1
|
Aktas B, Aslim B, Ozdemir DA. A neurotherapeutic approach with Lacticaseibacillus rhamnosus E9 on gut microbiota and intestinal barrier in MPTP-induced mouse model of Parkinson's disease. Sci Rep 2024; 14:15460. [PMID: 38965287 PMCID: PMC11224381 DOI: 10.1038/s41598-024-65061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
The gut microbiota plays a crucial role in neural development and progression of neural disorders like Parkinson's disease (PD). Probiotics have been suggested to impact neurodegenerative diseases via gut-brain axis. This study aims to investigate the therapeutic potential of Lacticaseibacillus rhamnosus E9, a high exopolysaccharide producer, on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced mouse model of PD. C57BL/6 mice subjected to MPTP were fed L. rhamnosus E9 for fifteen days and sacrificed after the last administration. Motor functions were determined by open-field, catalepsy, and wire-hanging tests. The ileum and the brain tissues were collected for ELISA, qPCR, and immunohistochemistry analyses. The cecum content was obtained for microbiota analysis. E9 supplementation alleviated MPTP-induced motor dysfunctions accompanied by decreased levels of striatal TH and dopamine. E9 also reduced the level of ROS in the striatum and decreased the DAT expression while increasing the DR1. Furthermore, E9 improved intestinal integrity by enhancing ZO-1 and Occludin levels and reversed the dysbiosis of the gut microbiota induced by MPTP. In conclusion, E9 supplementation improved the MPTP-induced motor deficits and neural damage as well as intestinal barrier by modulating the gut microbiota in PD mice. These findings suggest that E9 supplementation holds therapeutic potential in managing PD through the gut-brain axis.
Collapse
Affiliation(s)
- Busra Aktas
- Department of Molecular Biology and Genetics, Burdur Mehmet Akif Ersoy University, Burdur, 15200, Turkey.
| | - Belma Aslim
- Department of Biology, Faculty of Science, Gazi University, Ankara, 06500, Turkey
| | - Deniz Ates Ozdemir
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, 06230, Turkey
| |
Collapse
|
2
|
Buchanan AM, Mena S, Choukari I, Vasa A, Crawford JN, Fadel J, Maxwell N, Reagan L, Cruikshank A, Best J, Nijhout HF, Reed M, Hashemi P. Serotonin as a biomarker of toxin-induced Parkinsonism. Mol Med 2024; 30:33. [PMID: 38429661 PMCID: PMC10908133 DOI: 10.1186/s10020-023-00773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/18/2023] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Loss of dopaminergic neurons underlies the motor symptoms of Parkinson's disease (PD). However stereotypical PD symptoms only manifest after approximately 80% of dopamine neurons have died making dopamine-related motor phenotypes unreliable markers of the earlier stages of the disease. There are other non-motor symptoms, such as depression, that may present decades before motor symptoms. METHODS Because serotonin is implicated in depression, here we use niche, fast electrochemistry paired with mathematical modelling and machine learning to, for the first time, robustly evaluate serotonin neurochemistry in vivo in real time in a toxicological model of Parkinsonism, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). RESULTS Mice treated with acute MPTP had lower concentrations of in vivo, evoked and ambient serotonin in the hippocampus, consistent with the clinical comorbidity of depression with PD. These mice did not chemically respond to SSRI, as strongly as control animals did, following the clinical literature showing that antidepressant success during PD is highly variable. Following L-DOPA administration, using a novel machine learning analysis tool, we observed a dynamic shift from evoked serotonin release in the hippocampus to dopamine release. We hypothesize that this finding shows, in real time, that serotonergic neurons uptake L-DOPA and produce dopamine at the expense of serotonin, supporting the significant clinical correlation between L-DOPA and depression. Finally, we found that this post L-DOPA dopamine release was less regulated, staying in the synapse for longer. This finding is perhaps due to lack of autoreceptor control and may provide a ground from which to study L-DOPA induced dyskinesia. CONCLUSIONS These results validate key prior hypotheses about the roles of serotonin during PD and open an avenue to study to potentially improve therapeutics for levodopa-induced dyskinesia and depression.
Collapse
Affiliation(s)
- Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Iman Choukari
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Aditya Vasa
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Jesseca N Crawford
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
| | - Jim Fadel
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
| | - Nick Maxwell
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
| | - Lawrence Reagan
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
- Columbia VA Health Care System, Columbia, SC, 29208, USA
| | | | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | | | - Michael Reed
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
3
|
Zhang DD, Zhang CY, Zhang YX, Cui HP, Jiao Chen, Wen-Zhi Ma, Jia H. G-CSF reduces loss of dopaminergic neurons by inhibiting TNF-α and IL-1β in mouse model of Parkinson's disease. Int J Neurosci 2023; 133:278-289. [PMID: 33781148 DOI: 10.1080/00207454.2021.1910259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE OF THE STUDY granulocyte-colony stimulating factor (G-CSF) is a hematopoietic growth factor existing in neutrophils, glial cells and neurons. Increasing researches discovered that G-CSF improved cell survival in neurodegenerative diseases by its anti-inflammatory effect. However, the effect of G-CSF in suppressing inflammation in Parkinson's disease (PD) remains unclear. Thus, the purpose of this study is to explored the anti-inflammatory effect of G-CSF in mouse model of PD. MATERIALS AND METHODS G-CSF was administrated in the PD model induced by MPTP. Subsequently, the protein of tyrosine hydroxylase (TH), ionized calcium-binding adaptor molecule 1 (Iba-1) and the inflammatory cytokines including tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) in the midbrain were examined. In addition, the phosphorylated mitogen-activated protein kinases (MAPK) including c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38 MAPK in the midbrain were investigated. RESULTS Compared with the MPTP group, the protein of TH in the midbrain was increased, while the Iba-1 and the inflammatory factors were decreased. In addition, the expression of phosphorylated JNK (p-JNK) in the midbrain of the MPTP + G-CSF group was decreased, while the phosphorylated ERK (p-ERK) levels were elevated. CONCLUSIONS These findings emphasize that G-CSF inhibited the degradation of DA neurons. The protective effect is associated with the reduction of the inflammatory factors caused by the inhibition of the microglial activation. Moreover, G-CSF may decrease the inflammatory factors through the decrease of P-JNK and the increase of P-ERK.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.,Department of physiology, School of Basic Medical Sciences, Chengde Medical University, Chengde, China
| | - Cheng-Yun Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Chengde Medical University, Chengde, China
| | - Yu-Xin Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Hai-Peng Cui
- Department of Pathophysiology, School of Basic Medical Sciences, Chengde Medical University, Chengde, China
| | - Jiao Chen
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Wen-Zhi Ma
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China.,Center for Reproductive Biology and Health, School of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Hua Jia
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.,Center for Reproductive Biology and Health, School of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
4
|
Neonatal 6-hydroxydopamine lesioning of rats and dopaminergic neurotoxicity: proposed animal model of Parkinson’s disease. J Neural Transm (Vienna) 2022; 129:445-461. [DOI: 10.1007/s00702-022-02479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 10/18/2022]
|
5
|
The Neuroprotective Effects of GPR4 Inhibition through the Attenuation of Caspase Mediated Apoptotic Cell Death in an MPTP Induced Mouse Model of Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22094674. [PMID: 33925146 PMCID: PMC8125349 DOI: 10.3390/ijms22094674] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
The proton-activated G protein-coupled receptor (GPCR) 4 (GPR4) is constitutively active at physiological pH, and GPR4 knockout protected dopaminergic neurons from caspase-dependent mitochondria-associated apoptosis. This study explored the role of GPR4 in a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated mouse model of Parkinson's disease (PD). In mice, subchronic MPTP administration causes oxidative stress-induced apoptosis in the dopaminergic neurons of the substantia nigra pars compacta (SNpc), resulting in motor deficits. NE52-QQ57, a selective GPR4 antagonist, reduced dopaminergic neuronal loss in MPTP-treated mice, improving motor and memory functions. MPTP and NE52-QQ57 co-treatment in mice significantly decreased pro-apoptotic marker Bax protein levels and increased anti-apoptotic marker Bcl-2 protein levels in the SNpc and striatum. MPTP-induced caspase 3 activation and poly (ADP-ribose) polymerase (PARP) cleavage significantly decreased in the SNpc and striatum of mice co-treated with NE52-QQ57. MPTP and NE52-QQ57 co-treatment significantly increased tyrosine hydroxylase (TH)-positive cell numbers in the SNpc and striatum compared with MPTP alone. NE52-QQ57 and MPTP co-treatment improved rotarod and pole test-assessed motor performance and improved Y-maze test-assessed spatial memory. Our findings suggest GPR4 may represent a potential therapeutic target for PD, and GPR4 activation is involved in caspase-mediated neuronal apoptosis in the SNpc and striatum of MPTP-treated mice.
Collapse
|
6
|
Xian YF, Lin ZX, Qu C, Liu L, Xu QQ. Neuroprotective effects of San-Jia-Fu-Mai decoction: Studies on the in vitro and in vivo Models of Parkinson's Disease. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/wjtcm.wjtcm_62_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Iggena D, Klein C, Rasińska J, Sparenberg M, Winter Y, Steiner B. Physical activity sustains memory retrieval in dopamine-depleted mice previously treated with L-Dopa. Behav Brain Res 2019; 369:111915. [PMID: 30998993 DOI: 10.1016/j.bbr.2019.111915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/13/2019] [Accepted: 04/14/2019] [Indexed: 01/27/2023]
Abstract
The neurodegenerative disorder Parkinson's disease affects motor abilities as well as cognition. The gold standard therapy is L-Dopa, which mainly restores motor skills. Therefore, we require additional interventions to sustain cognitive functions in Parkinson's disease. The lifestyle intervention "physical activity" improves adult hippocampal neurogenesis and memory but so far, its impact has not been investigated in rodent models for Parkinson's disease previously treated with the standard therapy. We hereby asked whether physical activity serves as a pro-neurogenic and -cognitive stimulus in dopamine-depleted mice previously treated with L-Dopa. Therefore, we injected dopamine-depleted mice with L-Dopa/Benserazide followed either by exercise or by a sedentary lifestyle. We analysed adult hippocampal neurogenesis histologically and assessed spatial memory in the Morris water maze. Furthermore, we investigated the hippocampal and striatal monoaminergic cross-talk. Physical activity prevented memory decline and was linked to a slower dopamine turnover but did not enhance neurogenesis in dopamine-depleted mice previously treated with L-Dopa. In conclusion, physical activity did not develop its full pro-neurogenic potential in mice previously treated with L-Dopa but sustained spatial cognition in Parkinson's disease.
Collapse
Affiliation(s)
- D Iggena
- Department of Neurology, Charité-Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany.
| | - C Klein
- Department of Neurology, Charité-Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| | - J Rasińska
- Department of Neurology, Charité-Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| | - M Sparenberg
- Department of Neurology, Charité-Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| | - Y Winter
- Department of Biology, Humboldt-University Berlin, Philippstraße 13, 10099, Berlin, Germany
| | - B Steiner
- Department of Neurology, Charité-Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
8
|
Chang HC, Liu KF, Teng CJ, Lai SC, Yang SE, Ching H, Wu CR. Sophora Tomentosa Extract Prevents MPTP-Induced Parkinsonism in C57BL/6 Mice Via the Inhibition of GSK-3β Phosphorylation and Oxidative Stress. Nutrients 2019; 11:nu11020252. [PMID: 30678114 PMCID: PMC6412387 DOI: 10.3390/nu11020252] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
Sophora species are used as dietary medicines in aging-associated symptoms. Sophora tomentosa L. (ST) is a native medicinal plant in Southeast Asia; however, there is no pharmacological literature about ST extract. The present study evaluates the antioxidant phytoconstituent contents and radical scavenging capacities of ST extract. The further investigation was to clarify the neuroprotective mechanism of ST extract against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism by assaying the activities of the dopaminergic system and antioxidant defenses, glycogen synthase kinase 3β (GSK3-β) phosphorylation, and α-synuclein levels in C57BL/6 mice. The results show that ST extract alleviated the motor deficits in MPTP-induced Parkinsonism with four behavioral tests, including a rearing locomotor, catalepsy test, balance beam walking test, and pole test. ST extract reversed the number of tyrosine hydroxylase (TH)-positive neurons in substantia nigra (SN) that had decreased by MPTP. ST extract also restored the decreased levels of dopamine and the expression of tyrosine hydroxylase (TH) in the striatum. Furthermore, ST extract restored the levels of glutathione (GSH) and the activities of antioxidant enzymes, and decreased the elevated levels of malondialdehyde (MDA) in mouse striatum. ST extract also decreased α-synuclein overexpression and GSK-3β phosphorylation in mouse striatum. In vitro, ST extract exerted higher 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging capacities through its higher phenolic contents, especially protocatechuic acid and epicatechin. These results suggest that ST extract has the potential to counteract MPTP-induced motor deficit. The neuroprotective mechanism of ST extract against MPTP-induced Parkinsonism might be related to decreasing GSK-3β phosphorylation and restoring the activities of striatal antioxidant defenses to restore the nigrostriatal dopaminergic function and decrease α-synuclein accumulation.
Collapse
Affiliation(s)
- Hung-Chi Chang
- Department of Golden-Ager Industry Management, College of Management, Chaoyang University of Technology, Taichung 41394, Taiwan.
| | - Keng-Fan Liu
- The Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan.
| | - Chia-Jen Teng
- The Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan.
| | - Shu-Chen Lai
- Department of Pharmacy, Tung's Taichung MetroHarbor Hospital, Taichung 43550, Taiwan.
| | - Shu-Er Yang
- Department of Beauty Science and Graduate, Institute of Beauty Science Technology, Chienkuo Technology University, Changhua City 500, Taiwan.
| | - Hui Ching
- Department of Pharmacy, Taichung Hospital, Ministry of Health and Welfare, Taichung, 40343, Taiwan.
| | - Chi-Rei Wu
- The Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
9
|
Abolaji AO, Adedara AO, Adie MA, Vicente-Crespo M, Farombi EO. Resveratrol prolongs lifespan and improves 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced oxidative damage and behavioural deficits in Drosophila melanogaster. Biochem Biophys Res Commun 2018; 503:1042-1048. [DOI: 10.1016/j.bbrc.2018.06.114] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/16/2022]
|
10
|
Liu J, Wang F, Liu S, Du J, Hu X, Xiong J, Fang R, Chen W, Sun J. Sodium butyrate exerts protective effect against Parkinson's disease in mice via stimulation of glucagon like peptide-1. J Neurol Sci 2017; 381:176-181. [DOI: 10.1016/j.jns.2017.08.3235] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/03/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
|
11
|
Pramipexole restores depressed transmission in the ventral hippocampus following MPTP-lesion. Sci Rep 2017; 7:44426. [PMID: 28290500 PMCID: PMC5349604 DOI: 10.1038/srep44426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/07/2017] [Indexed: 12/18/2022] Open
Abstract
The hippocampus has a significant association with memory, cognition and emotions. The dopaminergic projections from both the ventral tegmental area and substantia nigra are thought to be involved in hippocampal activity. To date, however, few studies have investigated dopaminergic innervation in the hippocampus or the functional consequences of reduced dopamine in disease models. Further complicating this, the hippocampus exhibits anatomical and functional differentiation along its dorso-ventral axis. In this work we investigated the role of dopamine on hippocampal long term potentiation using D-amphetamine, which stimulates dopamine release, and also examined how a dopaminergic lesion affects the synaptic transmission across the anatomic subdivisions of the hippocampus. Our findings indicate that a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine induced dopaminergic lesion has time-dependent effects and impacts mainly on the ventral region of the hippocampus, consistent with the density of dopaminergic innervation. Treatment with a preferential D3 receptor agonist pramipexole partly restored normal synaptic transmission and Long-Term Potentiation. These data suggest a new mechanism to explain some of the actions of pramipexole in Parkinson´s disease.
Collapse
|
12
|
|
13
|
Respiratory chain inhibition: one more feature to propose MPTP intoxication as a Leigh syndrome model. J Bioenerg Biomembr 2016; 48:483-491. [PMID: 27787743 DOI: 10.1007/s10863-016-9683-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/14/2016] [Indexed: 01/30/2023]
Abstract
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxicated mice have been widely used to model the loss of dopaminergic neurons. As this treatment leads to basal ganglia degeneration, it was proposed that MPTP mice could be used as a model of Leigh syndrome. However, this mitochondrial pathology is biochemically characterized by a respiratory chain dysfunction. To determine if MPTP can affect in vivo mitochondria function, we measured the activities of mitochondrial respiratory chain complexes in several tissues. Our results show that MPTP affects mainly mitochondrial respiratory chain complex IV, as found in Leigh Syndrome, confirming that acute MPTP intoxicated mice are a good model of Leigh Syndrome.
Collapse
|
14
|
Franke SK, van Kesteren RE, Hofman S, Wubben JAM, Smit AB, Philippens IHCHM. Individual and Familial Susceptibility to MPTP in a Common Marmoset Model for Parkinson's Disease. NEURODEGENER DIS 2016; 16:293-303. [PMID: 26999593 DOI: 10.1159/000442574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/11/2015] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Insight into susceptibility mechanisms underlying Parkinson's disease (PD) would aid the understanding of disease etiology, enable target finding and benefit the development of more refined disease-modifying strategies. METHODS We used intermittent low-dose MPTP (0.5 mg/kg/week) injections in marmosets and measured multiple behavioral and neurochemical parameters. Genetically diverse monkeys from different breeding families were selected to investigate inter- and intrafamily differences in susceptibility to MPTP treatment. RESULTS We show that such differences exist in clinical signs, in particular nonmotor PD-related behaviors, and that they are accompanied by differences in neurotransmitter levels. In line with the contribution of a genetic component, different susceptibility phenotypes could be traced back through genealogy to individuals of the different families. CONCLUSION Our findings show that low-dose MPTP treatment in marmosets represents a clinically relevant PD model, with a window of opportunity to examine the onset of the disease, allowing the detection of individual variability in disease susceptibility, which may be of relevance for the diagnosis and treatment of PD in humans.
Collapse
Affiliation(s)
- Sigrid K Franke
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Klein C, Rasińska J, Empl L, Sparenberg M, Poshtiban A, Hain EG, Iggena D, Rivalan M, Winter Y, Steiner B. Physical exercise counteracts MPTP-induced changes in neural precursor cell proliferation in the hippocampus and restores spatial learning but not memory performance in the water maze. Behav Brain Res 2016; 307:227-38. [PMID: 27012392 DOI: 10.1016/j.bbr.2016.02.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/26/2016] [Accepted: 02/29/2016] [Indexed: 01/29/2023]
Abstract
Parkinson's disease (PD) is characterized by a continuous loss of dopaminergic neurons in the substantia nigra, which not only leads to characteristic motor symptoms but also to cognitive impairments. Physical exercise has been shown to improve hippocampus-dependent cognitive functions in PD patients. Animal studies have demonstrated the involvement of adult hippocampal neurogenesis in exercise-induced improvements of visuo-spatial learning and memory. Here, we investigated the direct impact of voluntary wheel running on hippocampal neurogenesis and spatial learning and memory in the Morris water maze (MWM) using the1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. We also analyzed striatal and hippocampal dopamine transmission and mRNA expression levels of dopamine receptors. We show that MPTP-induced spatial learning deficits were alleviated by short-term physical exercise but not MPTP-induced spatial memory impairments in either exercise intervention group. Neural precursor proliferation was transiently altered in MPTP-treated mice, while the cell survival was increased by exercise. Dopamine was progressively depleted by MPTP and its turnover altered by exercise. In addition, gene expression of dopamine receptor D1/D5 was transiently upregulated following MPTP treatment but not affected by physical exercise. Our findings suggest that physical exercise benefits spatial learning but not memory performance in the MWM after MPTP-induced dopamine depletion by restoring precursor cell proliferation in the hippocampus and influencing dopamine transmission. This adds to the understanding of cognitive decline and mechanisms for potential improvements by physical exercise in PD patients.
Collapse
Affiliation(s)
- C Klein
- Charité University Medicine Berlin, Department of Neurology, Berlin, Germany
| | - J Rasińska
- Charité University Medicine Berlin, Department of Neurology, Berlin, Germany
| | - L Empl
- Charité University Medicine Berlin, Department of Neurology, Berlin, Germany
| | - M Sparenberg
- Charité University Medicine Berlin, Department of Neurology, Berlin, Germany
| | - A Poshtiban
- Charité University Medicine Berlin, Department of Neurology, Berlin, Germany
| | - E G Hain
- Charité University Medicine Berlin, Department of Neurology, Berlin, Germany
| | - D Iggena
- Charité University Medicine Berlin, Department of Neurology, Berlin, Germany
| | - M Rivalan
- Humboldt University, Department of Neurobiology, Berlin, Germany
| | - Y Winter
- Humboldt University, Department of Neurobiology, Berlin, Germany
| | - B Steiner
- Charité University Medicine Berlin, Department of Neurology, Berlin, Germany.
| |
Collapse
|
16
|
Viana SD, Fernandes RC, Canas PM, Silva AM, Carvalho F, Ali SF, Fontes Ribeiro CA, Pereira FC. Presymptomatic MPTP Mice Show Neurotrophic S100B/mRAGE Striatal Levels. CNS Neurosci Ther 2016; 22:396-403. [PMID: 26843141 DOI: 10.1111/cns.12508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 11/29/2022] Open
Abstract
AIMS Astrocytic S100B and receptor for advanced glycation endproducts (RAGE) have been implicated in Parkinson׳s disease (PD) pathogenesis through yet unclear mechanisms. This study attempted to characterize S100B/mRAGE (signaling isoform) axis in a dying-back dopaminergic (DAergic) axonopathy setting, which mimics an early event of PD pathology. METHODS C57BL/6 mice were submitted to a chronic MPTP paradigm (20 mg/kg i.p., 2 i.d-12 h apart, 5 days/week for 2 weeks) and euthanized 7 days posttreatment to assess mRAGE cellular distribution and S100B/mRAGE density in striatum, after probing their locomotor activity (pole test and rotarod). Dopaminergic status, oxidative stress, and gliosis were also measured (HPLC-ED, WB, IHC). RESULTS This MPTP regimen triggered increased oxidative stress (augmented HNE levels), gliosis (GS/Iba1-reactive morphology), loss of DAergic fibers (decreased tyrosine hydroxylase levels), and severe hypodopaminergia. Biochemical deficits were not translated into motor abnormalities, mimicking a presymptomatic PD period. Remarkably, striatal neurotrophic S100B/mRAGE levels and major neuronal mRAGE localization coexist with compensatory responses (3-fold increase in DA turnover), which are important to maintain normal motor function. CONCLUSION Our findings rule out the involvement of S100B/mRAGE axis in striatal reactive gliosis, DAergic axonopathy and warrant further exploration of its neurotrophic effects in a presymptomatic compensatory PD stage, which is a fundamental period for successful implementation of therapeutic strategies.
Collapse
Affiliation(s)
- Sofia D Viana
- Laboratory of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI - University of Coimbra, Coimbra, Portugal.,Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Farmácia, Portugal
| | - Rosa C Fernandes
- Laboratory of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI - University of Coimbra, Coimbra, Portugal
| | - Paula M Canas
- Laboratory of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI - University of Coimbra, Coimbra, Portugal
| | - Andréa M Silva
- Laboratory of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI - University of Coimbra, Coimbra, Portugal
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Syed F Ali
- Neurochemistry Laboratory, Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, USA
| | - Carlos A Fontes Ribeiro
- Laboratory of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI - University of Coimbra, Coimbra, Portugal
| | - Frederico C Pereira
- Laboratory of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI - University of Coimbra, Coimbra, Portugal
| |
Collapse
|
17
|
Janakiraman U, Manivasagam T, Thenmozhi AJ, Essa MM, Barathidasan R, SaravanaBabu C, Guillemin GJ, Khan MAS. Influences of Chronic Mild Stress Exposure on Motor, Non-Motor Impairments and Neurochemical Variables in Specific Brain Areas of MPTP/Probenecid Induced Neurotoxicity in Mice. PLoS One 2016; 11:e0146671. [PMID: 26765842 PMCID: PMC4713092 DOI: 10.1371/journal.pone.0146671] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) is regarded as a movement disorder mainly affecting the elderly population and occurs due to progressive loss of dopaminergic (DAergic) neurons in nigrostriatal pathway. Patients suffer from non-motor symptoms (NMS) such as depression, anxiety, fatigue and sleep disorders, which are not well focussed in PD research. Depression in PD is a predominant /complex symptom and its pathology lies exterior to the nigrostriatal system. The main aim of this study is to explore the causative or progressive effect of chronic mild stress (CMS), a paradigm developed as an animal model of depression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (25 mg/kg. body wt.) with probenecid (250 mg/kg, s.c.) (MPTP/p) induced mice model of PD. After ten i.p. injections (once in 3.5 days for 5 weeks) of MPTP/p or exposure to CMS for 4 weeks, the behavioural (motor and non-motor) impairments, levels and expressions of dopamine (DA), serotonin (5-HT), DAergic markers such as tyrosine hydroxylase (TH), dopamine transporter (DAT), vesicular monoamine transporters-2 (VMAT 2) and α-synuclein in nigrostriatal (striatum (ST) and substantia nigra (SN)) and extra-nigrostriatal (hippocampus, cortex and cerebellum) tissues were analysed. Significantly decreased DA and 5-HT levels, TH, DAT and VMAT 2 expressions and increased motor deficits, anhedonia-like behaviour and α-synuclein expression were found in MPTP/p treated mice. Pre and/or post exposure of CMS to MPTP/p mice further enhanced the MPTP/p induced DA and 5-HT depletion, behaviour abnormalities and protein expressions. Our results could strongly confirm that the exposure of stress after MPTP/p injections worsens the symptoms and neurochemicals status of PD.
Collapse
Affiliation(s)
- Udaiyappan Janakiraman
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, 608002, Tamilnadu, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, 608002, Tamilnadu, India
- * E-mail:
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, 608002, Tamilnadu, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| | - Rajamani Barathidasan
- Centre for Toxicology and Developmental Research, Sri Ramachandra University, Porur, Chennai-600 116, Tamilnadu, India
| | - Chidambaram SaravanaBabu
- Centre for Toxicology and Developmental Research, Sri Ramachandra University, Porur, Chennai-600 116, Tamilnadu, India
| | - Gilles J. Guillemin
- Neuropharmacology group, Faculty of Medicine and Health Sciences, Deb Bailey MND Research Laboratory, Macquarie University, NSW, 2109, Australia
| | - Mohammed A. S. Khan
- Harvard Medical School, Massachusetts General Hospital, Shriners Hospital for Children, Boston, Massachusetts, 02114, United States of America
| |
Collapse
|
18
|
Heng Y, Zhang QS, Mu Z, Hu JF, Yuan YH, Chen NH. Ginsenoside Rg1 attenuates motor impairment and neuroinflammation in the MPTP-probenecid-induced parkinsonism mouse model by targeting α-synuclein abnormalities in the substantia nigra. Toxicol Lett 2015; 243:7-21. [PMID: 26723869 DOI: 10.1016/j.toxlet.2015.12.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/14/2015] [Accepted: 12/21/2015] [Indexed: 11/27/2022]
Abstract
Parkinson's disease (PD) is pathologically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of aggregated α-synuclein in specific central nervous system (CNS) regions. Disease development is attributed to α-synuclein abnormalities, particularly aggregation and phosphorylation. The ginsenoside Rg1, an active component of ginseng, possesses neuroprotective and anti-inflammatory effects. The purpose of the present study was to evaluate these activities of Rg1 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/probenecid (MPTP/p)-induced PD mouse model for the first time and to elucidate the underlying mechanisms. Oral treatment with Rg1 significantly attenuated the high MPTP-induced mortality, behavior defects, loss of dopamine neurons and abnormal ultrastructure changes in the SNpc. Other assays indicated that the protective effect of Rg1 may be mediated by its anti-neuroinflammatory properties. Rg1 regulated MPTP-induced reactive astrocytes and microglia and decreased the release of cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the SNpc. Rg1 also alleviated the unusual MPTP-induced increase in oligomeric, phosphorylated and disease-related α-synuclein in the SNpc. In conclusion, Rg1 protects dopaminergic neurons, most likely by reducing aberrant α-synuclein-mediated neuroinflammation, and holds promise for PD therapeutics.
Collapse
Affiliation(s)
- Yang Heng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qiu-Shuang Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zheng Mu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jin-Feng Hu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
19
|
Franke SK, van Kesteren RE, Wubben JAM, Hofman S, Paliukhovich I, van der Schors RC, van Nierop P, Smit AB, Philippens IHCHM. Progression and recovery of Parkinsonism in a chronic progressive MPTP-induction model in the marmoset without persistent molecular and cellular damage. Neuroscience 2015; 312:247-59. [PMID: 26431624 DOI: 10.1016/j.neuroscience.2015.09.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 12/23/2022]
Abstract
Chronic exposure to low-dose 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in marmoset monkeys was used to model the prodromal stage of Parkinson's disease (PD), and to investigate mechanisms underlying disease progression and recovery. Marmosets were subcutaneously injected with MPTP for a period of 12weeks, 0.5mg/kg once per week, and clinical signs of Parkinsonism, motor- and non-motor behaviors were recorded before, during and after exposure. In addition, postmortem immunohistochemistry and proteomics analysis were performed. MPTP-induced parkinsonian clinical symptoms increased in severity during exposure, and recovered after MPTP administration was ended. Postmortem analyses, after the recovery period, revealed no alteration of the number and sizes of tyrosine hydroxylase (TH)-positive dopamine (DA) neurons in the substantia nigra. Also levels of TH in putamen and caudate nucleus were unaltered, no differences were observed in DA, serotonin or nor-adrenalin levels in the caudate nucleus, and proteomics analysis revealed no global changes in protein expression in these brain areas between treatment groups. Our findings indicate that parkinsonian symptoms can occur without detectable damage at the cellular or molecular level. Moreover, we show that parkinsonian symptoms may be reversible when diagnosed and treated early.
Collapse
Affiliation(s)
- S K Franke
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands; Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - R E van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - J A M Wubben
- Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - S Hofman
- Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - I Paliukhovich
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - R C van der Schors
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - P van Nierop
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - A B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | | |
Collapse
|
20
|
Maiti P, Gregg LC, McDonald MP. MPTP-induced executive dysfunction is associated with altered prefrontal serotonergic function. Behav Brain Res 2015; 298:192-201. [PMID: 26393431 DOI: 10.1016/j.bbr.2015.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/14/2015] [Accepted: 09/09/2015] [Indexed: 02/09/2023]
Abstract
In Parkinson's disease, cognitive deficits manifest as fronto-striatally-mediated executive dysfunction, with impaired attention, planning, judgment, and impulse control. We examined changes in executive function in mice lesioned with subchronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using a 3-choice serial reaction-time (SRT) task, which included measures of sustained attention and impulse control. Each trial of the baseline SRT task comprised a pseudo-random pre-cue period ranging from 3 to 8 s, followed by a 1-s cue duration. MPTP impaired all measures of impulsive behavior acutely, but with additional training their performance normalized to saline control levels. When challenged with shorter cue durations, MPTP-lesioned mice had significantly slower reaction times than wild-type mice. When challenged with longer pre-cue times, the MPTP-lesioned mice exhibited a loss of impulse control at the longer durations. In lesioned mice, striatal dopamine was depleted by 54% and the number of tyrosine-hydroxylase-positive neurons in the substantia nigra pars compacta was reduced by 75%. Serotonin (5-HT) was unchanged in the striatum and prefrontal cortex (PFC), but the ratio of 5-hydroxyindolacetic acid (5-HIAA) to 5-HT was significantly reduced in the MPTP group in the PFC. In lesioned mice, prefrontal 5-HIAA/5-HT was significantly correlated with the executive impairments and striatal norepinephrine was associated with slower reaction times. None of the neurochemical measures was significantly associated with behavior in saline-treated controls. Taken together, these results show that prefrontal 5-HT turnover may play a pivotal role in MPTP-induced executive dysfunction.
Collapse
Affiliation(s)
- Panchanan Maiti
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Laura C Gregg
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Michael P McDonald
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
21
|
Lei X, Li H, Huang B, Rizak J, Li L, Xu L, Liu L, Wu J, Lü L, Wang Z, Hu Y, Le W, Deng X, Li J, Yao Y, Xu L, Hu X, Zhang B. 1-Methyl-4-phenylpyridinium stereotactic infusion completely and specifically ablated the nigrostriatal dopaminergic pathway in rhesus macaque. PLoS One 2015; 10:e0127953. [PMID: 26010745 PMCID: PMC4444358 DOI: 10.1371/journal.pone.0127953] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/22/2015] [Indexed: 01/09/2023] Open
Abstract
Introduction Complete and specific ablation of a single dopaminergic (DA) pathway is a critical step to distinguish the roles of DA pathways in vivo. However, this kind of technique has not been reported in non-human primates. This study aimed to establish a lesioning method with a complete and specific ablation. Method A carefully designed infusion route based on a MRI stereotactic technique was developed to deliver the highly selective dopaminergic toxin 1-methyl-4-phenylpyridinium (MPP+) unilaterally into multiple sites of compact part of substantia nigra (SNc) and striatum in monkeys. The nigrostriatal DA pathway was selected because lesioning of this pathway may induce symptoms that are suitable for evaluation. The pathological, behavioral, neuropharmacological, and clinical laboratorial data were collected to evaluate the lesioning effects. Result Pathological examination revealed a complete ablation of tyrosine hydroxylase positive (TH+) neurons in the SNc, while preserving intact TH+ neurons in the ventral tegmental area (VTA) nearby. TH+ projections in the striatum were also unilaterally lost. The monkeys displayed stable (>28 weeks) rotations and symptoms which were expected with loss of DA neurons in the SNc, with rest tremor being an exception. No item implied the presence of a severe side effect caused by the operation or the intracerebral MPP+ infusion. The results suggested that rest tremor may not directly rely on the nigrostriatal pathway. Conclusion Taken together, in addition to providing a specific nigrostriatal DA lesioned model, this method, combined with brain stimulation or other techniques, can be applied as a powerful tool for the complete lesion of any desired DA pathway in order to study its specific functions in the brain.
Collapse
Affiliation(s)
- Xiaoguang Lei
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Baihui Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Joshua Rizak
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ling Li
- Medical Imaging Department, Kunming General Hospital of PLA, Kunming, Yunnan, China
| | - Liqi Xu
- Medical Imaging Department, Kunming General Hospital of PLA, Kunming, Yunnan, China
| | - Li Liu
- Medical Imaging Department, Kunming General Hospital of PLA, Kunming, Yunnan, China
| | - Jing Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Longbao Lü
- Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhengbo Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yingzhou Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Weidong Le
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xingli Deng
- Neurosurgery Department, 1st Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jiali Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yonggang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- CAS Center for Excellence in Brain Science, Chinese Academy of Sciences, Shanghai, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- CAS Center for Excellence in Brain Science, Chinese Academy of Sciences, Shanghai, China
| | - Xintian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- CAS Center for Excellence in Brain Science, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (XH); (BZ)
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail: (XH); (BZ)
| |
Collapse
|
22
|
An JH, Choi DK, Lee KJ, Choi JW. Surface-enhanced Raman spectroscopy detection of dopamine by DNA Targeting amplification assay in Parkisons's model. Biosens Bioelectron 2015; 67:739-46. [DOI: 10.1016/j.bios.2014.10.049] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/20/2014] [Accepted: 10/20/2014] [Indexed: 12/21/2022]
|
23
|
Validity of the MPTP-Treated Mouse as a Model for Parkinson's Disease. Mol Neurobiol 2015; 53:1625-1636. [PMID: 25676140 PMCID: PMC4789200 DOI: 10.1007/s12035-015-9103-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/15/2015] [Indexed: 11/03/2022]
Abstract
Parkinson's disease (PD) is characterized by dopaminergic (DA) neuron death in the substantia nigra (SN) and subsequent striatal adaptations. Mice treated with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine (MPTP) are widely used as a model for PD. To assess the validity of the MPTP mouse model for PD pathogenesis, we here identify the biological processes that are dysregulated in both human PD and MPTP-treated mice. Gene enrichment analysis of published differentially expressed messenger RNAs (mRNAs) in the SN of PD patients and MPTP-treated mice revealed an enrichment of gene categories related to motor dysfunction and neurodegeneration. In the PD striatum, a similar enrichment was found, whereas in the striatum of MPTP mice, acute processes linked to epilepsy were selectively enriched shortly following MPTP treatment. More importantly, we integrated the proteins encoded by the differentially expressed mRNAs into molecular landscapes showing PD pathogenesis-implicated processes only in the SN, including vesicular trafficking, exocytosis, mitochondrial apoptosis, and DA neuron-specific transcription, but not in the striatum. We conclude that the current use of the MPTP mouse as a model for studying the molecular processes in PD pathogenesis is more valid for SN than striatal mechanisms in PD. This novel insight has important practical implications for future studies using this model to investigate PD pathogenesis and evaluate the efficacy of new treatments.
Collapse
|
24
|
Noradrenergic-Dopaminergic Interactions Due to DSP-4-MPTP Neurotoxin Treatments: Iron Connection. Curr Top Behav Neurosci 2015; 29:73-86. [PMID: 26718588 DOI: 10.1007/7854_2015_411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The investigations of noradrenergic lesions and dopaminergic lesions have established particular profiles of functional deficits and accompanying alterations of biomarkers in brain regions and circuits. In the present account, the focus of these lesions is directed toward the effects upon dopaminergic neurotransmission and expression that are associated with the movement disorders and psychosis-like behavior. In this context, it was established that noradrenergic denervation, through administration of the selective noradrenaline (NA) neurotoxin, DSP-4, should be performed prior to the depletion of dopamine (DA) with the selective neurotoxin, MPTP. Employing this regime, it was shown that (i) following DSP-4 (50 mg/kg) pretreatment of C57/Bl6 mice, both the functional and neurochemical (DA loss) effects of MPTP (2 × 20 and 2 × 40 mg/kg) were markedly exacerbated, and (ii) following postnatal iron (Fe(2+), 7.5 mg/kg, on postnatal days 19-12), pretreatment with DSP-4 followed by the lower 2 × 20 mg/kg MPTP dose induced even greater losses of motor behavior and striatal DA. As yet, the combination of NA-DA depletions, and even more so Fe(2+)-NA-DA depletion, has been considered to present a movement disorder aspect although studies exploring cognitive domains are lacking. With intrusion of iron overload into this formula, the likelihood of neuropsychiatric disorder, as well, unfolds.
Collapse
|
25
|
Wang M, Zhu J, Pan Y, Dong J, Zhang L, Zhang X, Zhang L. Hydrogen sulfide functions as a neuromodulator to regulate striatal neurotransmission in a mouse model of Parkinson's disease. J Neurosci Res 2014; 93:487-94. [PMID: 25388401 DOI: 10.1002/jnr.23504] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/24/2014] [Accepted: 09/24/2014] [Indexed: 01/09/2023]
Abstract
Hydrogen sulfide (H2S), a novel endogenous gasotransmitter, has been considered a neuromodulator to enhance hippocampal long-term potentiation and exerts neuroprotective effects against neurotoxin-induced neurodegeneration in rodent models of Parkinson's disease (PD). However, whether H2S can function as a neuromodulator to regulate the levels of nigrostriatal neurotransmitters and then impact the vulnerability of dopaminergic (DA) neurons in response to neurotoxins remains unknown. For this study, we prepared a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine plus probenecid (MPTP/p)-induced mouse subacute model of PD to explore the modulatory effect of H2S on monoamine and amino acid neurotransmitters in the striatum of MPTP-treated mice. This study shows that NaHS (an H2S donor, 5.6 mg/kg/day, i.p.) administration improves the survival rate and significantly ameliorates the weight loss of MPTP-treated mice. NaHS treatment attenuated MPTP-induced neuronal damage, restored the diminution of DA neurons, and suppressed the overactivation of astrocytes in the mouse striatum. Additionally, NaHS upregulated striatal serotonin levels and modulated the balance of excitatory glutamate and the inhibitory γ-aminobutyric acid system in response to MPTP challenge. The current study indicates that H2S may function as an effective neuromodulator to regulate striatal neurotransmission and provides insight into the potential of H2S for PD therapy.
Collapse
Affiliation(s)
- Min Wang
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
Lu Z, Wang J, Li M, Liu Q, Wei D, Yang M, Kong L. (1)H NMR-based metabolomics study on a goldfish model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Chem Biol Interact 2014; 223:18-26. [PMID: 25242684 DOI: 10.1016/j.cbi.2014.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/22/2014] [Accepted: 09/09/2014] [Indexed: 11/19/2022]
Abstract
A goldfish (Carassius auratus) model of Parkinson's disease (PD) was constructed by a single dose of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) according to previously reported methods. Global metabolite changes in brain of the MPTP induced goldfish model of PD were investigated. (1)H NMR-based metabolomics combined with various statistical methods such as orthogonal partial least squares discriminant analysis (OPLS-DA) and two-dimensional statistical total correlation spectroscopy (2D-STOCSY) found significant increase of leucine, isoleucine, valine, alanine, alanylalanine, creatinine, myo-inositol, 18:2 fatty acid, total fatty acids, arachic alcohol, taurine and significant decrease of N-acetylaspartate, (phospho)creatine, (phospho)choline, betaine, glutamine, 3-hexenedioate, acetamide, malonate, isocitrate, scyllo-inositol, phosphatidylcholines, cholesterols, n-3 fatty acids, polyunsaturated fatty acids (PUFAs) in brain of MPTP induced PD goldfish. These disturbed metabolite levels were involved in oxidative stress, energy failure, neuronal cell injury and death, consistent with those observed in clinical PD patients, and rodents and primates model of PD, indicating that the acute MPTP model of goldfish was an ideal and valuable model for PD research. In addition, several unusual metabolites in brain were significantly changed between MPTP induced PD and control goldfish, which might also play an important role in the pathogenesis of PD. This study also demonstrated the applicability and potential of (1)H NMR-based metabolomics approach for evaluation of animal models of disease induced by chemicals, such as MPTP-induced PD goldfish.
Collapse
Affiliation(s)
- Zhaoguang Lu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Junsong Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| | - Minghui Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Qingwang Liu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Dandan Wei
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Minghua Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
27
|
PPAR-α agonist fenofibrate protects against the damaging effects of MPTP in a rat model of Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2014; 53:35-44. [PMID: 24593945 DOI: 10.1016/j.pnpbp.2014.02.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 01/23/2023]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The etiology and pathogenesis of PD are still unknown, however, many evidences suggest a prominent role of oxidative stress, inflammation, apoptosis, mitochondrial dysfunction and proteosomal dysfunction. The peroxisome proliferator-activated receptor (PPAR) ligands, a member of the nuclear receptor family, have anti-inflammatory activity over a variety of rodent's models for acute and chronic inflammation. PPAR-α agonists, a subtype of the PPAR receptors, such as fenofibrate, have been shown a major role in the regulation of inflammatory processes. Animal models of PD have shown that neuroinflammation is one of the most important mechanisms involved in dopaminergic cell death. In addition, anti-inflammatory drugs are able to attenuate toxin-induced parkinsonism. In this study we evaluated the effects of oral administration of fenofibrate 100mg/kg 1h after infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the SNpc. First, we assessed the motor behavior in the open field for 24h, 7, 14 and 21 days after MPTP. Twenty-two days after surgery, the animals were tested for two-way active avoidance and forced swimming for evaluation regarding cognitive and depressive parameters, respectively. Twenty-three days after infusion of the toxin, we quantified DA and turnover and evaluated oxidative stress through the measurement of GSH (glutathione peroxidase), SOD (superoxide dismutase) and LOOH (hydroperoxide lipid). The data show that fenofibrate was able to decrease hypolocomotion caused by MPTP 24h after injury, depressive-like behavior 22 days after the toxin infusion, and also protected against decreased level of DA and excessive production of reactive oxygen species (ROS) 23 days after surgery. Thus, fenofibrate has shown a neuroprotective effect in the MPTP model of Parkinson's disease.
Collapse
|
28
|
MALDI Mass Spectrometry Imaging of 1-Methyl-4-phenylpyridinium (MPP+) in Mouse Brain. Neurotox Res 2013; 25:135-45. [DOI: 10.1007/s12640-013-9449-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/24/2013] [Accepted: 12/05/2013] [Indexed: 12/01/2022]
|