s11356-023-31037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023]
Abstract
Organotin compounds (OTs) accumulate in fish easily, however, research on their influencing factors is still limited. This study collected 25 species of fish with different diets, habitats, and age from the Three Gorges Reservoir (TGR), the largest deep-water river channel-type reservoir in China, and analyzed the accumulation characteristics of OTs in these fish. The results showed that tributyltin (TBT) and triphenyltin (TPhT) were the dominant OTs in fish from the TGR. The correlation between OTs concentration and age, body length, and body weight varied with fish species. The concentrations of TBT and TPhT in carnivorous fish (mean, 25.78 and 11.69 ng Sn/g dw, respectively) were higher than those in other diet fish (P<0.01), but there was no significant difference in fish at different habitat water layers (P>0.05). In addition, the degradation rates of TBT and TPhT in different fish species were all below 50%. In summary, the accumulation of TBT and TPhT in fish is mainly influenced by diet, and both TBT and TPhT were difficult to degrade in fish. These results reveal the pollution characteristics of OTs in fish from the TGR, and can improve our understanding of the factors influencing TBT and TPhT accumulation in freshwater fish.
Collapse
Affiliation(s)
- Jun-Min Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Jia You
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jing-Cheng Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Ping-Ting Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Li-Xia Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
31
|
Vanavermaete D, Hostens K, Everaert G, Parmentier K, Janssen C, De Witte B. Assessing the risk of booster biocides for the marine environment: A case study at the Belgian part of the North Sea. MARINE POLLUTION BULLETIN 2023; 197:115774. [PMID: 37979528 DOI: 10.1016/j.marpolbul.2023.115774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
The biofouling of submerged surfaces such as ship hulls is often prevented by using anti-fouling components in combination with booster biocides. These booster biocides enter the water column and may affect non-target organisms. Although different negative effects have been associated with the use of booster biocides, their effects on non-target organisms are often unknown. So far, the environmental risks for booster biocides have barely been quantified in the North Sea. In this work, the concentration of five commonly used booster biocides as well as tributyltin has been monitored at five dredged spoil disposal sites in the Belgian part of the North Sea and the harbour and ports of Nieuwpoort, Oostende, and Zeebrugge. Hotspots were discovered where the concentration of one or more booster biocides exceeded the predicted no-effect concentration. Tributyltin has been banned since 2008, but concentrations of 237- to 546-fold of the predicted no-effect concentration were detected in the harbours and ports. Moreover, TBT has been detected in the same order of magnitude in other sea basins, emphasizing the need to monitor the trends and impact of booster biocides and TBT in environmental monitoring programs.
Collapse
Affiliation(s)
- David Vanavermaete
- Flanders Research Institute for Agriculture, Fisheries and Food, Animal Sciences Unit, Aquatic Environment, and Quality, Ostend, Belgium.
| | - Kris Hostens
- Flanders Research Institute for Agriculture, Fisheries and Food, Animal Sciences Unit, Aquatic Environment, and Quality, Ostend, Belgium
| | - Gert Everaert
- Flanders Marine Institute, The Ocean and Human Health, Ostend, Belgium
| | - Koen Parmentier
- Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment, Brussels, Belgium
| | - Colin Janssen
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent, Belgium
| | - Bavo De Witte
- Flanders Research Institute for Agriculture, Fisheries and Food, Animal Sciences Unit, Aquatic Environment, and Quality, Ostend, Belgium
| |
Collapse
|
32
|
Morgan RN, Ali AA, Alshahrani MY, Aboshanab KM. New Insights on Biological Activities, Chemical Compositions, and Classifications of Marine Actinomycetes Antifouling Agents. Microorganisms 2023; 11:2444. [PMID: 37894102 PMCID: PMC10609280 DOI: 10.3390/microorganisms11102444] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Biofouling is the assemblage of undesirable biological materials and macro-organisms (barnacles, mussels, etc.) on submerged surfaces, which has unfavorable impacts on the economy and maritime environments. Recently, research efforts have focused on isolating natural, eco-friendly antifouling agents to counteract the toxicities of synthetic antifouling agents. Marine actinomycetes produce a multitude of active metabolites, some of which acquire antifouling properties. These antifouling compounds have chemical structures that fall under the terpenoids, polyketides, furanones, and alkaloids chemical groups. These compounds demonstrate eminent antimicrobial vigor associated with antiquorum sensing and antibiofilm potentialities against both Gram-positive and -negative bacteria. They have also constrained larval settlements and the acetylcholinesterase enzyme, suggesting a strong anti-macrofouling activity. Despite their promising in vitro and in vivo biological activities, scaled-up production of natural antifouling agents retrieved from marine actinomycetes remains inapplicable and challenging. This might be attributed to their relatively low yield, the unreliability of in vitro tests, and the need for optimization before scaled-up manufacturing. This review will focus on some of the most recent marine actinomycete-derived antifouling agents, featuring their biological activities and chemical varieties after providing a quick overview of the disadvantages of fouling and commercially available synthetic antifouling agents. It will also offer different prospects of optimizations and analysis to scale up their industrial manufacturing for potential usage as antifouling coatings and antimicrobial and therapeutic agents.
Collapse
Affiliation(s)
- Radwa N. Morgan
- National Centre for Radiation Research and Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Ahmed El-Zomor St, Cairo 11787, Egypt;
| | - Amer Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 9088, Saudi Arabia;
| | - Khaled M. Aboshanab
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo 11566, Egypt
| |
Collapse
|
33
|
Luo HW, Jiang JM, Wang X, Li M, Ding JJ, Hong WJ, Guo LH. Contaminant occurrence, water quality criteria and tiered ecological risk assessment in water: A case study of antifouling biocides in the Qiantang River and its estuary, Eastern China. MARINE POLLUTION BULLETIN 2023; 194:115311. [PMID: 37480803 DOI: 10.1016/j.marpolbul.2023.115311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Antifouling biocides may cause adverse effects on non-target species. This study aims to determine the distribution, sources, and ecological risks of antifouling biocides in the surface waters of the Qiantang River and its estuary in eastern China. The concentrations of total antifouling biocides were ranged from 12.9 to 215 ng/L for all water samples. Atrazine, diuron and tributyltin were the major compounds in the water bodies of the study area. The acute and chronic toxicity criteria for tributyltin, diuron and atrazine were derived for freshwater and saltwater, respectively, based on the species sensitivity distribution approach. The freshwater and saltwater criteria were slightly different, and the toxicity to aquatic organisms could be summarized as tributyltin > diuron > atrazine. The graded ecological risk rating showed that the long-term risk of TBT was significant in coastal waters. The pollution of TBT in the Qiantang River deserves further attention.
Collapse
Affiliation(s)
- Hai-Wei Luo
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Jian-Ming Jiang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Xun Wang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Jin-Jian Ding
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Wen-Jun Hong
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
34
|
Natali V, Malfatti F, Cibic T. Ecological Effect of Differently Treated Wooden Materials on Microalgal Biofilm Formation in the Grado Lagoon (Northern Adriatic Sea). Microorganisms 2023; 11:2196. [PMID: 37764040 PMCID: PMC10537043 DOI: 10.3390/microorganisms11092196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Within the framework of the Interreg Italy-Slovenia programme, the project DuraSoft aimed at testing innovative technologies to improve the durability of traditional wooden structures in socio-ecologically sensitive environments. We focused on the impact of different wood treatments (i.e., copper-based coatings and thermal modification) on microbial biofilm formation in the Grado Lagoon. Wooden samples were placed in 2 areas with diverse hydrodynamic conditions and retrieved after 6, 20, and 40 days. Light, confocal and scanning electron microscopy were employed to assess the treatment effects on the microalgal community abundance and composition. Lower hydrodynamics accelerated the colonisation, leading to higher algal biofilm abundances, regardless of the treatment. The Cu-based agents induced modifications to the microalgal community, leading to lower densities, small-sized diatoms and frequent deformities (e.g., bent apices, frustule malformation) in the genera Cylindrotheca and Cocconeis. After 20 days, taxa forming 3D mucilaginous structures, such as Licmophora and Synedra, were present on chemically treated panels compared to natural ones. While in the short term, the treatments were effective as antifouling agents, in the long term, neither the copper-based coatings nor the thermal modification successfully slowed down the biofouling colonisation, likely due to the stimulating effect of nutrients and other substances released from these solutions. The need to develop more ecosystem friendly technologies to preserve wooden structures remains urgent.
Collapse
Affiliation(s)
- Vanessa Natali
- Oceanography Section, National Institute of Oceanography and Applied Geophysics-OGS, 34151 Trieste, Italy;
| | - Francesca Malfatti
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Tamara Cibic
- Oceanography Section, National Institute of Oceanography and Applied Geophysics-OGS, 34151 Trieste, Italy;
| |
Collapse
|
35
|
Davis RA, Cervin G, Beattie KD, Rali T, Fauchon M, Hellio C, Bodin Åkerlund L, Pavia H, Svenson J. Evaluation of natural resveratrol multimers as marine antifoulants. BIOFOULING 2023; 39:775-784. [PMID: 37822262 DOI: 10.1080/08927014.2023.2263374] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
In the current study we investigate the antifouling potential of three polyphenolic resveratrol multimers (-)-hopeaphenol, vaticanol B and vatalbinoside A, isolated from two species of Anisoptera found in the Papua New Guinean rainforest. The compounds were evaluated against the growth and settlement of eight marine microfoulers and against the settlement and metamorphosis of Amphibalanus improvisus barnacle cyprids. The two isomeric compounds (-)-hopeaphenol and vaticanol B displayed a high inhibitory potential against the cyprid larvae metamorphosis at 2.8 and 1.1 μM. (-)-Hopeaphenol was also shown to be a strong inhibitor of both microalgal and bacterial adhesion at submicromolar concentrations with low toxicity. Resveratrol displayed a lower antifouling activity compared to the multimers and had higher off target toxicity against MCR-5 fibroblasts. This study illustrates the potential of natural products as a valuable source for the discovery of novel antifouling leads with low toxicity.
Collapse
Affiliation(s)
- Rohan A Davis
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| | - Gunnar Cervin
- Department of Marine Sciences - Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Karren D Beattie
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| | - Topul Rali
- School of Natural and Physical Sciences, The University of Papua New Guinea, Port Moresby, Papua New Guinea
| | - Marilyne Fauchon
- Laboratoire des Sciences de l'Environnement MARin (LEMAR), CNRS, IRD, IFREMER, University of Brest, Brest, France
| | - Claire Hellio
- Laboratoire des Sciences de l'Environnement MARin (LEMAR), CNRS, IRD, IFREMER, University of Brest, Brest, France
| | - Lovisa Bodin Åkerlund
- Department of Biological Function, RISE Research Institutes of Sweden, Borås, Sweden
| | - Henrik Pavia
- Department of Marine Sciences - Tjärnö, University of Gothenburg, Strömstad, Sweden
| | | |
Collapse
|
36
|
Pan LC, Hsieh SY, Chen WC, Lin FT, Lu CH, Cheng YL, Chien HW, Yang H. Self-Assembly of Shark Scale-Patterned Tunable Superhydrophobic/Antifouling Structures with Visual Color Response. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37436935 DOI: 10.1021/acsami.3c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The stacked riblet-like shark scales, also known as dermal denticles, allow them to control the boundary layer flow over the skin and to reduce interactions with any biomaterial attached, which guide the design of antifouling coatings. Interestingly, shark scales are with a wide variation in geometry both across species and body locations, thereby displaying diversified antifouling capabilities. Inspired by the multifarious denticles, a stretchable shark scale-patterned silica hollow sphere colloidal crystal/polyperfluoroether acrylate-polyurethane acrylate composite film is engineered through a scalable self-assembly approach. Upon stretching, the patterned photonic crystals feature different short-term antibacterial and long-term anti-biofilm performances with a distinguished color response under varied elongation ratios. To gain a better understanding, the dependence of elongation ratio on antiwetting behaviors, antifouling performances, and structural color changes has also been investigated in this research.
Collapse
Affiliation(s)
- Liang-Cheng Pan
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| | - Shang-Yu Hsieh
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| | - Wei-Cheng Chen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 82444, Taiwan
| | - Fang-Tzu Lin
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| | - Chieh-Hsuan Lu
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| | - Ya-Lien Cheng
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| | - Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 82444, Taiwan
| | - Hongta Yang
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| |
Collapse
|
37
|
Zhao J, Chen J, Zheng X, Lin Q, Zheng G, Xu Y, Lin F. Urushiol-Based Benzoxazine Containing Sulfobetaine Groups for Sustainable Marine Antifouling Applications. Polymers (Basel) 2023; 15:polym15102383. [PMID: 37242960 DOI: 10.3390/polym15102383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Benzoxazine resins are new thermosetting resins with excellent thermal stability, mechanical properties, and a flexible molecular design, demonstrating promise for applications in marine antifouling coatings. However, designing a multifunctional green benzoxazine resin-derived antifouling coating that combines resistance to biological protein adhesion, a high antibacterial rate, and low algal adhesion is still challenging. In this study, a high-performance coating with a low environmental impact was synthesized using urushiol-based benzoxazine containing tertiary amines as the precursor, and a sulfobetaine moiety into the benzoxazine group was introduced. This sulfobetaine-functionalized urushiol-based polybenzoxazine coating (poly(U-ea/sb)) was capable of clearly killing marine biofouling bacteria adhered to the coating surface and significantly resisting protein attachment. poly(U-ea/sb) exhibited an antibacterial rate of 99.99% against common Gram negative bacteria (e.g., Escherichia coli and Vibrio alginolyticus) and Gram positive bacteria (e.g., Staphylococcus aureus and Bacillus sp.), with >99% its algal inhibition activity, and it effectively prevented microbial adherence. Here, a dual-function crosslinkable zwitterionic polymer, which used an "offensive-defensive" tactic to improve the antifouling characteristics of the coating was presented. This simple, economic, and feasible strategy provides new ideas for the development of green marine antifouling coating materials with excellent performance.
Collapse
Affiliation(s)
- Jing Zhao
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, China
- Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Jipeng Chen
- Fujian Engineering Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou 350108, China
| | - Xiaoxiao Zheng
- Fujian Engineering Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou 350108, China
| | - Qi Lin
- Fujian Engineering Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou 350108, China
| | - Guocai Zheng
- Fujian Engineering Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou 350108, China
| | - Yanlian Xu
- Fujian Engineering Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou 350108, China
| | - Fengcai Lin
- Fujian Engineering Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
38
|
Liu D, Shu H, Zhou J, Bai X, Cao P. Research Progress on New Environmentally Friendly Antifouling Coatings in Marine Settings: A Review. Biomimetics (Basel) 2023; 8:biomimetics8020200. [PMID: 37218786 DOI: 10.3390/biomimetics8020200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Any equipment submerged in the ocean will have its surface attacked by fouling organisms, which can cause serious damage. Traditional antifouling coatings contain heavy metal ions, which also have a detrimental effect on the marine ecological environment and cannot fulfill the needs of practical applications. As the awareness of environmental protection is increasing, new environmentally friendly and broad-spectrum antifouling coatings have become the current research hotspot in the field of marine antifouling. This review briefly outlines the formation process of biofouling and the fouling mechanism. Then, it describes the research progress of new environmentally friendly antifouling coatings in recent years, including fouling release antifouling coatings, photocatalytic antifouling coatings and natural antifouling agents derived from biomimetic strategies, micro/nanostructured antifouling materials and hydrogel antifouling coatings. Highlights include the mechanism of action of antimicrobial peptides and the means of preparation of modified surfaces. This category of antifouling materials has broad-spectrum antimicrobial activity and environmental friendliness and is expected to be a new type of marine antifouling coating with desirable antifouling functions. Finally, the future research directions of antifouling coatings are prospected, which are intended to provide a reference for the development of efficient, broad-spectrum and green marine antifouling coatings.
Collapse
Affiliation(s)
- De Liu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Haobo Shu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jiangwei Zhou
- School of International Education, Wuhan University of Technology, Wuhan 430070, China
| | - Xiuqin Bai
- State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan 430063, China
| | - Pan Cao
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
39
|
Park Y, Park JG, Kang HM, Jung JH, Kim M, Lee KW. Toxic effects of the wastewater produced by underwater hull cleaning equipment on the copepod Tigriopus japonicus. MARINE POLLUTION BULLETIN 2023; 191:114991. [PMID: 37146552 DOI: 10.1016/j.marpolbul.2023.114991] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
Unmanaged disposal of wastewater produced by underwater hull cleaning equipment (WHCE) is suspected to induce toxic effects to marine organisms because wastewater contains several anti-fouling compounds. To investigate the effects of WHCE on marine copepod, we examined the toxicity on life parameters (e.g. mortality, development, and fecundity) and gene expression changes of Tigriopus japonicus as model organism. Significant mortality and developmental time changes were observed in response to wastewater. No significant differences in fecundity were observed. Transcriptional profiling with differentially expressed genes from WHCE exposed T. japonicus showed WHCE may induce genotoxicity associated genes and pathways. In addition, potentially neurotoxic effects were evident following exposure to WHCE. The findings suggest that wastewater released during hull cleaning should be managed to reduce physiological and molecular deleterious effects in marine organisms.
Collapse
Affiliation(s)
- Yeun Park
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jae Gon Park
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hye-Min Kang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jee-Hyun Jung
- Risk Assessment Research Center, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Moonkoo Kim
- Risk Assessment Research Center, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Kyun-Woo Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
40
|
Vilas-Boas C, Silva ER, Resende D, Pereira B, Sousa G, Pinto M, Almeida JR, Correia-da-Silva M, Sousa E. 3,4-Dioxygenated xanthones as antifouling additives for marine coatings: in silico studies, seawater solubility, degradability, leaching, and antifouling performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68987-68997. [PMID: 37131003 DOI: 10.1007/s11356-023-26899-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
Marine biofouling pollution is a process that impacts ecosystems and the global economy. On the other hand, traditional antifouling (AF) marine coatings release persistent and toxic biocides that accumulate in sediments and aquatic organisms. To understand the putative impact on marine ecosystems of recently described and patented AF xanthones (xanthones 1 and 2), able to inhibit mussel settlement without acting as biocides, several in silico environmental fate predictions (bioaccumulation, biodegradation, and soil absorption) were calculated in this work. Subsequently, a degradation assay using treated seawater at different temperatures and light exposures was conducted for a period of 2 months to calculate their half-life (DT50). Xanthone 2 was found to be non-persistent (DT50 < 60 days) at 50 μM, contrary to xanthone 1 (DT50 > 60 days). To evaluate the efficacy of both xanthones as AF agents, they were blended into four polymeric-based coating systems: polyurethane- and polydimethylsiloxane (PDMS)-based marine paints, as well as room-temperature-vulcanizing PDMS- and acrylic-based coatings. Despite their low water solubility, xanthones 1 and 2 demonstrated suitable leaching behaviors after 45 days. Overall, the generated xanthone-based coatings were able to decrease the attachment of the Mytilus galloprovincialis larvae after 40 h. This proof-of-concept and environmental impact evaluation will contribute to the search for truly environmental-friendly AF alternatives.
Collapse
Affiliation(s)
- Cátia Vilas-Boas
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - Elisabete R Silva
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal
- CERENA - Center for Natural Resources and Environment, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Diana Resende
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - Beatriz Pereira
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal
| | - Gonçalo Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - Joana R Almeida
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, Portugal.
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, Portugal
| |
Collapse
|
41
|
Malouch D, Berchel M, Dreanno C, Stachowski-Haberkorn S, Chalopin M, Godfrin Y, Jaffrès PA. Evaluation of lipophosphoramidates-based amphiphilic compounds on the formation of biofilms of marine bacteria. BIOFOULING 2023; 39:591-605. [PMID: 37584265 DOI: 10.1080/08927014.2023.2241377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
The bacteriostatic and/or bactericidal properties of few phosphoramide-based amphiphilic compounds on human pathogenic bacteria were previously reported. In this study, the potential of two cationic (BSV36 and KLN47) and two zwitterionic (3 and 4) amphiphiles as inhibitors of marine bacterial growth and biofilm formation were investigated. Results showed that the four compounds have little impact on the growth of a panel of 18 selected marine bacteria at a concentration of 200 µM, and up to 700 µM for some bacterial strains. Interestingly, cationic lipid BSV36 and zwitterionic lipids 3 and 4 effectively disrupt biofilm formation of Paracoccus sp. 4M6 and Vibrio sp. D02 at 200 µM and to a lesser extent of seven other bacterial strains tested. Moreover, ecotoxicological assays on four species of microalgae highlighted that compounds 3 and 4 have little impact on microalgae growth with EC50 values of 51 µM for the more sensitive species and up to 200 µM for most of the others. Amphiphilic compounds, especially zwitterionic amphiphiles 3 and 4 seem to be promising candidates against biofilm formation by marine bacteria.
Collapse
Affiliation(s)
- Dorsaf Malouch
- Univ Brest, CNRS, CEMCA UMR 6521, Brest, France
- Ifremer, Laboratoire Détection Capteurs et Mesures, Centre de Bretagne, Plouzané, France
| | | | - Catherine Dreanno
- Ifremer, Laboratoire Détection Capteurs et Mesures, Centre de Bretagne, Plouzané, France
| | | | - Morgane Chalopin
- Ifremer, Laboratoire Détection Capteurs et Mesures, Centre de Bretagne, Plouzané, France
| | | | | |
Collapse
|
42
|
Perina FC, Abessa DMDS, Pinho GLL, Castro ÍB, Fillmann G. Toxicity of antifouling biocides on planktonic and benthic neotropical species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61888-61903. [PMID: 36934191 DOI: 10.1007/s11356-023-26368-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/06/2023] [Indexed: 05/10/2023]
Abstract
Organotin-based (OTs: TBT and TPT) antifouling paints have been banned worldwide, but recent inputs have been detected in tropical coastal areas. However, there is a lack of studies evaluating the toxicity of both legacy and their substitute antifouling booster biocides (e.g., Irgarol and diuron) on neotropical species. Therefore, the acute toxicity of four antifouling biocides (TBT, TPT, Irgarol, and diuron) was investigated using the marine planktonic organisms Acartia tonsa and Mysidopsis juniae, the estuarine tanaid Monokalliapseudes schubarti (water exposure), and the burrowing amphipod Tiburonella viscana (spiked sediment exposure). Results confirmed the high toxicity of the OTs, especially to planktonic species, being about two orders of magnitude higher than Irgarol and diuron. Toxic effects of antifouling compounds were observed at levels currently found in tropical coastal zones, representing a threat to planktonic and benthic invertebrates. Furthermore, deterministic PNECmarine sediment values suggest that environmental hazards in tropical regions may be higher due to the higher sensitivity of tropical organisms. Since regulations on antifouling biocides are still restricted to a few countries, more ecotoxicological studies are needed to derivate environmental quality standards based on realistic scenarios. The present study brings essential contributions regarding the ecological risks of these substances in tropical and subtropical zones.
Collapse
Affiliation(s)
- Fernando Cesar Perina
- Programa de Pós-Graduação em Oceanologia, Instituto de Oceanografia - IO. Universidade Federal Do Rio Grande - FURG, Rio Grande, RS, 96203-900, Brazil.
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, 3810-193, Portugal.
| | - Denis Moledo de Souza Abessa
- Instituto de Biociências. Campus do Litoral Paulista, Universidade Estadual Paulista - UNESP, São Vicente, SP, 11330-900, Brazil
| | - Grasiela Lopes Leães Pinho
- Programa de Pós-Graduação em Oceanologia, Instituto de Oceanografia - IO. Universidade Federal Do Rio Grande - FURG, Rio Grande, RS, 96203-900, Brazil
- Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália S/N, Campus Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Ítalo Braga Castro
- Programa de Pós-Graduação em Oceanologia, Instituto de Oceanografia - IO. Universidade Federal Do Rio Grande - FURG, Rio Grande, RS, 96203-900, Brazil
- Instituto do Mar, Universidade Federal de São Paulo - UNIFESP, Santos, SP, 11070-100, Brazil
| | - Gilberto Fillmann
- Programa de Pós-Graduação em Oceanologia, Instituto de Oceanografia - IO. Universidade Federal Do Rio Grande - FURG, Rio Grande, RS, 96203-900, Brazil.
- Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália S/N, Campus Carreiros, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
43
|
Weber F, Esmaeili N. Marine biofouling and the role of biocidal coatings in balancing environmental impacts. BIOFOULING 2023; 39:661-681. [PMID: 37587856 DOI: 10.1080/08927014.2023.2246906] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Marine biofouling is a global problem affecting various industries, particularly the shipping industry due to long-distance voyages across various ecosystems. Therein fouled hulls cause increased fuel consumption, greenhouse gas emissions, and the spread of invasive aquatic species. To counteract these issues, biofouling management plans are employed using manual cleaning protocols and protective coatings. This review provides a comprehensive overview of adhesion strategies of marine organisms, and currently available mitigation methods. Further, recent developments and open challenges of antifouling (AF) and fouling release (FR) coatings are discussed with regards to the future regulatory environment. Finally, an overview of the environmental and economic impact of fouling is provided to point out why and when the use of biocidal solutions is beneficial in the overall perspective.
Collapse
Affiliation(s)
- Florian Weber
- Department of Materials and Nanotechnology, SINTEF, Oslo, Norway
| | | |
Collapse
|
44
|
Presentato A, La Greca E, Consentino L, Alduina R, Liotta LF, Gruttadauria M. Antifouling Systems Based on a Polyhedral Oligomeric Silsesquioxane-Based Hexyl Imidazolium Salt Adsorbed on Copper Nanoparticles Supported on Titania. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13071291. [PMID: 37049384 PMCID: PMC10096683 DOI: 10.3390/nano13071291] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 06/12/2023]
Abstract
The reaction of octakis(3-chloropropyl)octasilsesquioxane with four equivalents of 1-hexylimidazole or 1-decylimidazole gave two products labelled as HQ-POSS (hexyl-imidazolium quaternized POSS) and DQ-POSS (decyl-imidazolium quaternized POSS) as regioisomer mixtures. An investigation of the biological activity of these two compounds revealed the higher antimicrobial performances of HQ-POSS against Gram-positive and Gram-negative microorganisms, proving its broad-spectrum activity. Due to its very viscous nature, HQ-POSS was adsorbed in variable amounts on the surface of biologically active oxides to gain advantages regarding the expendability of such formulations from an applicative perspective. Titania and 5 wt% Cu on titania were used as supports. The materials 10HQ-POSS/Ti and 15HQ-POSS/5CuTi strongly inhibited the ability of Pseudomonas PS27 cells-a bacterial strain described for its ability to handle very toxic organic solvents and perfluorinated compounds-to grow as planktonic cells. Moreover, the best formulations (i.e., 10HQ-POSS/Ti and 15HQ-POSS/5CuTi) could prevent Pseudomonas PS27 biofilm formation at a certain concentration (250 μg mL-1) which greatly impaired bacterial planktonic growth. Specifically, 15HQ-POSS/5CuTi completely impaired cell adhesion, thus successfully prejudicing biofilm formation and proving its suitability as a potential antifouling agent. Considering that most studies deal with quaternary ammonium salts (QASs) with long alkyl chains (>10 carbon atoms), the results reported here on hexylimidazolium-based POSS further deepen the knowledge of QAS formulations which can be used as antifouling compounds.
Collapse
Affiliation(s)
- Alessandro Presentato
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Viale Delle Scienze, Edificio 17, I-90128 Palermo, Italy; (A.P.); (L.C.); (R.A.)
| | - Eleonora La Greca
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, Via Ugo La Malfa 153, I-90146 Palermo, Italy;
| | - Luca Consentino
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Viale Delle Scienze, Edificio 17, I-90128 Palermo, Italy; (A.P.); (L.C.); (R.A.)
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, Via Ugo La Malfa 153, I-90146 Palermo, Italy;
| | - Rosa Alduina
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Viale Delle Scienze, Edificio 17, I-90128 Palermo, Italy; (A.P.); (L.C.); (R.A.)
| | - Leonarda Francesca Liotta
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, Via Ugo La Malfa 153, I-90146 Palermo, Italy;
| | - Michelangelo Gruttadauria
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Viale Delle Scienze, Edificio 17, I-90128 Palermo, Italy; (A.P.); (L.C.); (R.A.)
| |
Collapse
|
45
|
Lu T, Chen Z. Monitoring the Molecular Structure of Fibrinogen during the Adsorption Process at the Buried Silicone Oil Interface In Situ in Real Time. J Phys Chem Lett 2023; 14:3139-3145. [PMID: 36961304 DOI: 10.1021/acs.jpclett.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Interfacial proteins play important roles in many research fields and applications, such as biosensors, biomedical implants, nonfouling coatings, etc. Directly probing interfacial protein behavior at buried solid/liquid and liquid/liquid interfaces is challenging. We used sum frequency generation vibrational spectroscopy and a Hamiltonian data analysis method to monitor the molecular structure of fibrinogen on silicone oil during the adsorption process in situ in real time. The results showed that the adsorbed fibrinogen molecules tend to adopt a bent structure throughout the entire adsorption process with the same orientation. This is different from the case of adsorbed fibrinogen on CaF2 with a linear structure or on polystyrene with a bent structure but a different orientation. The method introduced herein is generally applicable for following time-dependent molecular structures of many other proteins and peptides at interfaces in situ in real time at the molecular level.
Collapse
Affiliation(s)
- Tieyi Lu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
46
|
Xiong H, He X, Lou T, Bai X. Synthesis and characterization of new CNT-loaded CeO2 nanoparticles for antibacterial applications. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
47
|
Li Z, Liu P, Chen S, Liu X, Yu Y, Li T, Wan Y, Tang N, Liu Y, Gu Y. Bioinspired marine antifouling coatings: Antifouling mechanisms, design strategies and application feasibility studies. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
48
|
Sánchez-Lozano I, Muñoz-Cruz LC, Hellio C, Band-Schmidt CJ, Cruz-Narváez Y, Becerra-Martínez E, Hernández-Guerrero CJ. Metabolomic Insights of Biosurfactant Activity from Bacillus niabensis against Planktonic Cells and Biofilm of Pseudomonas stutzeri Involved in Marine Biofouling. Int J Mol Sci 2023; 24:ijms24044249. [PMID: 36835662 PMCID: PMC9965525 DOI: 10.3390/ijms24044249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
In marine environments, biofilm can cause negative impacts, including the biofouling process. In the search for new non-toxic formulations that inhibit biofilm, biosurfactants (BS) produced by the genus Bacillus have demonstrated considerable potential. To elucidate the changes that BS from B. niabensis promote in growth inhibition and biofilm formation, this research performed a nuclear magnetic resonance (NMR) metabolomic profile analysis to compare the metabolic differences between planktonic cells and biofilms of Pseudomonas stutzeri, a pioneer fouling bacteria. The multivariate analysis showed a clear separation between groups with a higher concentration of metabolites in the biofilm than in planktonic cells of P. stutzeri. When planktonic and biofilm stages were treated with BS, some differences were found among them. In planktonic cells, the addition of BS had a minor effect on growth inhibition, but at a metabolic level, NADP+, trehalose, acetone, glucose, and betaine were up-regulated in response to osmotic stress. When the biofilm was treated with the BS, a clear inhibition was observed and metabolites such as glucose, acetic acid, histidine, lactic acid, phenylalanine, uracil, and NADP+ were also up-regulated, while trehalose and histamine were down-regulated in response to the antibacterial effect of the BS.
Collapse
Affiliation(s)
- Ilse Sánchez-Lozano
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz 23096, Mexico
| | - Luz Clarita Muñoz-Cruz
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz 23096, Mexico
| | - Claire Hellio
- CNRS, IRD, Ifremer, LEMAR, Univ. Brest, Institut Universitaire Européen de la Mer, F-29280 Plouzané, France
| | - Christine J. Band-Schmidt
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz 23096, Mexico
| | - Yair Cruz-Narváez
- Laboratorio de Posgrado de Operaciones Unitarias, Instituto Politécnico Nacional-ESIQIE-UPALM, Unidad Profesional Adolfo López Mateos, Edificio 7, 1.er Piso, Sección A, Av. Luis Enrique Erro S/N, Zacatenco, Delegación Gustavo A. Madero, Mexico City 07738, Mexico
| | - Elvia Becerra-Martínez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Luis Enrique Erro S/N, Zacatenco, Delegación Gustavo A. Madero, Mexico City 07738, Mexico
- Correspondence: (E.B.-M.); (C.J.H.-G.)
| | - Claudia J. Hernández-Guerrero
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz 23096, Mexico
- Correspondence: (E.B.-M.); (C.J.H.-G.)
| |
Collapse
|
49
|
Dash MK, Rahman MS. Molecular and biochemical responses to tributyltin (TBT) exposure in the American oyster: Triggers of stress-induced oxidative DNA damage and prooxidant-antioxidant imbalance in tissues by TBT. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109523. [PMID: 36427667 DOI: 10.1016/j.cbpc.2022.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Environmental pollution increases due to anthropogenic activities. Toxic chemicals in the environment affect the health of aquatic organisms. Tributyltin (TBT) is a toxic chemical widely used as an antifouling paint on boats, hulls, and ships. The toxic effect of TBT is well documented in aquatic organisms; however, little is known about the effects of TBT on DNA lesions in shellfish. The American oyster (Crassostrea virginica, an edible and commercially important species) is an ideal marine mollusk to examine the effects of TBT exposure on DNA lesions and oxidative/nitrative stress. In this study, we investigated the effects of TBT on 8'-hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of pro-mutagenic DNA lesion), double-stranded DNA (dsDNA), dinitrophenyl protein (DNP, a biomarker on reactive oxygen species, ROS), 3-nitrotyrosine protein (NTP, a biomarker of reactive nitrogen species, RNS), catalase (CAT, an antioxidant), and acetylcholinesterase (AChE, a cholinergic enzyme) expressions in the gills and digestive glands of oysters. We also analyzed extrapallial (EF) fluid conditions. Immunohistochemical and qRT-PCR results showed that TBT exposure significantly increased 8-OHdG, dsDNA, DNP, NTP, and CAT mRNA and/or protein expressions in the gills and digestive glands. However, AChE mRNA and protein expressions, and EP fluid pH and protein concentrations were decreased in TBT-exposed oysters. Taken together, these results suggest that antifouling biocide-induced production of ROS/RNS results in DNA damage, which may lead to decreased cellular functions in oysters. To the best of our knowledge, the present study provides the first molecular/biochemical evidence that TBT exposure results in oxidative/nitrative stress and DNA lesions in oysters.
Collapse
Affiliation(s)
- Mohan Kumar Dash
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA; Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA.
| |
Collapse
|
50
|
Agostini VO, Martinez ST, Muxagata E, Macedo AJ, Pinho GLL. Antifouling activity of isonitrosoacetanilides against microfouling and macrofouling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26435-26444. [PMID: 36367651 DOI: 10.1007/s11356-022-24016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Biofouling is responsible for structural and economic damage to man-made surfaces. Antifouling paints with biocides have been applied to structures to avoid organism adhesion; however, they have high toxicity and are not able to prevent all biofouling processes, necessitating the periodic mechanical removal of organisms and paint reapplication. Thus, there is an urgent demand for novel, effective, and environmentally friendly antifouling alternatives. As isonitrosoacetanilide is the precursor for many compounds with antibacterial activity, we believe that it could have antifouling activity against microfouling and, consequently, against macrofouling. The aim of this work was to investigate the antifouling potential of six isonitrosoacetanilide compounds and their toxicity. The compounds were employed at different concentrations (0.625-1.25-2.5-5-10 µg mL-1) in this study. The biofilm and planktonic bacteria inhibition and biofilm eradication potential were evaluated by crystal violet assay, while Amphibalus amphitrite barnacle settlement was evaluated by cyprid settlement assay. Toxicity evaluation (LC50 and EC50) was performed with A. amphitrite nauplii II and cyprid larvae. At least one of the tested concentrations of 4-Br-INA, 4-CH3-INA, and 2-Br-INA compounds showed nontoxic antifouling activity against microfouling (antibiofilm) and macrofouling (antisettlement). However, only 4-CH3-INA and 2-Br-INA also showed biofilm eradication potential. These compounds with antibiofilm activity and nontoxic effects could be combined with acrylic base paint resin or added directly into commercial paints in place of toxicant biocides to cover artificial structures as friendly antifouling agents.
Collapse
Affiliation(s)
- Vanessa Ochi Agostini
- Regenera Moléculas do Mar, Centro de Biotecnologia da Universidade Federal do Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, RS, 91501-970, Brazil.
| | - Sabrina Teixeira Martinez
- Centro Interdisciplinar em Energia e Ambiente-CIEnAm, Universidade Federal da Bahia, Salvador, BA, 40170-115, Brazil
- Centro Universitário SENAI-CIMATEC, Salvador, BA, 41650-010, Brazil
| | - Erik Muxagata
- Laboratório de Zooplâncton, Instituto de Oceanografia da Universidade Federal do Rio Grande (FURG), Av. Itália, Km 8, Caixa Postal, 474, Rio Grande, RS, 96203-900, Brazil
| | - Alexandre José Macedo
- Laboratório de Biofilmes e Diversidade Microbiana, Centro de Biotecnologia da, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, RS, 91501-900, Brazil
| | - Grasiela Lopes Leães Pinho
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática, Instituto de Oceanografia da Universidade Federal do Rio Grande (FURG), Caixa Postal, 474, CEP, Rio Grande, RS, 96203-900, Brazil
| |
Collapse
|