1
|
Colman K, Andrews RN, Atkins H, Boulineau T, Bradley A, Braendli-Baiocco A, Capobianco R, Caudell D, Cline M, Doi T, Ernst R, van Esch E, Everitt J, Fant P, Gruebbel MM, Mecklenburg L, Miller AD, Nikula KJ, Satake S, Schwartz J, Sharma A, Shimoi A, Sobry C, Taylor I, Vemireddi V, Vidal J, Wood C, Vahle JL. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Non-proliferative and Proliferative Lesions of the Non-human Primate ( M. fascicularis). J Toxicol Pathol 2021; 34:1S-182S. [PMID: 34712008 PMCID: PMC8544165 DOI: 10.1293/tox.34.1s] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions Project (www.toxpath.org/inhand.asp) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying microscopic lesions observed in most tissues and organs from the nonhuman primate used in nonclinical safety studies. Some of the lesions are illustrated by color photomicrographs. The standardized nomenclature presented in this document is also available electronically on the internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions as well as lesions induced by exposure to test materials. Relevant infectious and parasitic lesions are included as well. A widely accepted and utilized international harmonization of nomenclature for lesions in laboratory animals will provide a common language among regulatory and scientific research organizations in different countries and increase and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
- Karyn Colman
- Novartis Institutes for BioMedical Research, Cambridge, MA,
USA
| | - Rachel N. Andrews
- Wake Forest School of Medicine, Department of Radiation
Oncology, Winston-Salem, NC, USA
| | - Hannah Atkins
- Penn State College of Medicine, Department of Comparative
Medicine, Hershey, PA, USA
| | | | - Alys Bradley
- Charles River Laboratories Edinburgh Ltd., Tranent,
Scotland, UK
| | - Annamaria Braendli-Baiocco
- Roche Pharma Research and Early Development, Pharmaceutical
Sciences, Roche Innovation Center Basel, Switzerland
| | - Raffaella Capobianco
- Janssen Research & Development, a Division of Janssen
Pharmaceutica NV, Beerse, Belgium
| | - David Caudell
- Department of Pathology, Section on Comparative Medicine,
Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark Cline
- Department of Pathology, Section on Comparative Medicine,
Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Takuya Doi
- LSIM Safety Institute Corporation, Ibaraki, Japan
| | | | | | - Jeffrey Everitt
- Department of Pathology, Duke University School of
Medicine, Durham, NC, USA
| | | | | | | | - Andew D. Miller
- Cornell University College of Veterinary Medicine, Ithaca,
NY, USA
| | | | - Shigeru Satake
- Shin Nippon Biomedical Laboratories, Ltd., Kagoshima and
Tokyo, Japan
| | | | - Alok Sharma
- Covance Laboratories, Inc., Madison, WI, USA
| | | | | | | | | | | | - Charles Wood
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT,
USA
| | | |
Collapse
|
2
|
Belcher SM, Cline JM, Conley J, Groeters S, Jefferson WN, Law M, Mackey E, Suen AA, Williams CJ, Dixon D, Wolf JC. Endocrine Disruption and Reproductive Pathology. Toxicol Pathol 2019; 47:1049-1071. [PMID: 31833458 PMCID: PMC8008741 DOI: 10.1177/0192623319879903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the past 20 years, investigations involving endocrine active substances (EAS) and reproductive toxicity have dominated the landscape of ecotoxicological research. This has occurred in concert with heightened awareness in the scientific community, general public, and governmental entities of the potential consequences of chemical perturbation in humans and wildlife. The exponential growth of experimentation in this field is fueled by our expanding knowledge into the complex nature of endocrine systems and the intricacy of their interactions with xenobiotic agents. Complicating factors include the ever-increasing number of novel receptors and alternate mechanistic pathways that have come to light, effects of chemical mixtures in the environment versus those of single EAS laboratory exposures, the challenge of differentiating endocrine disruption from direct cytotoxicity, and the potential for transgenerational effects. Although initially concerned with EAS effects chiefly in the thyroid glands and reproductive organs, it is now recognized that anthropomorphic substances may also adversely affect the nervous and immune systems via hormonal mechanisms and play substantial roles in metabolic diseases, such as type 2 diabetes and obesity.
Collapse
Affiliation(s)
| | - J. Mark Cline
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | | - Mac Law
- North Carolina State College of Veterinary Medicine, Raleigh, NC, USA
| | - Emily Mackey
- Michigan State University, East Lansing, MI, USA
| | | | | | | | | |
Collapse
|
3
|
Elmore SA, Carreira V, Labriola CS, Mahapatra D, McKeag SR, Rinke M, Shackelford C, Singh B, Talley A, Wallace SM, Wancket LM, Willson CJ. Proceedings of the 2018 National Toxicology Program Satellite Symposium. Toxicol Pathol 2018; 46:865-897. [PMID: 30282530 DOI: 10.1177/0192623318800734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The 2018 annual National Toxicology Program Satellite Symposium, entitled "Pathology Potpourri," was held in Indianapolis, Indiana, at the Society of Toxicologic Pathology's 37th annual meeting. The goal of this symposium was to present and discuss challenging diagnostic pathology and/or nomenclature issues. This article presents summaries of the speakers' talks along with select images that were used by the audience for voting and discussion. Various lesions and other topics covered during the symposium included seminiferous tubule dysgenesis in rats, ameloblast and odontoblast degeneration/necrosis in a Sprague Dawley rat, intestinal leiomyositis in a beagle dog, gallbladder mucinous hyperplasia, focus of hepatocellular alteration and bile duct alteration in otters, renal tubule cytoplasmic vacuolation with basophilic granules in mice treated swith antisense oligonucleotide therapy, a uterine choriocarcinoma in a rhesus macaque, and rete ovarii proliferative ovarian lesions in various aged rat strains. One particularly provocative lesion was a malignant neoplastic proliferation in the renal pelvic region of a cynomolgus macaque from a 21-day study. Additional challenging lesions included thyroid proliferative lesions in zebra fish and gross findings in fish larvae during routine chemical screening. The Rabbit and Minipig International Harmonization of Nomenclature and Diagnostic Criteria Organ Working Groups also presented a series of challenging lesions.
Collapse
Affiliation(s)
- Susan A Elmore
- 1 Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | - Caralyn S Labriola
- 3 Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Debabrata Mahapatra
- 4 Integrated Laboratory Systems, Inc., Research Triangle Park, North Carolina, USA
| | - Sean R McKeag
- 5 Covance Laboratories, Harrogate, North Yorkshire, United Kingdom
| | | | - Cynthia Shackelford
- 7 Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - Bhanu Singh
- 8 Janssen Research & Development, Spring House, Pennsylvania, USA
| | - Ashley Talley
- 9 Charles River Laboratories, Inc., Durham, North Carolina, USA
| | - Shannon M Wallace
- 10 Experimental Pathology Laboratories, Inc., Sterling, Virginia, USA
| | | | - Cynthia J Willson
- 4 Integrated Laboratory Systems, Inc., Research Triangle Park, North Carolina, USA
| |
Collapse
|
4
|
Su RW, Fazleabas AT. Implantation and Establishment of Pregnancy in Human and Nonhuman Primates. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2015; 216:189-213. [PMID: 26450500 PMCID: PMC5098399 DOI: 10.1007/978-3-319-15856-3_10] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Implantation and the establishment of pregnancy are critical for the propagation of the species, but yet remain the limiting steps in human and primate reproduction. Successful implantation requires a competent blastocyst and a receptive endometrium during a specific window of time during the menstrual cycle to initiate the bilateral communication required for the establishment of a successful pregnancy. This chapter provides an overview of these processes and discusses the molecular mechanisms associated with implantation of the blastocyst and decidualization of the uterus in primates.
Collapse
Affiliation(s)
- Ren-Wei Su
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, 49503, USA.
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, 49503, USA
| |
Collapse
|
5
|
van Esch E, Cline JM, Buse E, Weinbauer GF. The Macaque Endometrium, with Special Reference to the Cynomolgus Monkey (Macaca fascicularis). Toxicol Pathol 2008. [DOI: 10.1177/0192623308326149] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The macaque endometrium undergoes dramatic morphologic and functional changes during the menstrual cycle that are nearly identical to those of the human endometrium. The sequential events that take place in the endometrium are mainly driven by the ovarian steroids and their respective receptors. To be able to interpret the changes and effects induced by mammalian or synthetic hormones and other compounds that could have influence on the hormonal status of the animal, a thorough knowledge of the anatomy, physiology, and histology of the cyclic hormone-mediated processes within the endometrium is indispensable. In this paper we give an overview of uterine growth and development, anatomy, basic histology, aging, spontaneous pathology, and the techniques to study the endometrium in-life. In addtion, a comprehensive description of the receptor-mediated, hormone-driven morphological changes during the menstrual cycle in the cynomolgus monkey (Macaca fascicularis) is given. Where possible, differences between the macaque and human endometria are discussed. Competing Interests: This article was sponsored by Covance Inc. and Schering-Plough. Gerhard F. Weinbauer and Eberhard Buse are employed by Covance Inc. Eric Van Esch is employed by Schering-Plough. No other competing interests were declared.
Collapse
|
6
|
Cline JM, Wood CE, Vidal JD, Tarara RP, Buse E, Weinbauer GF, de Rijk EPCT, van Esch E. Selected Background Findings and Interpretation of Common Lesions in the Female Reproductive System in Macaques. Toxicol Pathol 2008; 36:142s-163s. [PMID: 21475639 DOI: 10.1177/0192623308327117] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The authors describe a selection of normal findings and common naturally occurring lesions in the reproductive system of female macaques, including changes in the ovaries, uterus, cervix, vagina, and mammary glands. Normal features of immature ovaries, uteri, and mammary glands are described. Common non-neoplastic lesions in the ovaries include cortical mineralization, polyovular follicles, cysts, ovarian surface epithelial hyperplasia, and ectopic ovarian tissue. Ovarian neoplasms include granulosa cell tumors, teratomas, and ovarian surface epithelial tumors. Common non-neoplastic uterine findings include loss of features of normal cyclicity, abnormal bleeding, adenomyosis, endometriosis, epithelial plaques, and pregnancy-associated vascular remodeling. Hyperplastic and neoplastic lesions of the uterus include endometrial polyps, leiomyomas, and rarely endometrial hyperplasia and endometrial adenocarcinoma. Vaginitis is common. Cervical lesions include endocervical squamous metaplasia, polyps, and papillomavirus-associated lesions. Lesions in the mammary gland are most often proliferative and range from ductal hyperplasia to invasive carcinoma. Challenges to interpretation include the normal or pathologic absence of menstrual cyclicity and the potential misinterpretation of sporadic lesions, such as epithelial plaques or papillomavirus-associated lesions. Interpretation of normal and pathologic findings is best accomplished with knowledge of the life stage, reproductive history, and hormonal status of the animal.
Collapse
Affiliation(s)
- J Mark Cline
- Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Cooper TK, Gabrielson KL. Spontaneous lesions in the reproductive tract and mammary gland of female non-human primates. ACTA ACUST UNITED AC 2007; 80:149-70. [PMID: 17342758 DOI: 10.1002/bdrb.20105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Because of their close phylogenic relationship with humans, the use of non-human primates (NHP) as experimental subjects has a long history in biomedical research. Although research topics have shifted focus and species used have changed, NHP remain vital as models in basic and applied research. While there is a wealth of information available on the spontaneous lesions of NHP, most of this information is fragmented, dated, or narrow in focus, often limited to single case reports. This review attempts to integrate this information to illustrate and enumerate the spectrum of spontaneous pathology of the reproductive tract and mammary gland of NHP. Although not the focus of this review, steroid-related changes are inextricably linked to these tissues, and brief consideration is given to this subject as well.
Collapse
Affiliation(s)
- Timothy K Cooper
- Department of Comparative Pathobiology, The Johns Hopkins University School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205-2196, USA.
| | | |
Collapse
|