1
|
Soman S, Christiansen A, Florinski R, Bharat G, Steindal EH, Nizzetto L, Chakraborty P. An updated status of currently used pesticides in India: Human dietary exposure from an Indian food basket. ENVIRONMENTAL RESEARCH 2024; 242:117543. [PMID: 38008203 DOI: 10.1016/j.envres.2023.117543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/28/2023]
Abstract
Currently used pesticides (CUPs) were introduced to have lower persistence and bioaccumulation, and lesser bioavailability towards non-target species. Nevertheless, CUPs still represent a concern for both human health and the environment. India is an important agricultural country experiencing a conversion from the use of obsolete organochlorine pesticides to a newer generation of phytosanitary products. As for other developing countries, very little is known about the transfer of CUPs to the human diet in India, where systematic monitoring is not in place. In this study, we analyzed ninety four CUPs and detected thirty CUPs in several food products belonging to five types: cereals and pulses, vegetables, fruits, animal-based foods, and water. Samples were taken from markets in Delhi (aggregating food produced all over India) and in the periurban area of Dehradun (northern India) (representing food produced locally and through more traditional practices). Overall, chlorpyrifos and chlorpropham were the most detected CUPs with a detection frequency of 33% and 25%, respectively. Except for vegetables and fruits, the levels of CUPs in all other food types were significantly higher in samples from Delhi (p < 0.05). Exposure dosage of CUPs through different food matrices was calculated, and chlorpropham detected in potatoes had the maximum exposure dosage to humans (2.46 × 10-6 mg/kg/day). Risk analysis based on the hazard quotient technique indicated that chlorpyrifos in rice (2.76 × 10-2) can be a concern.
Collapse
Affiliation(s)
- Sidhi Soman
- Department of Chemistry, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India; Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability and Climate Change, Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India
| | | | - Roman Florinski
- Norwegian Institute of Bioeconomy Research, 1431, Ås, Norway
| | | | - Eirik Hovland Steindal
- Norwegian Institute for Water Research, Økernveien 94, 0579, Oslo, Norway; Norwegian University of Life Sciences (NMBU), Universitetstunet 3, 1432, Ås, Norway
| | - Luca Nizzetto
- Norwegian Institute for Water Research, Økernveien 94, 0579, Oslo, Norway; Research Centre for Toxic Compounds in the Environment, Masaryk University, 62500, Brno, Czech Republic
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability and Climate Change, Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India; The Faculty of Biology and Environmental Protection, The University of Lodz, Poland.
| |
Collapse
|
2
|
Pan J, Liu P, Yu X, Zhang Z, Liu J. The adverse role of endocrine disrupting chemicals in the reproductive system. Front Endocrinol (Lausanne) 2024; 14:1324993. [PMID: 38303976 PMCID: PMC10832042 DOI: 10.3389/fendo.2023.1324993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Reproductive system diseases pose prominent threats to human physical and mental well-being. Besides being influenced by genetic material regulation and changes in lifestyle, the occurrence of these diseases is closely connected to exposure to harmful substances in the environment. Endocrine disrupting chemicals (EDCs), characterized by hormone-like effects, have a wide range of influences on the reproductive system. EDCs are ubiquitous in the natural environment and are present in a wide range of industrial and everyday products. Currently, thousands of chemicals have been reported to exhibit endocrine effects, and this number is likely to increase as the testing for potential EDCs has not been consistently required, and obtaining data has been limited, partly due to the long latency of many diseases. The ability to avoid exposure to EDCs, especially those of artificially synthesized origin, is increasingly challenging. While EDCs can be divided into persistent and non-persistent depending on their degree of degradation, due to the recent uptick in research studies in this area, we have chosen to focus on the research pertaining to the detrimental effects on reproductive health of exposure to several EDCs that are widely encountered in daily life over the past six years, specifically bisphenol A (BPA), phthalates (PAEs), polychlorinated biphenyls (PCBs), parabens, pesticides, heavy metals, and so on. By focusing on the impact of EDCs on the hypothalamic-pituitary-gonadal (HPG) axis, which leads to the occurrence and development of reproductive system diseases, this review aims to provide new insights into the molecular mechanisms of EDCs' damage to human health and to encourage further in-depth research to clarify the potentially harmful effects of EDC exposure through various other mechanisms. Ultimately, it offers a scientific basis to enhance EDCs risk management, an endeavor of significant scientific and societal importance for safeguarding reproductive health.
Collapse
Affiliation(s)
- Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Pengfei Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Xiao Yu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jinxing Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| |
Collapse
|
3
|
González-Alvarez ME, Roach CM, Keating AF. Scrambled eggs-Negative impacts of heat stress and chemical exposures on ovarian function in swine. Mol Reprod Dev 2023; 90:503-516. [PMID: 36652419 DOI: 10.1002/mrd.23669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023]
Abstract
Exposure to environmental toxicants and hyperthermia can hamper reproduction in female mammals including swine. Phenotypic manifestations include poor quality oocytes, endocrine disruption, infertility, lengthened time to conceive, pregnancy loss, and embryonic defects. The ovary has the capacity for toxicant biotransformation, regulated in part by the phosphatidylinositol-3 kinase signaling pathway. The impacts of exposure to mycotoxins and pesticides on swine reproduction and the potential for an emerging chemical class of concern, the per- and polyfluoroalkylated substances, to hamper porcine reproduction are reviewed. The negative impairments of heat stress (HS) on swine reproductive outcomes are also described and the cumulative effect of environmental exposures, such as HS, when present in conjunction with a toxicant is considered.
Collapse
Affiliation(s)
- M Estefanía González-Alvarez
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa, USA
| | - Crystal M Roach
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa, USA
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
4
|
Song W, Qiu YT, Li XZ, Sun QY, Chen LN. 4-vinylcyclohexene diepoxide induces apoptosis by excessive reactive oxygen species and DNA damage in human ovarian granulosa cells. Toxicol In Vitro 2023; 91:105613. [PMID: 37182589 DOI: 10.1016/j.tiv.2023.105613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/27/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
4-Vinylcyclohexene diepoxide (VCD) is a hazardous industrial material which is widely used in the production of fragrances, rubber tires, antioxidants, pesticides, flame retardants and plasticizers. Previous studies have shown that exposure to VCD damages the female reproductive system, but the effects and mechanisms of VCD exposure on human granulosa cells are not reported. In this study, we used a human granulosa cell line (SVOG) to explore the effects of VCD exposure and found that VCD exposure had toxic effects on SVOG cells in vitro. VCD exposure led to excessive accumulation of intracellular ROS, caused DNA damage in cells, altered the expression of some key genes related with apoptosis and oxidative stress, and ultimately inhibited the proliferative capacity of granulosa cells, resulting in increased apoptosis. Overall, our findings provide solid evidence showing that VCD exposure produces severe damage to human granulosa cells, which is helpful for understanding the reproductive toxicity of VCD and etiology of infertility.
Collapse
Affiliation(s)
- Wei Song
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China; Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Yu-Ting Qiu
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-Zhen Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China; Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Lei-Ning Chen
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| |
Collapse
|
5
|
Cui J, Wei Y, Jiang J, Xiao S, Liu X, Zhou Z, Liu D, Wang P. Bioaccumulation, metabolism and toxicological effects of chiral insecticide malathion and its metabolites in zebrafish (Danio rerio). CHEMOSPHERE 2023; 318:137898. [PMID: 36702415 DOI: 10.1016/j.chemosphere.2023.137898] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
The bioaccumulation, metabolism, tissue-specific distribution and toxicity of the widely used organophosphorous pesticide malathion to zebrafish were investigated on an enantiomeric level for evaluating the environmental risks. The metabolites were also monitored and evaluated. Malathion was metabolized by zebrafish very fast with the half-life of 0.12 d and showed a middle accumulation capacity in zebrafish with bioaccumulation factor (BCF) of 12.9 after a 15-d exposure. Brain could enrich higher concentration of malathion than other tissues. The metabolites malaoxon, malathion/malaoxon monocarboxylic acid (DMA), malathion/malaoxon dicarboxylic acid (DCA), dimethylthiophosphate (DMTP) and dimethyldithiophosphate (DMDTP) were found, in which DMTP and DCA were in higher level, indicating the metabolism was mainly induced by carboxylesterase degradation. The accumulation of malathion and malaoxon was stereoselective in zebrafish tissues, exhibiting S-enantiomer preferentially enriched. The acute toxicity test showed rac-malathion was low toxic to zebrafish, which was 1.2 and 1.6 folds more toxic than S-malathion and R-malathion respectively. Malaoxon was highly toxic to zebrafish and approximately 32 times more toxic than malathion. The toxicity of other metabolites was lower than malathion. Malathion could cause an apparent developmental toxicity to zebrafish embryo, including bradycardia, hatchability reduction and deformity, and abnormal movement patterns in zebrafish larva. Chronic toxicity indicated that malathion and malaoxon induced oxidative damage and neurotoxicity in the liver, brain and gill of zebrafish, and malaoxon exhibited a relatively high injury to the zebrafish brain. The results can provide information for the comprehensive assessment of the potential risk of malathion to aquatic organisms and highlight the necessity of consideration of stereoselectivity and metabolites when systemically evaluating pesticides.
Collapse
Affiliation(s)
- Jingna Cui
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Yimu Wei
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Jiangong Jiang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Shouchun Xiao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Xueke Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China.
| |
Collapse
|
6
|
Kaboli Kafshgiri S, Farkhondeh T, Miri-Moghaddam E. Glyphosate effects on the female reproductive systems: a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:487-500. [PMID: 34265884 DOI: 10.1515/reveh-2021-0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate-based herbicides (GBHs) are organophosphate pesticides, which interrupt the chemicals involved in the endocrine system and cause lifelong disorders in women's reproductive system. The current study was designed to systematically evaluate the association between GBH exposure and the female reproductive tract. According to PRISMA Guidelines, the systematic review was performed, searching online databases, including Google Scholar, Web of Science, PubMed, and Scopus, throughout April 2020. Studies with Rodent, lamb, and fish or exposed to GBH to affect the female reproductive system were selected. All studies were in the English language. Two investigators independently assessed the articles. The first author's name, publication date, animal model, age, sample size, gender, dose, duration, and route of exposure and outcomes were extracted from each publication. The present review summarizes 14 publications on uterus alterations and oocytes, histological changes ovary, and assessed mRNA expression, protein expression, serum levels progesterone, and estrogen and intracellular Reaction Oxygen Species (ROS) in rodents, fish, and lamb exposed to GHB exposure. Most of the studies reported histological changes in ovarian and uterus tissue, alterations in serum levels, and increased oxidative stress level following exposure to GBH. Additionally, due to alterations in the reproductive systems (e.g., histomorphological changes, reduction of the mature follicles, higher atretic follicles, and interstitial fibrosis), it seems the GBH-induced female these alterations are both dose- and time-dependent. The present findings support an association between GBH exposure and female reproductive system diseases. However, more studies are needed to identify the mechanisms disrupting the effects of GBH and their underlying mechanisms. Considering the current literature, it is recommended that further investigations be focused on the possible effects of various pesticides on the human reproductive system.
Collapse
Affiliation(s)
- Sakineh Kaboli Kafshgiri
- Molecular Medicine Department, Postdoc Position in Developmental Biology, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Science, Birjand, Iran
| | - Ebrahim Miri-Moghaddam
- Cardiovascular Disease Research Center, Razi Hospital, Faculty of Medicine, Binorjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
7
|
Bhardwaj JK, Paliwal A, Saraf P, Sachdeva SN. Role of autophagy in follicular development and maintenance of primordial follicular pool in the ovary. J Cell Physiol 2021; 237:1157-1170. [PMID: 34668576 DOI: 10.1002/jcp.30613] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022]
Abstract
The reproductive life span of the organism mainly depends on follicular development that maintains the primordial follicle pool in the cohort of follicles within the ovary. The total count of primordial follicles decreases with age due to ovulation and follicular atresia. Follicular atresia, a process of ovarian follicles degradation, mainly occurs via apoptosis, but recent studies also favor autophagy existence. Autophagy is a cellular and energy homeostatic response that helps to maintain the number of healthy primordial follicles, germ cell survival, and removal of corpus luteum remnants. But the excessive autophagic cell death changes both the quality and quantity of oocytes that ultimately affect female reproductive health. Autophagy regulation occurs by various autophagy-regulated genes like BECN1 and LC3-II (autophagy marker genes). Their abnormal regulation or mutation highly influences follicular development by alteration of primordial follicles formation, the decline in oocytes count, and germ cell loss. Various classical signaling pathways such as PI3K/AKT/mTOR, MAPK/ERK1/2, AMPK, and IRE1 are involved in granulosa and oocytes autophagy, while mTOR signaling is the primary mechanism. Along with basal level autophagy, chemical/hormone/stress-mediated autophagy also affects follicular development and female reproduction. In this review, we have primarily focused on granulosa cell and oocytes' autophagy, mechanism, and the role of autophagy determining marker genes in follicular development.
Collapse
Affiliation(s)
- Jitender K Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Aakansha Paliwal
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Priyanka Saraf
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Som N Sachdeva
- Department of Civil Engineering, National Institute of Technology and Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
8
|
Resveratrol ameliorates malathion-induced estrus cycle disorder through attenuating the ovarian tissue oxidative stress, autophagy and apoptosis. Reprod Toxicol 2021; 104:8-15. [PMID: 34182086 DOI: 10.1016/j.reprotox.2021.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022]
Abstract
Malathion is a high-efficiency organic phosphorus broad-spectrum insecticide which is commonly used in agricultural production, sanitation and epidemic prevention. Although the toxic effects of malathion on animal reproduction have been partially evaluated, its function, regulatory mechanism and antidote in estrus cycle and reproductive damage remain generally unclear. Here, the results showed that malathion disrupted the normal estrus cycle in mice, reduced the secretion of ovarian hormones, increased the amount of reactive oxygen species (ROS), and promoted autophagy and apoptosis in the ovary. Interestingly, we found that an antioxidant resveratrol could inhibit the disorders of estrus cycle and steroid hormone synthesis, reduced the abnormality of ROS accumulation, autophagy and apoptosis in malathion-exposed ovarian tissue. Furthermore, compared with those of the control group, malathion induced autophagy and apoptosis in the granular cells, whereas resveratrol attenuated these effects of malathion. Therefore, disadvantages of malathion exposure on estrus cycle disorder could partly reverse by resveratrol supplement. Overall, resveratrol may be a potential drug to prevent malathion-induced ovarian damages and estrus cycle disorder. Our findings provide new insights into ovarian response to malathion and resveratrol exposure.
Collapse
|
9
|
Yang C, Lim W, Song G. Mechanisms of deleterious effects of some pesticide exposure on pigs. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104850. [PMID: 33993968 DOI: 10.1016/j.pestbp.2021.104850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/29/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
The increase in the size of the global population increases the food and energy demand, making the use of pesticides in agricultural and livestock industries unavoidable. Exposure to pesticides can be toxic to the non-target species, such as humans, wildlife, and livestock, in addition to the target organisms. Various chemicals are used in the livestock industry to control harmful organisms, such as insects, weeds, and parasites. Pigs are one of the most important food sources for humans. In addition, pigs can be used as promising models for assessing the risk of absorption of environmental pollutants through the skin and oral exposure since they are physiologically similar to humans. Exposure to numerous environmental pollutants, such as mycotoxins, persistent organic pollutants, and heavy metals, has been reported to adversely affect growth, fertility, and endocrine homeostasis in pigs. Various pesticides have been observed in porcine tissues, blood, urine, and processed foods; however, there is a lack of comprehensive understanding of their effects on porcine health. This review provides a comprehensive description of the characteristics of pesticides that pigs can be exposed to and how their exposure affects porcine reproductive function, intestinal health, and endocrine homeostasis in vivo and in vitro.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
10
|
Liao Y, Zheng H, Wu L, He L, Wang Y, Ou Y, Yang H, Peng S, Chen F, Wang X, Zhao J. Cadmium cytotoxicity and possible mechanisms in human trophoblast HTR-8/SVneo cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:1111-1124. [PMID: 33559965 DOI: 10.1002/tox.23110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
The accumulation of cadmium (Cd) in the human body through food chain can lead to adverse pregnancy outcomes. In this study, Cd cytotoxicity and its mechanisms in HTR-8/SVneo cells were investigated. Cd disrupted the cellular submicrostructure and inhibited the cell viability in a time- and dose-dependent manner. The levels of reactive oxygen species, malondialdehyde content, and the activities of glutathione peroxidase (GSH-Px) and total superoxode dismutase (T-SOD) were concentration-dependently increased by Cd. In addition, Cd dose-dependently inducedcell apoptosis and decreased cell migration and invasion capacities. Finally, Cd significantly upregulated all the genes related to oxidative stress (SOD1, ROS1, and HSPA6), inflammatory response, cell cycle, apoptosis, and migration and invasion. This study will provide insights into the prevention and treatment of pregnancy-related diseases caused by Cd intoxication.
Collapse
Affiliation(s)
- Ying Liao
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Hong Zheng
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Langbo Wu
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Lei He
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yu Wang
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yangsong Ou
- Department of Orthopedics and Traumatology of Traditional Chinese Medicine, Sichuan 2nd Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Hongjun Yang
- Department of Rehabilitation Medicine, Sichuan 2nd Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Shiqin Peng
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Fengwang Chen
- Department of Internal Medicine, Wuwei Traditional Chinese Medicine Hospital, Wuwei, China
| | - Xiaoyan Wang
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Jiayuan Zhao
- College of Life Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
11
|
Bharti S, Rasool F. Analysis of the biochemical and histopathological impact of a mild dose of commercial malathion on Channa punctatus (Bloch) fish. Toxicol Rep 2021; 8:443-455. [PMID: 33717997 PMCID: PMC7933801 DOI: 10.1016/j.toxrep.2021.02.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 02/01/2023] Open
Abstract
The intensive application of pesticides without proper disposal management has led their excess residues to reach the neighbouring aquatic ecosystem and its inhabitants mainly fish. In natural water body pesticides get diluted, and therefore to study the silent toxic effect, a low dose of malathion (0.4 mg/L; 1/20th of 96-h LC50 value) for the different duration (1, 4, 8, 12 days) was evaluated through biochemical and histopathological biomarkers of the blood and hepatorenal tissues of Channa punctatus. With the increase in pesticide exposure periods, the biometric indices: Condition Factor (K), HSI and KSI and hepatorenal tissues weight decreased. Among the biochemical alterations in malathion exposed fish, serum glucose levels reduced by 72.23 % while protein amounts increased by 29.03 % in 12 days malathion exposed fish. Other parameters, viz., cholesterol, albumin, and phosphorous, remained the same as control fish after malathion exposure. Though serum bilirubin (total and direct) followed a biphasic response, it reduced by 60 % after 12 days of malathion exposure compared to control. Biochemical changes are reflecting the induction of compensatory energy mechanism to cope up with the malathion stress. The transaminases and ALP biomarker enzymes used for liver functionality test declined in the order of AST > ALP > ALT in a time-dependent manner in malathion exposed fish serum, indicating liver injuries in fish due to malathion. The elevated levels of urea, BUN, creatinine, and Ca2+ in the serum of 12 days of malathion exposed fish revealed renal dysfunction. In the treated fish, antioxidative (SOD and CAT) and LPO activities were significantly higher in the liver followed by the kidney than their controls. Further, histological examination registered progressive damages in the hepatorenal tissues of malathion exposed fish with the increased exposure periods compared to control. Thus, even a small dose of malathion in water could severely deteriorate the structure and function of tissue on its prolonged exposure, and therefore utmost care should be taken to prevent their seepage into the water bodies.
Collapse
Affiliation(s)
- Sandhya Bharti
- Department of Zoology, Fish Physiology and Ecotoxicology Laboratory, Babasaheb Bhimrao Ambedkar University, Lucknow, 226 025, India
| | - Fazle Rasool
- Department of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226 025, India
| |
Collapse
|
12
|
Poomagal S, Sujatha R, Kumar PS, Vo DVN. A fuzzy cognitive map approach to predict the hazardous effects of malathion to environment (air, water and soil). CHEMOSPHERE 2021; 263:127926. [PMID: 32822932 DOI: 10.1016/j.chemosphere.2020.127926] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Malathion is an organophosphorus insecticide and pesticide commonly used in crops and residential applications. The negative effects of Malathion on human health and ecosystems are of great concern. In this work, a mathematical model pivot on Fuzzy Cognitive Map (FCM) is used to analyse the causes and hazardous effects of Malathion to the environmental components (air, water and soil). Based on expert's opinion the possible factors that cause damage to health and ecosystems due to Malathion is identified, which serve as the input to the FCM. The FCM mathematically establishes the causal relation between these factors. The mathematical simulation is done by Python Programming. This approach can be used to study the interdependencies between the adverse effects of any pesticide in human health and environment due to prolonged exposure.
Collapse
Affiliation(s)
- S Poomagal
- Department of Mathematics, Anna University Chennai: University College of Engineering Kanchipuram, Kanchipuram, India.
| | - R Sujatha
- Department of Mathematics, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India; SSN-Centre for Radiation, Environmental Science and Technology (SSN-CREST), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - P Senthil Kumar
- SSN-Centre for Radiation, Environmental Science and Technology (SSN-CREST), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India.
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
13
|
Wang W, Zhao M, Zhao Y, Shen W, Yin S. PDGFRα/β-PI3K-Akt pathway response to the interplay of mitochondrial dysfunction and DNA damage in Aroclor 1254-exposed porcine granulosa cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114534. [PMID: 32289613 DOI: 10.1016/j.envpol.2020.114534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/09/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Metabolic dysfunction and genomic instability are known to affect female fertility. Aroclor 1254 (A1254) is an endocrine disruptor that affects mitochondrial function following ingestion, inhalation, or dermal exposure. Numerous studies to date have addressed associations between A1254 toxicity and chronic neurological disorders, while A1254 exposure is little known to have a toxic effect on the female reproductive system. Furthermore, interactive mechanisms between metabolic dysfunction and the repair of DNA damage deserve further investigation. In this paper, an in vitro porcine primary granulosa cell (GC) culture model was used to investigate the mechanisms of exposure and effects of the exogenous chemical carcinogen A1254 on reproductive toxicology. High-throughput RNA sequencing obtained 2329 differentially expressed genes (DEGs) to be analyzed using COG classification, GO, and KEGG. When combined with immunofluorescence, Western blot analysis, and real-time RT-PCR analysis, this data showed that the mitochondrial-ROS-driven feed-forward loop increased phospho-PDGFRα/β, which stimulates apoptosis by suppressing the PI3K-Akt pathway. We also noticed that inhibition of the Akt-PDP1-PDK1 axis attenuated mitochondrial function. In contrast, following iPath analysis, partial metabolic pathways were enhanced. Importantly, we found that A1254 activated a DNA damage response, the major regulators of which belong to the PI3K-related protein kinases (PIKKs) and oncogenes, which led to the "Warburg effect". It is not easy to restore the damage that A1254 causes to metabolism through dysregulation and the Warburg effect, owing to the fact that oncogenes can regulate cytoplasmic metabolism. Therefore, we suspect that the PDGFR-PI3K-Akt pathway may be a latent interaction between mitochondrial dysfunction and the response of DNA damage.
Collapse
Affiliation(s)
- Wei Wang
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in the Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Minghui Zhao
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in the Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yong Zhao
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in the Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in the Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in the Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
14
|
Sharma RK, Singh P, Setia A, Sharma AK. Insecticides and ovarian functions. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:369-392. [PMID: 31916619 DOI: 10.1002/em.22355] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Insecticides, a heterogeneous group of chemicals, are widely used in agriculture and household practices to avoid insect-inflicted damage. Extensive use of insecticides has contributed substantially to agricultural production and the prevention of deadly diseases by destroying their vectors. On the contrary, many of the insecticides are associated with several adverse health effects like neurological and psychological diseases, metabolic disorders, hormonal imbalance, and even cancer in non-target species, including humans. Reproduction, a very selective process that ensures the continuity of species, is affected to a greater extent by the rampant use of insecticides. In females, exposure to insecticides leads to reproductive incapacitation primarily through disturbances in ovarian physiology. Disturbed ovarian activities encompass the alterations in hormone synthesis, follicular maturation, ovulation process, and ovarian cycle, which eventually lead to decline in fertility, prolonged time-to-conceive, spontaneous abortion, stillbirths, and developmental defects. Insecticide-induced ovarian toxicity is effectuated by endocrine disruption and oxidative stress. Oxidative stress, which occurs due to suppression of antioxidant defense system, and upsurge of reactive oxygen and nitrogen species, potentiates DNA damage and expression of apoptotic and inflammatory markers. Insecticide exposure, in part, is responsible for ovarian malfunctioning through disruption of hypothalamic-pituitary-gonadal axis. The current article is focused on the adverse effects of insecticides on ovarian functioning, and consequently, on the reproductive efficacy of females. The possible strategies to combat insecticide-induced toxicity are also discussed in the latter part of this review. Environ. Mol. Mutagen. 61:369-392, 2020. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rajnesh Kumar Sharma
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| | - Priyanka Singh
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| | - Aarzoo Setia
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| | - Aman Kumar Sharma
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
15
|
He B, Wang X, Yang C, Zhu J, Jin Y, Fu Z. The regulation of autophagy in the pesticide-induced toxicity: Angel or demon? CHEMOSPHERE 2020; 242:125138. [PMID: 31670000 DOI: 10.1016/j.chemosphere.2019.125138] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 05/20/2023]
Abstract
Pesticides have become an essential tool for pest kill, weed control and microbiome inhibition for both agricultural and domestic use. However, with the massive use, pesticides can exist in soil, air and water, and sometimes even accumulate in the human or other mammals through food chains. Lots of researches have proven that pesticides possess toxicity to mammals on endocrine, neural and immune systems. Autophagy, as a conservative intracellular process, which is activated by stress-related signals, plays a pivotal role, either "angle" or "demon", in regulation of cell fate and function. Recent evidences in researches elucidated a strong link between the autophagy and the toxicity of pesticides. In this review, we summarized the previous researches which focus on the autophagy regulation in the pesticides-induced toxicity, and hope that this work can help us to discover a potential strategy for the treatment of the disease caused by pesticides.
Collapse
Affiliation(s)
- Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Chunlei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
16
|
Chen L, Zhang JJ, Zhang X, Liu X, Zhao S, Huo LJ, Zhou J, Miao YL. Melatonin protects against defects induced by malathion during porcine oocyte maturation. J Cell Physiol 2019; 235:2836-2846. [PMID: 31535366 DOI: 10.1002/jcp.29189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/03/2019] [Indexed: 12/25/2022]
Abstract
Malathion (MAL) is a common organophosphorus pesticide and affects both animal and human reproduction. However, the mechanisms regarding how MAL affects the mammalian oocyte quality and how to prevent it have not been fully investigated. In this study, we used porcine oocyte as a model and proved that MAL impaired porcine oocyte quality in a dose-dependent manner during maturation. MAL decreased the first polar body extrusion, disrupted spindle assembly and chromosome alignment, impaired cortical granules (CGs) distribution, and increased reactive oxygen species (ROS) level in oocytes. RNA-seq analysis showed that MAL exposure altered the expression of 2,917 genes in the porcine maturated oocytes and most genes were related to ROS, the lipid droplet process, and the energy supplement. Nevertheless, these defects could be remarkably ameliorated by adding melatonin (MLT) into the oocyte maturation medium. MLT increased oocyte maturation rate and decreased the abnormities of spindle assembly, CGs distribution and ROS accumulation in MAL-exposed porcine oocytes. More important, MLT upregulated the expression of genes related to lipid droplet metabolism (PPARγ and PLIN2), decreased lipid droplet size and lipid peroxidation in MAL-exposed porcine oocytes. Finally, we found that MLT increased the blastocysts formation and the cell numbers of blastocysts in MAL-exposed porcine oocytes after parthenogenetic activation, which was mediated by reduction of ROS levels and maintaining lipid droplet metabolism. Taken together, our results revealed that MLT had a protective action against MAL-induced deterioration of porcine oocyte quality.
Collapse
Affiliation(s)
- Li Chen
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Jing-Jing Zhang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Xia Zhang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,National Demonstration Center for Experimental Veterinary Medicine Education, Huazhong Agricultural University, Wuhan, China
| | - Xiaoli Liu
- National Demonstration Center for Experimental Veterinary Medicine Education, Huazhong Agricultural University, Wuhan, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Jilong Zhou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|