1
|
Rong W, Chen Y, Lu J, Huang S, Xin L, Guan D, Li X. Effects of Chromium Exposure on the Gene Expression of the Midgut in Silkworms, Bombyx mori. Genes (Basel) 2023; 14:1616. [PMID: 37628667 PMCID: PMC10454352 DOI: 10.3390/genes14081616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Chromium is a severe heavy metal pollutant with significant environmental risks. The effects of Chromium on the digestion of Bombyx mori (silkworms) are of particular importance due to their ecological and economic significance. Herein, RNA sequencing was conducted on nine midgut samples from silkworms exposed to control, 12 g/kg and 24 g/kg Chromium chemical diets. Comparative transcriptomics revealed that under moderate Chromium exposure, there was a significant increase in up-regulated genes (1268 up-regulated to 857 down-regulated), indicating a stimulation response. At higher stress levels, a weakened survival response was observed, with a decrease in up-regulated genes and an increase in down-regulated genes (374 up-regulated to 399 down-regulated). A notable shift in cellular responses under medium chromium exposure was exposed, signifying the activation of crucial metabolic and transport systems and an elevation in cellular stress and toxicity mechanisms. The observation of up-regulated gene expression within xenobiotic metabolism pathways suggests a heightened defense against Chromium-induced oxidative stress, which was primarily through the involvement of antioxidant enzymes. Conversely, high-dose Chromium exposure down-regulates the folate biosynthesis pathway, indicating biological toxicity. Two novel genes responsive to pressure were identified, which could facilitate future stress adaptation understanding. The findings provide insights into the molecular mechanisms underlying silkworms' digestion response to Chromium exposure and could inform its biological toxicity.
Collapse
Affiliation(s)
- Wantao Rong
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (W.R.)
| | - Yazhen Chen
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China; (Y.C.)
| | - Jieyou Lu
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (W.R.)
| | - Shuiwang Huang
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China; (Y.C.)
| | - Lei Xin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (W.R.)
| | - Delong Guan
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (W.R.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China; (Y.C.)
| | - Xiaodong Li
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (W.R.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China; (Y.C.)
| |
Collapse
|
2
|
Zheng C, Shaposhnikov S, Collins A, Brunborg G, Oancea F, Van Schooten FJ, Godschalk R. Comparison of comet-based approaches to assess base excision repair. Arch Toxicol 2023; 97:2273-2281. [PMID: 37349528 PMCID: PMC10322757 DOI: 10.1007/s00204-023-03543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
DNA repair plays an essential role in maintaining genomic stability, and can be assessed by various comet assay-based approaches, including the cellular repair assay and the in vitro repair assay. In the cellular repair assay, cells are challenged with a DNA-damaging compound and DNA damage removal over time is assessed. In the in vitro repair assay, an early step in the repair process is assessed as the ability of a cellular extract to recognize and incise damaged DNA in substrate nucleoids from cells treated with a DNA-damaging compound. Our direct comparison of both assays in eight cell lines and human peripheral blood lymphocytes indicated no significant relationship between these DNA repair assays (R2 = 0.084, P = 0.52). The DNA incision activity of test cells measured with the in vitro repair assay correlated with the background level of DNA damage in the untreated test cells (R2 = 0.621, P = 0.012). When extracts were prepared from cells exposed to DNA-damaging agents (10 mM KBrO3 or 1 µM Ro 19-8022 plus light), the incision activity was significantly increased, which is in line with the notion that base excision repair is inducible. The data presented suggest that the two assays do not measure the same endpoint of DNA repair and should be considered as complementary.
Collapse
Affiliation(s)
- Congying Zheng
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200, Maastricht, Netherlands
- Norgenotech AS, 64/66, 0379, Ullernchassern, Oslo, Norway
- Oslo Cancer Cluster, 64/66, 0379, Ullernchausseen, Oslo, Norway
| | - Sergey Shaposhnikov
- Norgenotech AS, 64/66, 0379, Ullernchassern, Oslo, Norway
- Oslo Cancer Cluster, 64/66, 0379, Ullernchausseen, Oslo, Norway
| | - Andrew Collins
- Norgenotech AS, 64/66, 0379, Ullernchassern, Oslo, Norway
| | | | - Florin Oancea
- National Institute for Research & Development in Chemistry and Petrochemistry, Splaiul Independenței 202, București, Romania
| | - Frederik-Jan Van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200, Maastricht, Netherlands
| | - Roger Godschalk
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200, Maastricht, Netherlands.
| |
Collapse
|
3
|
Vidal LM, Pimentel E, Cruces MP, Sánchez-Meza JC. Evaluating the effect of low dose rate of gamma rays in germ cells of Drosophila melanogaster. Int J Radiat Biol 2020; 96:1068-1075. [PMID: 32338555 DOI: 10.1080/09553002.2020.1761566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: Evaluation of genetic risk in germ cells is still matter of research, mainly due to their role in the transmission of genetic information from one generation to another. Although numerous experiments have been carried out in Drosophila in order to study the effect of radiation on germ cells, the role of dose rate (DR) has not been fully explored. The purpose of this study was to evaluate the action of DR on the radioprotection induction on male germ cell of D. melanogaster.Material and method: The productivity and the sex-linked recessive lethal (SLRL) tests were used to evaluate the radio-sensitivity of different states of the germ line of males. Two-day-old males of Canton-S wild type strain were pretreated with 0.2 Gy at 5.4 or 34.3 Gy/h of gamma rays from a 60Co source, three hours later, they were irradiated with 20 Gy at 907.7 Gy/h. Thereafter, each single male was crossed with 3 five-day old Basc virgin females, that were replaced every other day by new females. This procedure was conducted three times, to test the whole germ cell stages.Results: Females crossed with males irradiated with 0.2 Gy at both DR tested, laid a higher number of eggs than control, but egg-viability was reduced. On the other hand, in the group of 0.2 Gy + 20 Gy -combined treatments- the total number of eggs laid decreased only when 0.2 Gy were delivered at 34.3 Gy/h however, the egg-viability increased. The dose of 0.2 Gy at both DR did not modify the baseline frequency of SLRL. A tendency to decrease in the frequency of lethals in brood III was found in combined treatments at both DR.Conclusion: The fact that 0.2 Gy at 5.4 or 34.3 Gy/h induced an increase in the egg-viability and a tendency to decrease the genetic damage in pre-meiotic cells provoked by 20 Gy, might indicate the induction of any mechanism that could be interpreted as radioprotection in male germ cells of D. melanogaster. Results emphasize the need to carry out more studies on the effect of the DR on the induction of genetic damage in germ cells.
Collapse
Affiliation(s)
- Luz Ma Vidal
- Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, México
| | - Emilio Pimentel
- Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, México
| | - Martha P Cruces
- Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, México
| | - Juan C Sánchez-Meza
- Facultad de Química, Universidad Autónoma del Estado de México, Toluca, México
| |
Collapse
|
4
|
Jiménez E, Pimentel E, Cruces MP, Amaya-Chavez A. Relationship between viability and genotoxic effect of gamma rays delivered at different dose rates in somatic cells of Drosophila melanogaster. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:741-751. [PMID: 31354077 DOI: 10.1080/15287394.2019.1646681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The role of dose rate (DR) on biological effects of ionizing radiation is an area of significant research focus and relevant to environmental exposures. The present investigation was aimed to examine the direct relationship between viability and genotoxicity in Drosophila melanogaster, induced by gamma rays in a range of doses from 2 to 35 Gy administered at three different DR. Results indicated that larval-adult viability was reduced in relation to dose but not DR. No marked differences were found in the LD50 produced by differing DR tested. Frequencies of somatic mutation and recombination increased in direct correlation with dose and DR. Data demonstrate the importance of determination of the relationship between viability and genotoxicity induced by DR in in vivo systems for toxicological and radioprotection studies.
Collapse
Affiliation(s)
- Elizabeth Jiménez
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares , Ocoyoacac , México
| | - Emilio Pimentel
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares , Ocoyoacac , México
| | - Martha P Cruces
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares , Ocoyoacac , México
| | | |
Collapse
|