1
|
Yu ZW, Zheng M, Fan HY, Liang XH, Tang YL. Ultraviolet (UV) radiation: a double-edged sword in cancer development and therapy. MOLECULAR BIOMEDICINE 2024; 5:49. [PMID: 39417901 PMCID: PMC11486887 DOI: 10.1186/s43556-024-00209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
It has long been widely acknowledged that ultraviolet (UV) light is an environment risk factor that can lead to cancer, particularly skin cancer. However, it is worth noting that UV radiation holds potential for cancer treatment as a relatively high-energy electromagnetic wave. With the help of nanomaterials, the role of UV radiation has caught increasing attention in cancer treatment. In this review, we briefly summarized types of UV-induced cancers, including malignant melanoma, squamous cell carcinoma, basal cell carcinoma, Merkel cell carcinoma. Importantly, we discussed the primary mechanisms underlying UV carcinogenesis, including mutations by DNA damage, immunosuppression, inflammation and epigenetic alterations. Historically limited by its shallow penetration depth, the introduction of nanomaterials has dramatically transformed the utilization of UV light in cancer treatment. The direct effect of UV light itself generally leads to the suppression of cancer cell growth and the initiation of apoptosis and ferroptosis. It can also be utilized to activate photosensitizers for reactive oxygen species (ROS) production, sensitize radiotherapy and achieve controlled drug release. Finally, we comprehensively weigh the significant risks and limitations associated with the therapeutic use of UV radiation. And the contradictory effect of UV exposure in promoting and inhibiting tumor has been discussed. This review provides clues for potential clinical therapy as well as future study directions in the UV radiation field. The precise delivery and control of UV light or nanomaterials and the wavelength as well as dose effects of UV light are needed for a thorough understanding of UV radiation.
Collapse
Affiliation(s)
- Zhen-Wei Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Hua-Yang Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
2
|
Geng R, Guo J, Lao Y, Kang SG, Huang K, Tong T. Chronic UVB exposure induces hepatic injury in mice: Mechanistic insights from integrated multi-omics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124933. [PMID: 39265770 DOI: 10.1016/j.envpol.2024.124933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/28/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Chronic UVB exposure poses a significant threat to both skin and visceral health. In recent years, the adverse role of chronic UVB exposure in liver health has been suggested but not fully elucidated. This study aims to comprehensively investigate the effects of chronic UVB exposure on liver health in male SKH-1 hairless mice and clarify potential mechanisms through multi-omics approaches. The findings suggested that 10-week chronic skin exposure to UVB not only triggers hepatic inflammation and oxidative stress but also, more importantly, results in lipid metabolism abnormalities in the liver. Hepatic transcriptomic analysis revealed significant alterations in various signaling pathways and physiological processes associated with inflammation, oxidative stress, and lipid metabolism. Further lipidomic analysis illustrated significant changes in the metabolism of glycerolipids, sphingolipids, and glycerophospholipids in the liver following chronic UVB exposure. The 16S rRNA sequencing analysis indicated that chronic UVB exposure disrupts the structure and function of the microbiota. In search of potential mechanisms used by the microbiome to regulate the hepatic disease morphology, we filtered mouse fecal supernatants and cultured the supernatants with HepG2 cells. Fecal supernatant from UVB-exposed mice induced increased secretion of the inflammatory cytokine IL-8, accumulation of MDA, reduced SOD activity, and decreased lipid content in normal hepatic cells. In summary, skin chronic exposure to UVB induces multiple liver injuries and gut microbiota dysbiosis in mice and gut microbiota metabolites may be one of the contributing factors to hepatic injury caused by chronic UVB exposure. These discoveries deepen the comprehension of the health risks associated with chronic UVB exposure.
Collapse
Affiliation(s)
- Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Jingya Guo
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Yujie Lao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun, 58554, Republic of Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China.
| |
Collapse
|
3
|
Geng R, Kang SG, Huang K, Tong T. Dietary Isoeugenol Supplementation Attenuates Chronic UVB-Induced Skin Photoaging and Modulates Gut Microbiota in Mice. Nutrients 2024; 16:481. [PMID: 38398805 PMCID: PMC10892115 DOI: 10.3390/nu16040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Photoaging, the primary cause of skin aging damage, results from chronic ultraviolet (UV) exposure, leading to dryness and wrinkle formation. Nutritional intervention has emerged as a practical approach for preventing and addressing the effect of skin photoaging. The primary aromatic compound isolated from clove oil, isoeugenol (IE), has antibacterial, anti-inflammatory, and antioxidant qualities that work to effectively restrict skin cancer cell proliferation. This investigation delved into the advantages of IE in alleviating skin photoaging using UVB-irradiated skin fibroblasts and female SKH-1 hairless mouse models. IE alleviated UVB-induced photodamage in Hs68 dermal fibroblasts by inhibiting matrix metalloproteinase secretion and promoting extracellular matrix synthesis. In photoaged mice, dietary IE reduced wrinkles, relieved skin dryness, inhibited epidermal thickening, and prevented collagen loss. Additionally, the intestinal dysbiosis caused by prolonged UVB exposure was reduced with an IE intervention. The results of Spearman's analysis showed a strong correlation between skin photoaging and gut microbiota. Given the almost unavoidable UVB exposure in contemporary living, this research demonstrated the efficacy of dietary IE in reversing skin photoaging, presenting a promising approach to tackle concerns related to extrinsic skin aging.
Collapse
Affiliation(s)
- Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.G.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun 58554, Republic of Korea;
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.G.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.G.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| |
Collapse
|
4
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
5
|
Lin X, Deng N, Li H, Duan J, Chen W, Liu T, Sun S, Chu J. The skin photoprotective effect of trilinolein: Induction of cellular autophagy via the AMPK-mTOR signaling pathway. Toxicol Appl Pharmacol 2024; 483:116836. [PMID: 38272316 DOI: 10.1016/j.taap.2024.116836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Trilinolein (TL) is an active substance contained in traditional Chinese herbs; modern studies have shown that trilinolein has anti-inflammatory and antioxidant effects on the body. This study delves into the photoprotective effect of trilinolein on UVB-irradiated Human Skin Fibroblast (HSF) cells and the underlying mechanisms. Our findings reveal that trilinolein had a photoprotective effect on HSF cells: trilinolein enhanced cellular autophagy, restored UVB-inhibited cell proliferative viability, and curbing UVB-induced reactive oxygen species (ROS) and apoptosis. Intriguingly, after inhibition of TL-induced autophagy via wortmannin, diminished trilinolein's photoprotective effects. Meanwhile, trilinolein was shown to modulate the AMPK-mTOR signaling pathway, thus enhance cellular autophagy in HSF cells, and this tendency was suppressed after the administration of compound C (AMPK inhibitor). In a mouse model of skin photodamage, trilinolein significantly mitigated photodamage extent through morphological and histopathological analyses. This study illuminates trilinolein could inhibit the photodamaging effects of UVB irradiation by regulating cellular autophagy through the AMPK-mTOR signaling pathway, suggesting its promising application in combating UV-induced skin disorders.
Collapse
Affiliation(s)
- Xianghong Lin
- College of Clinical Medicine, Dali University, Dali 671000, Yunnan, China
| | - Na Deng
- College of Clinical Medicine, Dali University, Dali 671000, Yunnan, China
| | - Huijuan Li
- College of Clinical Medicine, Dali University, Dali 671000, Yunnan, China
| | - Jingxian Duan
- Medical Cosmetology Teaching and Research Section, College of Clinical Medicine, Dali University, Dali 671000, Yunnan, China
| | - Wenqiu Chen
- College of Clinical Medicine, Dali University, Dali 671000, Yunnan, China
| | - Tao Liu
- Department of Skin Medical Beauty, People's Hospital of Pengshui County, Pengshui 409600, Chongqing, China
| | - Sujiao Sun
- Medical Cosmetology Teaching and Research Section, College of Clinical Medicine, Dali University, Dali 671000, Yunnan, China.
| | - Jimin Chu
- Department of Skin Medical Beauty, People's Hospital of Pengshui County, Pengshui 409600, Chongqing, China.
| |
Collapse
|
6
|
Tong T, Geng R, Kang SG, Li X, Huang K. Revitalizing Photoaging Skin through Eugenol in UVB-Exposed Hairless Mice: Mechanistic Insights from Integrated Multi-Omics. Antioxidants (Basel) 2024; 13:168. [PMID: 38397766 PMCID: PMC10886361 DOI: 10.3390/antiox13020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic ultraviolet (UV) exposure causes photoaging, which is primarily responsible for skin damage. Nutritional intervention is a viable strategy for preventing and treating skin photoaging. Eugenol (EU) presents anti-inflammatory and antioxidant properties, promotes wound healing, and provides contact dermatitis relief. This study explored the ability of EU to mitigate skin photoaging caused by UVB exposure in vitro and in vivo. EU alleviated UVB-induced skin photodamage in skin cells, including oxidative stress damage and extracellular matrix (ECM) decline. Dietary EU alleviated skin photoaging by promoting skin barrier repair, facilitating skin tissue regeneration, and modulating the skin microenvironment in photoaged mice. The transcriptome sequencing results revealed that EU changed the skin gene expression profiles. Subsequent pathway enrichment analyses indicated that EU might reverse the pivotal ECM-receptor interaction and cytokine-cytokine receptor interaction signaling pathways. Furthermore, EU alleviated the intestinal dysbiosis induced by chronic UVB exposure. Spearman analysis results further revealed the close connection between gut microbiota and skin photoaging. Considering the near-inevitable UVB exposure in modern living, the findings showed that the EU effectively reverted skin photoaging, offering a potential strategy for addressing extrinsic skin aging.
Collapse
Affiliation(s)
- Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.G.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| | - Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.G.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun 58554, Republic of Korea;
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.G.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| |
Collapse
|
7
|
An L, Kim D, Donahue LR, Mejooli MA, Eom CY, Nishimura N, White AC. Sexual dimorphism in melanocyte stem cell behavior reveals combinational therapeutic strategies for cutaneous repigmentation. Nat Commun 2024; 15:796. [PMID: 38280858 PMCID: PMC10821900 DOI: 10.1038/s41467-024-45034-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
Vitiligo is an autoimmune skin disease caused by cutaneous melanocyte loss. Although phototherapy and T cell suppression therapy have been widely used to induce epidermal re-pigmentation, full pigmentation recovery is rarely achieved due to our poor understanding of the cellular and molecular mechanisms governing this process. Here, we identify unique melanocyte stem cell (McSC) epidermal migration rates between male and female mice, which is due to sexually dimorphic cutaneous inflammatory responses generated by ultra-violet B exposure. Using genetically engineered mouse models, and unbiased bulk and single-cell mRNA sequencing approaches, we determine that manipulating the inflammatory response through cyclooxygenase and its downstream prostaglandin product regulates McSC proliferation and epidermal migration in response to UVB exposure. Furthermore, we demonstrate that a combinational therapy that manipulates both macrophages and T cells (or innate and adaptive immunity) significantly promotes epidermal melanocyte re-population. With these findings, we propose a novel therapeutic strategy for repigmentation in patients with depigmentation conditions such as vitiligo.
Collapse
Affiliation(s)
- Luye An
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Dahihm Kim
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Leanne R Donahue
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14850, USA
| | | | - Chi-Yong Eom
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Nozomi Nishimura
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Andrew C White
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
8
|
Qu Y, Sun X, Wei N, Wang K. Inhibition of cutaneous heat-sensitive Ca 2+ -permeable transient receptor potential vanilloid 3 channels alleviates UVB-induced skin lesions in mice. FASEB J 2023; 37:e23309. [PMID: 37983944 DOI: 10.1096/fj.202301591rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Ultraviolet B (UVB) radiation causes skin injury by trigging excessive calcium influx and signaling cascades in the skin keratinocytes. The heat-sensitive Ca2+ -permeable transient receptor potential vanilloid 3 (TRPV3) channels robustly expressed in the keratinocytes play an important role in skin barrier formation and wound healing. Here, we report that inhibition of cutaneous TRPV3 alleviates UVB radiation-induced skin lesions. In mouse models of ear swelling and dorsal skin injury induced by a single exposure of weak UVB radiation, TRPV3 genes and proteins were upregulated in quantitative real-time PCR and Western blot assays. In accompany with TRPV3 upregulations, the expressions of proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were also increased. Knockout of the TRPV3 gene alleviates UVB-induced ear swelling and dorsal skin inflammation. Furthermore, topical applications of two selective TRPV3 inhibitors, osthole and verbascoside, resulted in a dose-dependent attenuation of skin inflammation and lesions. Taken together, our findings demonstrate the causative role of overactive TRPV3 channel function in the development of UVB-induced skin injury. Therefore, topical inhibition of TRPV3 may hold potential therapy or prevention of UVB radiation-induced skin injury.
Collapse
Affiliation(s)
- Yaxuan Qu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Xiaoying Sun
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - Ningning Wei
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Geng R, Fang J, Kang SG, Huang K, Tong T. Chronic exposure to UVB induces nephritis and gut microbiota dysbiosis in mice based on the integration of renal transcriptome profiles and 16S rRNA sequencing data. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122035. [PMID: 37343920 DOI: 10.1016/j.envpol.2023.122035] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Ultraviolet (UV) is a common and abundant environmental factor that affects daily life. Although the effects of UV radiation on the skin have been extensively reported, studies on the influence of UV radiation on internal organs are still limited. This study aimed to evaluate the influence of UVB exposure on the kidney of mice and to investigate the possible mechanism. In the present study, histopathology changes, oxidative stress, and inflammatory response were used to evaluate the kidney and colon injury induced by UVB exposure. The results showed that the 14-week chronic skin exposure to UVB triggers a kidney injury response characterized by macrophage infiltration, elevated oxidative stress as well as inflammatory and injury markers. The RNA sequencing demonstrated that chronic UVB exposure could alter the kidney transcriptomic profile distinguished by the regulation of genes involved in the Notch signaling pathway, JAK-STAT signaling pathway, and ECM-receptor interaction. Besides, chronic UVB exposure also resulted in gut dysbiosis, manifested as colon macrophage infiltration, stimulated inflammatory responses, impaired barrier integrity, and microbiota structural and functional disorders. The Spearman analysis results further revealed a strong correlation between gut microbiota and kidney injury. In conclusion, skin chronic exposure to UVB causes nephritis and gut microbiota dysbiosis in mice, and these findings provide new insight into the underlying risks of chronic UVB exposure to human wellness.
Collapse
Affiliation(s)
- Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Seong-Gook Kang
- Department of Food Engineering, Mokpo National University, Muangun 58554, South Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Safety Assessment of Agricultural Genetically Modified Organisms (Food), Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Safety Assessment of Agricultural Genetically Modified Organisms (Food), Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Laboratory for Food Quality and Safety, Beijing, China.
| |
Collapse
|
10
|
Nigam M, Mishra AP, Deb VK, Dimri DB, Tiwari V, Bungau SG, Bungau AF, Radu AF. Evaluation of the association of chronic inflammation and cancer: Insights and implications. Biomed Pharmacother 2023; 164:115015. [PMID: 37321055 DOI: 10.1016/j.biopha.2023.115015] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Among the most extensively researched processes in the development and treatment of cancer is inflammatory condition. Although acute inflammation is essential for the wound healing and reconstruction of tissues that have been damaged, chronic inflammation may contribute to the onset and growth of a number of diseases, including cancer. By disrupting the signaling processes of cells, which result in cancer induction, invasion, and development, a variety of inflammatory molecules are linked to the development of cancer. The microenvironment surrounding the tumor is greatly influenced by inflammatory cells and their subsequent secretions, which also contribute significantly to the tumor's growth, survivability, and potential migration. These inflammatory variables have been mentioned in several publications as prospective diagnostic tools for anticipating the onset of cancer. Targeting inflammation with various therapies can reduce the inflammatory response and potentially limit or block the proliferation of cancer cells. The scientific medical literature from the past three decades has been studied to determine how inflammatory chemicals and cell signaling pathways related to cancer invasion and metastasis are related. The current narrative review updates the relevant literature while highlighting the specifics of inflammatory signaling pathways in cancer and their possible therapeutic possibilities.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, 246174 Srinagar Garhwal, Uttarakhand, India
| | - Abhay Prakash Mishra
- Department of Pharmacology, Faculty of Health Science, University of Free State, 9300 Bloemfontein, South Africa.
| | - Vishal Kumar Deb
- Dietetics and Nutrition Technology Division, CSIR Institute of Himalayan Bioresource Technology, 176061 Palampur, Himanchal Pradesh, India
| | - Deen Bandhu Dimri
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, 246174 Srinagar Garhwal, Uttarakhand, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi 221005, Uttar Pradesh, India
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Alexa Florina Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Andrei-Flavius Radu
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
11
|
Allegra A, Caserta S, Genovese S, Pioggia G, Gangemi S. Gender Differences in Oxidative Stress in Relation to Cancer Susceptibility and Survival. Antioxidants (Basel) 2023; 12:1255. [PMID: 37371985 DOI: 10.3390/antiox12061255] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Genetic, developmental, biochemical, and environmental variables interact intricately to produce sex differences. The significance of sex differences in cancer susceptibility is being clarified by numerous studies. Epidemiological research and cancer registries have revealed over the past few years that there are definite sex variations in cancer incidence, progression, and survival. However, oxidative stress and mitochondrial dysfunction also have a significant impact on the response to treatment of neoplastic diseases. Young women may be more protected from cancer than men because most of the proteins implicated in the regulation of redox state and mitochondrial function are under the control of sexual hormones. In this review, we describe how sexual hormones control the activity of antioxidant enzymes and mitochondria, as well as how they affect several neoplastic diseases. The molecular pathways that underlie the gender-related discrepancies in cancer that have been identified may be better understood, which may lead to more effective precision medicine and vital information on treatment options for both males and females with neoplastic illnesses.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood 'Gaetano Barresi', University of Messina, 98125 Messina, Italy
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood 'Gaetano Barresi', University of Messina, 98125 Messina, Italy
| | - Sara Genovese
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy
| |
Collapse
|
12
|
An L, Kim D, Donahue L, Mejooli MA, Chi-Yong E, Nishimura N, White AC. Sexual dimorphism in melanocyte stem cell behavior reveals combinational therapeutic strategies for cutaneous repigmentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541644. [PMID: 37293072 PMCID: PMC10245926 DOI: 10.1101/2023.05.22.541644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vitiligo is an autoimmune skin disease caused by cutaneous melanocyte loss. Although phototherapy and T cell suppression therapy have been widely used to induce epidermal repigmentation, full pigmentation recovery is rarely achieved due to our poor understanding of the cellular and molecular mechanisms governing this process. Here, we identify unique melanocyte stem cell (McSC) epidermal migration rates between male and female mice, which is due to sexually dimorphic cutaneous inflammatory responses generated by ultra-violet B exposure. Using genetically engineered mouse models, and unbiased bulk and single-cell mRNA sequencing approaches, we determine that manipulating the inflammatory response through cyclooxygenase and its downstream prostaglandin product regulates McSC proliferation and epidermal migration in response to UVB exposure. Furthermore, we demonstrate that a combinational therapy that manipulates both macrophages and T cells (or innate and adaptive immunity) significantly promotes epidermal melanocyte re-population. With these findings, we propose a novel therapeutic strategy for repigmentation in patients with depigmentation conditions such as vitiligo.
Collapse
Affiliation(s)
- Luye An
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA, 14850
| | - Dahihm Kim
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA, 14850
| | - Leanne Donahue
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA, 14850
| | | | - Eom Chi-Yong
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA, 14850
| | - Nozomi Nishimura
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA, 14850
| | - Andrew C White
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA, 14850
| |
Collapse
|
13
|
Paik SJ, Kim DJ, Jung SK. Preventive Effect of Pharmaceutical Phytochemicals Targeting the Src Family of Protein Tyrosine Kinases and Aryl Hydrocarbon Receptor on Environmental Stress-Induced Skin Disease. Int J Mol Sci 2023; 24:ijms24065953. [PMID: 36983027 PMCID: PMC10056297 DOI: 10.3390/ijms24065953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The skin protects our body; however, it is directly exposed to the environment and is stimulated by various external factors. Among the various environmental factors that can threaten skin health, the effects of ultraviolet (UV) and particulate matter (PM) are considered the most notable. Repetitive exposure to ultraviolet and particulate matter can cause chronic skin diseases such as skin inflammation, photoaging, and skin cancer. The abnormal activation of the Src family of protein tyrosine kinases (SFKs) and the aryl hydrocarbon receptor (AhR) in response to UV and/or PM exposure are involved in the development and aggravation of skin diseases. Phytochemicals, chemical compounds of natural plants, exert preventive effects on skin diseases through the regulation of various signaling pathways. Therefore, this review aims to highlight the efficacy of phytochemicals as potential nutraceuticals and pharmaceutical materials for the treatment of skin diseases, primarily by targeting SFK and AhR, and to explore the underlying mechanisms of action. Future studies are essential to validate the clinical potential for the prevention and treatment of skin diseases.
Collapse
Affiliation(s)
- So Jeong Paik
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
14
|
Keskin S, Acikgoz E, Ertürk FY, Ragbetli MC, Ozkol H. Histopathological Changes in Liver and Heart Tissue Associated with Experimental Ultraviolet Radiation A and B Exposure on Wistar Albino Rats. Photochem Photobiol 2023; 99:132-136. [PMID: 35702999 DOI: 10.1111/php.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/06/2022] [Indexed: 01/25/2023]
Abstract
This study aims to evaluate the influences of ultraviolet radiation A and B (UVA + B) exposure on the liver and heart organs of albino rats. Female Wistar Albino rats, whose hair of the dorsal skin was shaved, were exposed to a combined UVA + B radiation for 2 h/day, for 4 weeks in order to be compared with the control group. Histopathological findings in vital organs (liver and heart) were evaluated. Tissues were fixed in 10% buffered formalin (pH = 7.2) and embedded in paraffin. The histopathological findings were examined on the H&E stained sections with light microscopy. The results show that the liver and the heart were injured in the UVA + B group. Liver tissue in the UVA + B group showed minimal vacuolation, enlargement of hepatocytes and bile duct proliferation, and the heart tissue showed hibernomas; uniform large cells resembling brown fat with coarsely granular to multivacuolated cytoplasm that is eosinophilic or pale with a small central nucleus. The number of hibernoma cases was significantly higher in the UVA + B group compared with the control group (P = 0.021). The control group showed normal liver and heart histology with normal adipose tissue in the pericardium. As a result, UVA + B exposure has toxic effects, especially on the liver and the heart of Wistar albino rats. UV radiation may cause such adverse effects in humans. Therefore, protection against the harmful effects of UV radiation is of significant importance for skin and organs.
Collapse
Affiliation(s)
- Seda Keskin
- Department of Histology and Embryology, Van Yuzuncu Yil University School of Medicine, Van, Turkey
| | - Eda Acikgoz
- Department of Histology and Embryology, Van Yuzuncu Yil University School of Medicine, Van, Turkey
| | | | - Murat Cetin Ragbetli
- Department of Histology and Embryology, Karamanoglu Mehmetbey University School of Medicine, Karaman, Turkey
| | - Halil Ozkol
- Department of Medical Biology, Van Yuzuncu Yil University, Medical Faculty, Van, Turkey
| |
Collapse
|
15
|
Hao X, Lai W, Xia X, Xu J, Wu Y, Lv C, Meng Q, Lv K, Huang S, Luo Z, Dong J, Yuan Q. Skin cancer outcomes and risk factors in renal transplant recipients: Analysis of organ procurement and transplantation network data from 2000 to 2021. Front Oncol 2022; 12:1017498. [PMID: 36505816 PMCID: PMC9731355 DOI: 10.3389/fonc.2022.1017498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Posttransplant skin cancer is the most common malignancy after patients have undergone renal transplantation. Through comprehensive observation with a large sample size nationwide, understanding the risk factors and outcome of posttransplant skin cancer will help to develop appropriate patient surveillance and disease prevention strategies. Materials and methods This retrospective population-based cohort study was based on Organ Procurement and Transplantation Network data released in March 2021. Characteristics and outcomes, including patient survival and graft survival of recipients, were compared. Risk factors for posttransplant skin cancer, cancer onset momentum, and mortality were determined. Results A total of 199,564 renal transplant recipients were included. After renal transplantation, 7,334 (3.68%), 6,093 (3.05%), and 936 (0.47%) were diagnosed with squamous cell carcinoma, basal cell carcinoma, and melanoma, respectively. Skin cancer was the major cause of death (squamous cell carcinoma: 23.8%, basal cell carcinoma: 18%, and melanoma: 41.6%). Five-year survival rates ranked from best to worst were as follows: basal cell carcinoma (96.7 [95% confidence interval: 96.3-97.2]%), squamous cell carcinoma (94.1 [93.5-94.6]%), melanoma (89.7 [87.7-91.6]%), and cancer-free (87.4 [87.2-87.5]%) (p < 0.001 for all except melanoma vs. cancer-free, p = 0.534). Regarding graft survival, death-censored graft survival, posttransplant skin cancer, and melanoma were significantly better than the cancer-free group (p < 0.001). Independent risk factors for developing posttransplant skin cancer included older age, male sex, Caucasian race, pretransplant malignancy, polycystic kidney disease-induced end-stage renal disease (ESRD), retransplantation, private health insurance, T-cell depletion induction, and tacrolimus/mycophenolic acid use. Caucasian race and pretransplant malignancy were independent risk factors for posttransplant skin cancer onset momentum. Male sex, Caucasian race, pretransplant malignancy, hypertension- or diabetes-induced ESRD, retransplantation, diabetes history, deceased donor, cyclosporin, and mTOR inhibitor use were independent risk factors for posttransplant skin cancer mortality. Conclusion Although posttransplant skin cancer is a major cause of recipient death, information regarding its impact on patient and graft survival is limited. Given the differences regarding risk factors for posttransplant skin cancer incidence, onset momentum, and mortality, personalized approaches to screening may be appropriate to address the complex issues encountered by kidney transplant recipients.
Collapse
Affiliation(s)
- Xiaowei Hao
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China,Department of Urology, No.971 Hospital of PLA Navy, Tsingtao, Shandong, China
| | - Wenhui Lai
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China,Department of Postgraduate, Hebei North University, Zhangjiakou, Hebei, China
| | - Xinze Xia
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China,Department of Urology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junnan Xu
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yangyang Wu
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chao Lv
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qingyang Meng
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Kaikai Lv
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shuai Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China,Department of Postgraduate, Hebei North University, Zhangjiakou, Hebei, China
| | - Zhenjun Luo
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China,Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Jun Dong
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China,*Correspondence: Jun Dong, ; Qing Yuan,
| | - Qing Yuan
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China,*Correspondence: Jun Dong, ; Qing Yuan,
| |
Collapse
|
16
|
A review on biological assays of red algae marine compounds: An insight into skin whitening activities. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Dai X, Jin J, Jia Y, Yang K, Han J, Zhang Z, Ding X, Yao C, Sun T, Zhu C, Liu H. A non-retinol RAR-γ selective agonist-tectorigenin can effectively inhibit the UVA-induced skin damage. Br J Pharmacol 2022; 179:4722-4737. [PMID: 35731978 DOI: 10.1111/bph.15902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/22/2022] [Accepted: 06/09/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Long-term ultraviolet (UV) exposure can cause inflammation, pigmentation, and photoaging. All-trans-retinoic acid (ATRA) is a commonly used retinoic acid receptor (RAR) agonist in the clinical treatment of UV-induced skin problems; however, the use of such drugs is often accompanied by systemic adverse reactions caused by nonspecific activation of RARs. Therefore, this study is expected to screen for a novel RAR-γ-selective agonist with high safety. EXPERIMENTAL APPROACH Molecular docking, dynamic simulation, and Biacore were used to screen and obtain novel RAR-γ-selective agonists. RT-PCR, ELISA, western blotting, immunofluorescence staining, flow cytometry, and proteomic analysis were used to detect the effects of novel RAR-γ selective agonists on UVA-induced inflammation and photoaging cell models. UVA-induced mouse models were used to evaluate the effects of tectorigenin (TEC) on skin repair, aging, and inflammation. KEY RESULTS TEC is a novel RAR-γ-selective agonist. TEC inhibits UV-induced oxidative damage, inflammatory factor release, and matrix metalloproteinase (MMP) production. TEC can also reverse the UVA-induced loss of collagen. The results of the signalling pathway research showed that TEC mainly affects the MAPK/JNK/AP-1 pathway. In animal experiments, TEC showed better anti-inflammatory and anti-photoaging effects and caused less skin irritation than ATRA. Nano-particle loaded TEC, which significantly improved the utilization of TEC, is also presented. CONCLUSIONS AND IMPLICATIONS TEC is a non-retinol RAR-γ-selective agonist that can inhibit UV-induced skin damage and may be developed as a safe pharmaceutical component for the prevention of photoaging and skin inflammation.
Collapse
Affiliation(s)
- Xintong Dai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Jing Jin
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
| | - Yan Jia
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Kai Yang
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
| | - Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Zhiyuan Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Xiujuan Ding
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Cheng Yao
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Caibin Zhu
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| |
Collapse
|
18
|
Zhong QY, Luo QH, Lin B, Lin BQ, Su ZR, Zhan JYX. Protective effects of andrographolide sodium bisulfate on UV-induced skin carcinogenesis in mice model. Eur J Pharm Sci 2022; 176:106232. [PMID: 35710077 DOI: 10.1016/j.ejps.2022.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/26/2022] [Accepted: 06/04/2022] [Indexed: 11/30/2022]
Abstract
Although the mortality of skin cancer patients is relatively low, there are still a large number of patients died of these tumors at high incidence rate. Chronic exposure to solar UV irradiation is the most common cause of nonmelanoma skin tumors. Our research aimed to explore the effects of andrographolide sodium bisulfate (ASB) on UV-induced skin cancer and to reveal the underlying molecular mechanism. In the present study, histopathology changes, immunohistochemical analysis, ELISA analysis and western blot analysis were mainly used in vivo. The results indicated that ASB significantly inhibited increase of skin epidermal thickness, inflammatory cells infiltration and fibers damage in dermis, oxidative stress injury and skin carcinogenesis. Moreover, the western blot analysis showed that protein expressions of NF-κB, Nrf2, p62, LC3 II/I and p-p62 (Ser 349) in mouse skin induced by UV were dramatically suppressed in the ASB-pretreated groups. Overall, these results suggested that ASB exerted a strong preventive effect and potential therapeutic value against UV-induced skin carcinogenesis in mice through inhibiting NF-κB and Nrf2 signaling pathways and restoring autophagy.
Collapse
Affiliation(s)
- Qing-Yuan Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 223 Waihuan Road, Guangzhou 510006, PR China
| | - Qi-Hong Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 223 Waihuan Road, Guangzhou 510006, PR China
| | - Bing Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 223 Waihuan Road, Guangzhou 510006, PR China
| | - Bao-Qin Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 223 Waihuan Road, Guangzhou 510006, PR China
| | - Zi-Ren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 223 Waihuan Road, Guangzhou 510006, PR China
| | - Janis Ya-Xian Zhan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 223 Waihuan Road, Guangzhou 510006, PR China.
| |
Collapse
|
19
|
Hong J, Mu T, Sun H, Blecker C, Richel A. Photoprotective effects of sweet potato leaf polyphenols and caffeic acid against UV-induced skin-damage in BALB/C nude mice. Food Funct 2022; 13:7075-7087. [PMID: 35695741 DOI: 10.1039/d2fo00425a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed at clarifying the mechanism by which sweet potato leaf polyphenols (SPLPs) ameliorate ultraviolet (UV) radiation damage, using the BALB/c hairless female mouse model. The moisture and hydroxyproline (HYP) contents of the model mouse skin and the thickness of the epidermis and dermis were determined by staining and histological examination. Anti-oxidative enzyme activities, malondialdehyde (MDA) content, and protein carbonyl content in skin tissue and serum were investigated. Expression of inflammatory markers and mitogen-activated protein kinase signaling pathways were evaluated. Topical caffeic acid at 30 mg kg-1 most strongly inhibited the decrease in skin moisture, HYP content, and the thickening of the epidermis. Topical SPLP at 100 mg kg-1 most significantly inhibited the dermal thickening, increased the activities of the superoxide dismutase, catalase as well as glutathione peroxidase, and decreased the content of serum MDA and protein carbonyls markedly. Furthermore, the topical SPLP suppressed the UV-induced rise in the inflammatory markers MMP-1, TNF-α, and NF-κB, and alleviated phosphorylation levels of the stress-signaling proteins JNK and p38. Thus, topical SPLP provided the best overall protection for mouse skin from UV-induced damage.
Collapse
Affiliation(s)
- Jingyang Hong
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China. .,University of Liège, Gembloux Agro-Bio Tech, Department of Food Science and Formulation, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, Gembloux, Belgium.,University of Liège, Gembloux Agro-Bio Tech, Biological and Industrial Chemistry Unit, Passage des Déportés, 2, 5030 Gembloux, Belgium
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Christophe Blecker
- University of Liège, Gembloux Agro-Bio Tech, Department of Food Science and Formulation, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, Gembloux, Belgium
| | - Aurore Richel
- University of Liège, Gembloux Agro-Bio Tech, Biological and Industrial Chemistry Unit, Passage des Déportés, 2, 5030 Gembloux, Belgium
| |
Collapse
|
20
|
Bayerl C. Männer- und Frauenhaut – Genderaspekte. AKTUELLE DERMATOLOGIE 2022. [DOI: 10.1055/a-1844-8977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ZusammenfassungMänner- und Frauenhaut sind unterschiedlich. Männerhaut ist dicker, hat mehr Talgdrüsen und Oberflächenlipide, eine höhere, nicht so divergente Keimzahl wie Frauen, niedrigere transepidermale Wasserverlust (TEWL)-Werte und einen niedrigeren pH-Wert. Die Wundheilung und das Niveau von Antioxidantien ist bei Frauenhaut besser. Männerhaut hat mehr Kollagen, altert an anderer Lokalisation, bei Männern finden sich mehr Falten an der Stirn, bei Frauen mehr Falten perioral. Studien sollten die Auswertung der Daten nach Geschlechtern mit beachten.
Collapse
Affiliation(s)
- Christiane Bayerl
- Klinik für Dermatologie und Allergologie, Helios Dr. Horst Schmidt Kliniken, Hauttumorzentrum Wiesbaden
| |
Collapse
|
21
|
Frazão DF, Martins-Gomes C, Steck JL, Keller J, Delgado F, Gonçalves JC, Bunzel M, Pintado CMBS, Díaz TS, Silva AM. Labdanum Resin from Cistus ladanifer L.: A Natural and Sustainable Ingredient for Skin Care Cosmetics with Relevant Cosmeceutical Bioactivities. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111477. [PMID: 35684251 PMCID: PMC9183103 DOI: 10.3390/plants11111477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 06/01/2023]
Abstract
Labdanum resin from Cistus ladanifer L. (Cistaceae) is an abundant natural resource in the Iberian Peninsula worth being explored in a sustainable manner. It is already used in the cosmetic industry; mainly by the fragrances/perfumery sector. However, given the highest market share and traditional uses, labdanum resin also has the potential to be used and valued as a cosmetic ingredient for skincare. Aiming to evaluate this potential, labdanum methanolic absolute and fractions purified by column chromatography were characterized by UPLC-DAD-ESI-MS and then evaluated for UV-protection, antioxidant, anti-elastase, anti-inflammatory, and antimicrobial activities. Labdanum absolute represented ~70% of the resin; diterpenoid and flavonoid fractions represented ~75% and 15% of the absolute, respectively. Labdane-type diterpenoids and methylated flavonoids were the main compounds in labdanum absolute and in diterpenoid and flavonoid fractions, respectively. Labdanum absolute showed a spectrophotometric sun protection factor (SPF) near 5, which is mainly due to flavonoids, as the flavonoids’ SPF was 13. Low antioxidant activity was observed, with ABTS radical scavenging being the most significant (0.142 ± 0.017, 0.379 ± 0.039 and 0.010 ± 0.003 mgTE/mgExt, for the absolute and flavonoid and terpene fractions, respectively). Anti-aging and anti-inflammatory activity are reported here for the first time, by the inhibition of elastase activity (22% and 13%, by absolute and flavonoid extract at 1 mg/mL), and by the inhibition of nitric oxide production in LPS-induced RAW 264.7 cells (84% to 98%, at 15 µg/mL extracts, flavonoid fraction the most active), respectively. Antimicrobial activity, against relevant skin and cosmetic product microorganisms, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, and Escherichia coli, revealed that only S. aureus was susceptible to labdanum absolute (MIC: 1.2 mg/mL) and its fractions (MIC: <0.3 mg/mL). In conclusion, labdanum resin showed potential to be used in sunscreen cosmetics, anti-inflammatory skincare cosmeceuticals or medicines but has low potential as a cosmetic product preservative given the low antioxidant and low-spectrum antimicrobial activities.
Collapse
Affiliation(s)
- David F. Frazão
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (D.F.F.); (C.M.-G.)
- Plant Biotechnology Center of Beira Interior (CBPBI), Quinta da Senhora de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal; (F.D.); (J.C.G.); (C.M.B.S.P.)
| | - Carlos Martins-Gomes
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (D.F.F.); (C.M.-G.)
| | - Jan L. Steck
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, Building 50.41, 76131 Karlsruhe, Germany; (J.L.S.); (J.K.); (M.B.)
| | - Judith Keller
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, Building 50.41, 76131 Karlsruhe, Germany; (J.L.S.); (J.K.); (M.B.)
| | - Fernanda Delgado
- Plant Biotechnology Center of Beira Interior (CBPBI), Quinta da Senhora de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal; (F.D.); (J.C.G.); (C.M.B.S.P.)
- Polytechnic Institute of Castelo Branco-School of Agriculture (IPCB-ESA), Quinta da Senhora de Mércules, 6001-909 Castelo Branco, Portugal
| | - José C. Gonçalves
- Plant Biotechnology Center of Beira Interior (CBPBI), Quinta da Senhora de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal; (F.D.); (J.C.G.); (C.M.B.S.P.)
- Polytechnic Institute of Castelo Branco-School of Agriculture (IPCB-ESA), Quinta da Senhora de Mércules, 6001-909 Castelo Branco, Portugal
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, Building 50.41, 76131 Karlsruhe, Germany; (J.L.S.); (J.K.); (M.B.)
| | - Cristina M. B. S. Pintado
- Plant Biotechnology Center of Beira Interior (CBPBI), Quinta da Senhora de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal; (F.D.); (J.C.G.); (C.M.B.S.P.)
- Polytechnic Institute of Castelo Branco-School of Agriculture (IPCB-ESA), Quinta da Senhora de Mércules, 6001-909 Castelo Branco, Portugal
| | - Teresa Sosa Díaz
- Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain;
| | - Amélia M. Silva
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (D.F.F.); (C.M.-G.)
- Department of Biology and Environment, School of Life Sciences and Environment, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
| |
Collapse
|
22
|
Shen X, Song S, Chen N, Liao J, Zeng L. Stem cell-derived exosomes: A supernova in cosmetic dermatology. J Cosmet Dermatol 2021; 20:3812-3817. [PMID: 34536054 DOI: 10.1111/jocd.14438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Stem cell-derived exosomes are cell-free vesicles secreted by stem cells. Exosomes play a pivotal role in cell-to cell communication due to the functional proteins and genetic information which they carry. In addition, studies on cell migration, tumor invasion, tissue regeneration, myocardial repair after injury, and fracture healing have been widely reported. OBJECTIVES The purpose of this review is to sum up the current state of research on multiple stem cell-derived exosomes in cosmetic dermatology and to discuss the current challenges and future directions. METHODS We searched "skin" and "exosome" from PubMed to find the application of stem cell exosomes in cosmetic dermatology. RESULTS We found that stem cell-derived exosomes have an important place in skin cosmetology such as wound healing, skin aging, and scar formation. CONCLUSION Stem cell derived exosomes supply a potential tool to cosmetic dermatology. The performance of stem cell derived exosomes in regulating skin physiological and pathobiological functions suggests that stem cell derived exosomes have potential in cosmetic dermatology.
Collapse
Affiliation(s)
- Xu Shen
- Department of Medical Cosmetology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Shenghua Song
- Department of Medical Cosmetology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Nian Chen
- Department of Medical Cosmetology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Junlin Liao
- Department of Medical Cosmetology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Li Zeng
- Department of Medical Cosmetology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
23
|
Wilkinson HN, Hardman MJ. A role for estrogen in skin ageing and dermal biomechanics. Mech Ageing Dev 2021; 197:111513. [PMID: 34044023 DOI: 10.1016/j.mad.2021.111513] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 01/11/2023]
Abstract
The skin is the body's primary defence against the external environment, preventing infection and desiccation. Therefore, alterations to skin homeostasis, for example with skin ageing, increase susceptibility to skin disease and injury. Skin biological ageing is uniquely influenced by a combination of intrinsic and extrinsic (primarily photoageing) factors, with differential effects on skin structure and function. Interestingly, skin architecture rapidly changes following the menopause, as a direct result of reduced circulating 17β-estradiol. The traditional clinical benefit of estrogens are supported by recent experimental data, where 17β-estradiol supplementation prevents age-related decline in the skin's structural and mechanical properties. However, the off-target effects of 17β-estradiol continue to challenge therapeutic application. Here we discuss how ageing alters the physiological and structural properties of the dermal extracellular matrix, and explore how estrogen receptor-targeted therapies may restore the mechanical defects associated with skin ageing.
Collapse
Affiliation(s)
- Holly N Wilkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, The University of Hull, HU6 7RX, United Kingdom
| | - Matthew J Hardman
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, The University of Hull, HU6 7RX, United Kingdom.
| |
Collapse
|
24
|
Ultraviolet Radiation and Chronic Inflammation-Molecules and Mechanisms Involved in Skin Carcinogenesis: A Narrative Review. Life (Basel) 2021; 11:life11040326. [PMID: 33917793 PMCID: PMC8068112 DOI: 10.3390/life11040326] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
The process of skin carcinogenesis is still not fully understood. Both experimental and epidemiological evidence indicate that chronic inflammation is one of the hallmarks of microenvironmental-agent-mediated skin cancers and contributes to its development. Maintaining an inflammatory microenvironment is a condition leading to tumor formation. Multiple studies focus on the molecular pathways activating tumorigenesis by inflammation and indicate several biomarkers and factors that can improve diagnostic and prognostic processes in oncology and dermatology. Reactive oxygen species produced by ultraviolet radiation, oxidizers, or metabolic processes can damage cells and initiate pro-inflammatory cascades. Considering the potential role of inflammation in cancer development and metastasis, the identification of early mechanisms involved in carcinogenesis is crucial for clinical practice and scientific research. Moreover, it could lead to the progress of advanced skin cancer therapies. We focus on a comprehensive analysis of available evidence and on understanding how chronic inflammation and ultraviolet radiation can result in skin carcinogenesis. We present the inflammatory environment as complex molecular networks triggering tumorigenesis and constituting therapeutic targets.
Collapse
|