1
|
Jenila JS, Issac PK, Lam SS, Oviya JC, Jones S, Munusamy-Ramanujam G, Chang SW, Ravindran B, Mannacharaju M, Ghotekar S, Khoo KS. Deleterious effect of gestagens from wastewater effluent on fish reproduction in aquatic environment: A review. ENVIRONMENTAL RESEARCH 2023; 236:116810. [PMID: 37532209 DOI: 10.1016/j.envres.2023.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Gestagens are common pollutants accumulated in the aquatic ecosystem. Gestagens are comprised of natural gestagens (i.e. progesterone) and synthetic gestagens (i.e. progestins). The major contributors of gestagens in the environment are paper plant mill effluent, wastewater treatment plants, discharge from pharmaceutical manufacturing, and livestock farming. Gestagens present in the aquatic environment interact with progesterone receptors and other steroid hormone receptors, negatively influencing fish reproduction, development, and behavior. In fish, the gonadotropin induces 17α, 20β-dihydroxy-4-pregnen-3-one (DHP) production, an important steroid hormone involved in gametogenesis. DHP interacts with the membrane progestin receptor (mPR), which regulates sperm motility and oocyte maturation. Gestagens also interfere with the hypothalamic-pituitary-gonadal (HPG) axis, which results in altered hormone levels in fish. Moreover, recent studies showed that even at low concentrations exposure to gestagens can have detrimental effects on fish reproduction, including reduced egg production, masculinization, feminization in males, and altered sex ratio, raising concerns about their impact on the fish population. This review highlights the hormonal regulation of sperm motility, oocyte maturation, the concentration of environmental gestagens in the aquatic environment, and their detrimental effects on fish reproduction. However, the long-term and combined impacts of multiple gestagens, including their interactions with other pollutants on fish populations and ecosystems are not well understood. The lack of standardized regulations and monitoring protocols for gestagens pollution in wastewater effluent hampers effective control and management. Nonetheless, advancements in analytical techniques and biomonitoring methods provide potential solutions by enabling better detection and quantification of gestagens in aquatic ecosystems.
Collapse
Affiliation(s)
- J S Jenila
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - J Christina Oviya
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, India; Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Sumathi Jones
- Department of Pharmacology and Therapeutics, Sree Balaji Dental College and Hospital, BIHER, Chennai, India
| | - Ganesh Munusamy-Ramanujam
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM-IST, Kattankulathur, Tamil Nadu, 603203, India.
| | - Soon Woong Chang
- Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Balasubramani Ravindran
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India; Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Mahesh Mannacharaju
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Suresh Ghotekar
- Department of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce and Science (University of Mumbai), Silvassa, 396 230, Dadra and Nagar Haveli (UT), India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
2
|
Falker-Gieske C, Bennewitz J, Tetens J. The light response in chickens divergently selected for feather pecking behavior reveals mechanistic insights towards psychiatric disorders. Mol Biol Rep 2021; 49:1649-1654. [PMID: 34954808 PMCID: PMC8825407 DOI: 10.1007/s11033-021-07111-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022]
Abstract
Background Feather pecking is a serious behavioral disorder in chickens that has a considerable impact on animal welfare and poses an economic burden for poultry farming. To study the underlying genetics of feather pecking animals were divergently selected for feather pecking over 15 generations based on estimated breeding values for the behavior. Methods and results By characterizing the transcriptomes of whole brains isolated from high and low feather pecking chickens in response to light stimulation we discovered a putative dysregulation of micro RNA processing caused by a lack of Dicer1. This results in a prominent downregulation of the GABRB2 gene and other GABA receptor transcripts, which might cause a constant high level of excitation in the brains of high feather pecking chickens. Moreover, our results point towards an increase in immune system-related transcripts that may be caused by higher interferon concentrations due to Dicer1 downregulation. Conclusion Based on our results, we conclude that feather pecking in chickens and schizophrenia in humans have numerous common features. For instance, a Dicer1 dependent disruption of miRNA biogenesis and the lack of GABRB2 expression have been linked to schizophrenia pathogenesis. Furthermore, disturbed circadian rhythms and dysregulation of genes involved in the immune system are common features of both conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-021-07111-4.
Collapse
Affiliation(s)
- Clemens Falker-Gieske
- Division of Functional Breeding, Department of Animal Sciences, Georg-August-Universität Göttingen, Burckhardtweg 2, 37077, Göttingen, Germany.
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599, Stuttgart, Germany
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany.,Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| |
Collapse
|
3
|
Zheng JL, Peng LB, Xia LP, Li J, Zhu QL. Effects of continuous and intermittent cadmium exposure on HPGL axis, GH/IGF axis and circadian rhythm signaling and their consequences on reproduction in female zebrafish: Biomarkers independent of exposure regimes. CHEMOSPHERE 2021; 282:130879. [PMID: 34087554 DOI: 10.1016/j.chemosphere.2021.130879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Typical biomarkers of cadmium (Cd) pollution have well been confirmed in fish from continuous exposure pattern. However, in a natural environment, fish may be exposed to Cd intermittently. In this study, juvenile female zebrafish were exposed for 48 days to 10 μg/L Cd continuously, 20 μg/L for 1 day in every 2 days or 30 μg/L for 1 day in every 3 days. The toxic effects were evaluated using 8 various physiological and biochemical endpoints like specific growth rate (SGR), 17β-estradiol (E2) and vitellogenin (VTG) concentrations in plasma, reproductive parameters (gonadosomatic index (GSI), egg-laying amount, spawning percentage, and hatching and mortality rate of embryos). Transcription of 59 genes related to hypothalamic-pituitary-gonadal-liver (HPGL) axis, circadian rhythm signaling and insulin-like growth factor (IGF) system was examined. SGR, spawning percentage, E2 and VTG levels declined in fish exposed to 10 and 20 μg/L Cd but remained relatively stable in fish exposed to 30 μg/L Cd. Exposure to 10, 20 and 30 μg/L Cd significantly reduced GSI, hatching rate and mortality rate. Similarly, mRNA expression of 27 genes were sensitive to both continuous and intermittent Cd exposure. Among these genes, expression levels of 10 genes had more than 5-fold increase or decrease, including mRNA levels of vtg1, vtg2, vtg3, esr1, igf2a, igf2b, igfbp5b, nr1d1, gnrh3 and gnrhr4. The most sensitive molecular biomarker was vtg3 expression with 1500-3100 fold increase in the liver. The present study, for the first time, provides effective candidate biomarkers for Cd, which are independent of exposure regimes.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Li-Bin Peng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Li-Ping Xia
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Jiji Li
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Qing-Ling Zhu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| |
Collapse
|
4
|
Poopal RK, He Y, Zhao R, Li B, Ramesh M, Ren Z. Organophosphorus-based chemical additives induced behavioral changes in zebrafish (Danio rerio): Swimming activity is a sensitive stress indicator. Neurotoxicol Teratol 2020; 83:106945. [PMID: 33333156 DOI: 10.1016/j.ntt.2020.106945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022]
Abstract
Organophosphorus flame retardants (OPFRs) have been extensively used as chemical additives in polymer based consumer products. Among them, Isopropylphenyl phosphate (IPPP) and tripropyl phosphate (TPP) are predominant, which have potential to cause neuro-toxic effects on non-target organisms. As behavior (swimming activity) response is the first adjustment due to neurotoxic stress on the fitness of fish. In this study, the quantified swimming activity of zebrafish (Danio rerio) under IPPP and TPP exposure in an online monitoring system was investigated to assess the neurotoxin effects under long-term exposure periods, no swimming anomalies were observed in the control group. Whereas, in the OPFR exposures ((treatment I: 5 μg/L and treatment II: 25 μg/L), a series of anomalies were identified. Hyperactivity was shown in IPPP treatment I group (5 μg/L), whereas zebrafish swimming activity was declined throughout the study period in IPPP treatment II (25 μg/L), and TPP groups (5 μg/L and 25 μg/L) when compared to the control group. Circadian rhythm was not affected in the present study. The results of the present study indicated that the fitness of test individuals was a valid biomarker for eco-toxicity assessment under unescapable conditions. Hypoactivity of zebrafish signified the neurotoxic effects of IPPP and TPP. A concentration based improvement in swimming activity was observed under recovery conditions, which suggested that recovery capacity along with toxicity responses could be a comprehensive non-invasive technique to assess the eco-toxicity of waterborne chemicals.
Collapse
Affiliation(s)
- Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China
| | - Yaqi He
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China
| | - Ruibin Zhao
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China
| | - Bin Li
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China.
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore 641046, TamilNadu, India
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|