1
|
Cheng L, Zhang Y, Lv M, Huang W, Zhang K, Guan Z, Feng X, Yang Y, Gao Y, Liu X. Impaired learning and memory in male mice induced by sodium arsenite was associated with MMP-2/MMP-9-mediated blood-brain barrier disruption and neuronal apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117016. [PMID: 39288732 DOI: 10.1016/j.ecoenv.2024.117016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Arsenic is a widespread environmental contaminant known to accumulate in the brain, leading to cognitive impairment. However, the exact mechanisms by which arsenic causes cognitive deficits remain unclear. The present study aims to discover whether the destruction of the blood-brain barrier (BBB) mediated by matrix metalloproteinases 2 and matrix metalloproteinases 9 (MMP-2 and MMP-9) and subsequent neuronal apoptosis are involved in arsenic-induced cognitive impairment. Ninety male mice were given 0, 25, and 50 mg/L NaAsO2 in drinking water and 30 mg/kg doxycycline hyclate (DOX, an inhibitor of MMPs) gavage for 12 weeks to observe the alterations in learning and memory of mice, the morphology of hippocampal neurons, as well as the BBB permeability and ultrastructure, the localization and expression of tight junction proteins, MMP-2, and MMP-9. Our findings indicated that arsenic exposure induced learning and memory impairment in mice, accompanied by neuronal loss and apoptosis. Furthermore, arsenic exposure increased hematogenous IgG leakage into the brain, disrupted the tight junctions, reduced the expression of Claudin5, Occludin, and ZO1 in the endothelial cells, and increased the expression of MMP-2 and MMP-9 in the endothelial cells and astrocytes. Finally, DOX intervention preserved BBB integrity, alleviated hippocampal neuronal apoptosis, and improved cognitive impairment in mice caused by arsenic exposure. Our research demonstrates that cognitive disfunction in mice induced by arsenic exposure is associated with MMP-2 and MMP-9-mediated BBB destruction and neuronal apoptosis. The current investigation provides new insights into mechanisms of arsenic neurotoxicity and suggests that MMP-2 and MMP-9 may serve as potential therapeutic targets for treating arsenic-induced cognitive dysfunction in the future.
Collapse
Affiliation(s)
- Lin Cheng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China University, Harbin 150001, China
| | - Yuhang Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China University, Harbin 150001, China
| | - Man Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China University, Harbin 150001, China
| | - Wei Huang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China University, Harbin 150001, China
| | - Kunyu Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China University, Harbin 150001, China
| | - Ziqiao Guan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China University, Harbin 150001, China
| | - Xirui Feng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China University, Harbin 150001, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China University, Harbin 150001, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China University, Harbin 150001, China.
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China University, Harbin 150001, China.
| |
Collapse
|
2
|
Otto-Dobos LD, Santos JC, Strehle LD, Grant CV, Simon LA, Oliver B, Godbout JP, Sheridan JF, Barrientos RM, Glasper ER, Pyter LM. The role of microglia in 67NR mammary tumor-induced suppression of brain responses to immune challenges in female mice. J Neurochem 2024; 168:3482-3499. [PMID: 37084026 PMCID: PMC10589388 DOI: 10.1111/jnc.15830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023]
Abstract
It is poorly understood how solid peripheral tumors affect brain neuroimmune responses despite the various brain-mediated side effects and higher rates of infection reported in cancer patients. We hypothesized that chronic low-grade peripheral tumor-induced inflammation conditions microglia to drive suppression of neuroinflammatory responses to a subsequent peripheral immune challenge. Here, Balb/c murine mammary tumors attenuated the microglial inflammatory gene expression responses to lipopolysaccharide (LPS) and live Escherichia coli (E. coli) challenges and the fatigue response to an E. coli infection. In contrast, the inflammatory gene expression in response to LPS or a toll-like receptor 2 agonist of Percoll-enriched primary microglia cultures was comparable between tumor-bearing and -free mice, as were the neuroinflammatory and sickness behavioral responses to an intracerebroventricular interleukin (IL)-1β injection. These data led to the hypothesis that Balb/c mammary tumors blunt the neuroinflammatory responses to an immune challenge via a mechanism involving tumor suppression of the peripheral humoral response. Balb/c mammary tumors modestly attenuated select circulating cytokine responses to LPS and E. coli challenges. Further, a second mammary tumor/mouse strain model (E0771 tumors in C57Bl/6 mice) displayed mildly elevated inflammatory responses to an immune challenge. Taken together, these data indicate that tumor-induced suppression of neuroinflammation and sickness behaviors may be driven by a blunted microglial phenotype, partly because of an attenuated peripheral signal to the brain, which may contribute to infection responses and behavioral side effects reported in cancer patients. Finally, these neuroimmune effects likely vary based on tumor type and/or host immune phenotype.
Collapse
Affiliation(s)
- L D Otto-Dobos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - J C Santos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - L D Strehle
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - C V Grant
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - L A Simon
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - B Oliver
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - J P Godbout
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, Ohio, USA
| | - J F Sheridan
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
- Division of Biosciences College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - R M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, Ohio, USA
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio, USA
| | - E R Glasper
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - L M Pyter
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Long J, Li X, Yao C, Liu X, Li N, Zhou Y, Li D, Su S, Wang L, Liu H, Xiang Y, Yi L, Tan Y, Luo P, Cai T. The role of ZC3H12D-regulated TLR4-NF-κB pathway in LPS-induced pro-inflammatory microglial activation. Neurosci Lett 2024; 832:137800. [PMID: 38697601 DOI: 10.1016/j.neulet.2024.137800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Lipopolysaccharide (LPS) is an important neurotoxin that can cause inflammatory activation of microglia. ZC3H12D is a novel immunomodulator, which plays a remarkable role in neurological pathologies. It has not been characterized whether ZC3H12D is involved in the regulation of microglial activation. The aim of this study was to investigate the role of ZC3H12D in LPS-induced pro-inflammatory microglial activation and its potential mechanism. To elucidate this, we established animal models of inflammatory injury by intraperitoneal injection of LPS (10 mg/kg). The results of the open-field test showed that LPS caused impaired motor function in mice. Meanwhile, LPS caused pro-inflammatory activation of microglia in the mice cerebral cortex and inhibited the expression of ZC3H12D. We also constructed in vitro inflammatory injury models by treating BV-2 microglia with LPS (0.5 μg/mL). The results showed that down-regulated ZC3H12D expression was associated with LPS-induced pro-inflammatory microglial activation, and further intervention of ZC3H12D expression could inhibited LPS-induced pro-inflammatory activation of microglia. In addition, LPS activated the TLR4-NF-κB signaling pathway, and this process can also be reversed by promoting ZC3H12D expression. At the same time, the addition of resveratrol, a nutrient previously proven to inhibit pro-inflammatory microglial activation, can also reverse this process by increasing the expression of ZC3H12D. Summarized, our data elucidated that ZC3H12D in LPS-induced pro-inflammatory activation of brain microglia via restraining the TLR4-NF-κB pathway. This study may provide a valuable clue for potential therapeutic targets for neuroinflammation-related injuries.
Collapse
Affiliation(s)
- Jinyun Long
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiukuan Li
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chunyan Yao
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiaoling Liu
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Na Li
- Chongqing Yongchuan District Center for Disease Control and Prevention, Chongqing, China 402160
| | - Yumeng Zhou
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dawei Li
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shengquan Su
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Liangmei Wang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Hao Liu
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ying Xiang
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Long Yi
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yao Tan
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Peng Luo
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China.
| | - Tongjian Cai
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
4
|
Liu Q, Liu Y, Zhang J, Guan Y, Zhou Q, Yan Y, Li W, An J, He M. Gut microbiota deficiency aggravates arsenic-induced toxicity by affecting bioaccumulation and biotransformation in C57BL/6J mice. Food Chem Toxicol 2024; 186:114564. [PMID: 38438009 DOI: 10.1016/j.fct.2024.114564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Gut microbiome can influence the arsenic metabolism in mammals. Confusingly, gut microbiome was found to both mitigate and exacerbate arsenic toxicity. In this study, the role of gut microbiota in arsenic bioaccumulation, biotransformation, and organ toxicity in C57BL/6J mice was investigated. Gut microbiota deficiency model was established by antibiotics (Ab) cocktail AVNM. Conventional and gut microbiota deficiency mice were exposed to NaAsO2 for 4 weeks. Comparing with Ab-treated mice, the total arsenic (tAs) in the tissues was significantly reduced in conventional mice, which was opposed to the results of those in feces. Interestingly, dimethyl arsenite (DMA) was the most abundant metabolite in the feces of Ab-treated mice, while arsenic acid (AsV) had the highest proportion in the feces of conventional mice with approximately 16-fold than that in Ab-treated mice, indicating the critical role of gut microbiota in metabolizing arsenious acid (AsIII) to AsV. Additionally, the liver and kidney in Ab-treated mice showed more severe pathological changes and apoptosis. The significant increased level of ionized calcium-binding adapter molecule 1 (IBA-1) was also found in the brains of Ab-treated mice. Our results indicated that gut microbiota protected the host from arsenic-induced toxicity in liver, kidney, and brain by reducing the arsenic accumulation.
Collapse
Affiliation(s)
- Qianying Liu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuenan Liu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiazhen Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youbing Guan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qihang Zhou
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Yan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiya Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun An
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Liu X, Zhang R, Fan J, Chen Y, Wang H, Ge Y, Liang H, Li W, Liu H, Lv Z, Dou W, Jiang H, Li X. The role of ROS/p38 MAPK/NLRP3 inflammasome cascade in arsenic-induced depression-/anxiety-like behaviors of mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115111. [PMID: 37295304 DOI: 10.1016/j.ecoenv.2023.115111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Arsenic pollution in groundwater remains a serious public health concern around the world. Recent years, arsenic-related neurological and psychiatric disorders have been reported increasingly. However, the exact mechanisms of it remains elusive. In this study, arsenic exposure through drinking water resulted in depression-/anxiety-like behaviors in mice accompanied by oxidative stress and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activation in prefrontal cortex (PFC) and hippocampus, two main affected areas found in neurobehavioral disorders. Intervention by NAC, a ROS scavenger, diminished the social behavior impairments in mice as well as ROS generation and NLRP3 inflammasome activation. Further study revealed that it was p38 MAPK signaling pathway that mediated ROS-induced NLRP3 inflammasome activation. Overall, our findings suggested that ROS/p38 MAPK/NLRP3 inflammasome cascade was involved in arsenic-induced depression-/anxiety-disorders. Furthermore, NAC might be a potential therapeutic agent for arsenic-induced depression-/anxiety-disorders by inhibiting both ROS generation and ROS-induced NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Xudan Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Ruo Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Juanjun Fan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Yao Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Huanhuan Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Yanhong Ge
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Huning Liang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Wanying Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Huimin Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Zhengyang Lv
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Wenting Dou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Hong Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, China.
| | - Xin Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, China.
| |
Collapse
|
6
|
Li N, Yao CY, Diao J, Liu XL, Tang EJ, Huang QS, Zhou YM, Hu YG, Li XK, Long JY, Xiao H, Li DW, Du N, Li YF, Luo P, Cai TJ. The role of MAPK/NF-κB-associated microglial activation in T-2 toxin-induced mouse learning and memory impairment. Food Chem Toxicol 2023; 174:113663. [PMID: 36775139 DOI: 10.1016/j.fct.2023.113663] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/10/2022] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
T-2 toxin is a mycotoxin with multiple toxic effects and has emerged as an important food pollutant. Microglia play a significant role in the toxicity of various neurotoxins. However, whether they participate in the neurotoxicity of T-2 toxin has not been reported. To clarify this point, an in vivo mouse model of T-2 toxin (4 mg/kg) poisoning was established. The results of Morris water maze and open-field showed that T-2 toxin induced learning and memory impairment and locomotor inhibition. Meanwhile, T-2 toxin induced microglial activation, while inhibiting microglia activation by minocycline (50 mg/kg) suppressed the toxic effect of the T-2 toxin. To further unveil the potential mechanisms involved in T-2 toxin-induced microglial activation, an in vitro model of T-2 toxin (0, 2.5, 5, 10 ng/mL) poisoning was established using BV-2 cells. Transcriptomic sequencing revealed lots of differentially expressed genes related to MAPK/NF-κB pathway. Western blotting results further confirmed that T-2 toxin (5 ng/mL) induced the activation of MAPKs and their downstream NF-κB. Moreover, the addition of inhibitors of NF-κB and MAPKs reversed the microglial activation induced by T-2 toxin. Overall, microglial activation may contribute a considerable role in T-2 toxin-induced behavioral abnormalities, which could be MAPK/NF-κB pathway dependent.
Collapse
Affiliation(s)
- Na Li
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chun-Yan Yao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jun Diao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Chongqing Jiulongpo District Center for Disease Control and Prevention, Chongqing, 400050, China
| | - Xiao-Ling Liu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - En-Jie Tang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qing-Song Huang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yu-Meng Zhou
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yue-Gu Hu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiu-Kuan Li
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jin-Yun Long
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Hua Xiao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Da-Wei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ning Du
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ya-Fei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Peng Luo
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Tong-Jian Cai
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|