1
|
Chen Z, Wu Y, Wang B, Fang J, Gan C, Sang C, Dun Z, Luosang T, Wang Q, Zeren D, Xiong T. Intrahepatic cholestasis induced by α-naphthylisothiocyanate can cause gut-liver axis disorders. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103672. [PMID: 33989784 DOI: 10.1016/j.etap.2021.103672] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/25/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Clinical studies have shown that Intrahepatic cholestasis is closely related to intestinal injury. The gut-liver axis theory suggests that the intestine and liver are closely related, and that bile acids are important mediators linking the intestine and liver. We compared two cholestasis models: a single injection model that received a single subcutaneous ANIT injection (75 mg/kg), and a multiple subcutaneous injection model that received an injection of ANIT (50 mg/kg) every other day for 2 weeks. We used Transmetil (ademetionine 1,4-butanedisulfonate) to relieve intrahepatic cholestasis in the multiple injection group. In the multiple injection group, we found increased hepatic bile duct hyperplasia, increased fibrosis of the liver, increased small intestine inflammation and oxidative damage, increased harmful bile acids, decreased bile acids transporter levels. After treatment with Transmetil, the liver and gut injuries were relieved. These results suggest that intrahepatic cholestasis can cause disorders of the gut-liver axis.
Collapse
Affiliation(s)
- Zhengyuan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuhuan Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bixia Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiamin Fang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Changlian Gan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chuanlan Sang
- Laboratory of Experimental Animal, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhu Dun
- Research Department, University of Tibetan Medicine, Lhasa, 850000, China
| | - Tajie Luosang
- Research Department, University of Tibetan Medicine, Lhasa, 850000, China
| | - Qing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Dawa Zeren
- Research Department, University of Tibetan Medicine, Lhasa, 850000, China.
| | - Tianqin Xiong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Langedijk JAGM, Beuers UH, Oude Elferink RPJ. Cholestasis-Associated Pruritus and Its Pruritogens. Front Med (Lausanne) 2021; 8:639674. [PMID: 33791327 PMCID: PMC8006388 DOI: 10.3389/fmed.2021.639674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
Pruritus is a debilitating symptom of various cholestatic disorders, including primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC) and inherited progressive familial intrahepatic cholestasis (PFIC). The molecular mechanisms leading to cholestasis-associated pruritus are still unresolved and the involved pruritogens are indecisive. As a consequence of pruritus, patients suffer from sleep deprivation, loss of daytime concentration, auto-mutilation and sometimes even suicidal ideations. Current guideline-approved therapy of cholestasis-associated pruritus includes stepwise administration of several medications, which may alleviate complaints in some, but not all affected patients. Therefore, also experimental therapeutic approaches are required to improve patients' quality of life. This article reviews the current state of research on pruritogens and their receptors, and shortly discusses the most recent experimental therapies.
Collapse
Affiliation(s)
| | | | - Ronald P. J. Oude Elferink
- Amsterdam University Medical Centers, Tytgat Institute for Liver and Intestinal Research, Research Institute Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Animal models of biliary injury and altered bile acid metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1254-1261. [PMID: 28709963 DOI: 10.1016/j.bbadis.2017.06.027] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022]
Abstract
In the last 25years, a number of animal models, mainly rodents, have been generated with the goal to mimic cholestatic liver injuries and, thus, to provide in vivo tools to investigate the mechanisms of biliary repair and, eventually, to test the efficacy of innovative treatments. Despite fundamental limitations applying to these models, such as the distinct immune system and the different metabolism regulating liver homeostasis in rodents when compared to humans, multiple approaches, such as surgery (bile duct ligation), chemical-induced (3,5-diethoxycarbonyl-1,4-dihydrocollidine, DDC, α-naphthylisothiocyanate, ANIT), viral infections (Rhesus rotavirustype A, RRV-A), and genetic manipulation (Mdr2, Cftr, Pkd1, Pkd2, Prkcsh, Sec63, Pkhd1) have been developed. Overall, they have led to a range of liver phenotypes recapitulating the main features of biliary injury and altered bile acid metabolisms, such as ductular reaction, peribiliary inflammation and fibrosis, obstructive cholestasis and biliary dysgenesis. Although with a limited translability to the human setting, these mouse models have provided us with the ability to probe over time the fundamental mechanisms promoting cholestatic disease progression. Moreover, recent studies from genetically engineered mice have unveiled 'core' pathways that make the cholangiocyte a pivotal player in liver repair. In this review, we will highlight the main phenotypic features, the more interesting peculiarities and the different drawbacks of these mouse models. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
|
4
|
Golbar HM, Izawa T, Bondoc A, Wijesundera KK, Tennakoon AH, Kuwamura M, Yamate J. Attenuation of alpha-naphthylisothiocyanate (ANIT)-induced biliary fibrosis by depletion of hepatic macrophages in rats. ACTA ACUST UNITED AC 2017; 69:221-230. [PMID: 28159300 DOI: 10.1016/j.etp.2017.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
Abstract
Biliary fibrosis is a complex process in which macrophages and myofibroblasts may play central roles. We investigated biliary fibrosis lesions induced in the Glisson's sheath in rats by alpha-naphthylisothiocyanate (ANIT) administration under macrophage depletion. Hepatic macrophages were depleted in F344 rats with liposome-encapsulated clodronate (CLD) (10mL/kg body weight, i.v) followed by bile duct injury with ANIT (75mg/kg body weight, i.p) (ANIT+CLD group). Rats received empty-liposomes (Lipo) followed by ANIT, and served as control (ANIT+Lipo group). In both ANIT+Lipo and ANIT+CLD groups, ANIT-induced bile duct injury with inflammatory cell infiltration was seen on days 1-3, and subsequently reparative fibrosis occurred on days 5 and 7. In comparisons between the two groups, macrophages reacting to CD68, CD163, MHC class II and CD204 were less in numbers in ANIT+CLD group; the most sensitive immunophenotype was of CD163-positive. Furthermore, in ANIT+CLD group interstitial mesenchymal cells/myofibroblasts reacting to vimentin, desmin and α-smooth muscle actin were also less in grades and tended to be delayed in appearance. Interestingly, MCP-1, IFN-γ, IL-10, and TGF-β1 mRNAs were significantly increased mainly on day 2 in ANIT+Lipo group, while the levels of these factors were prominently lower in ANIT+CLD group. Collectively, depletion of hepatic macrophages plays roles in attenuating biliary fibrogenesis by production of inflammatory factors. The present results indicated clearly importance of macrophage functions in the pathogenesis of biliary fibrosis.
Collapse
Affiliation(s)
- Hossain M Golbar
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka, 598-8531, Japan; Department of Veterinary and Animal Sciences, University of Rajshahi, Motihar, Rajshahi, 6205, Bangladesh
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka, 598-8531, Japan
| | - Alexandra Bondoc
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka, 598-8531, Japan
| | - Kavindra K Wijesundera
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, 20200, Sri Lanka
| | | | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka, 598-8531, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka, 598-8531, Japan.
| |
Collapse
|
5
|
Joshi N, Kopec AK, Cline-Fedewa H, Luyendyk JP. Lymphocytes contribute to biliary injury and fibrosis in experimental xenobiotic-induced cholestasis. Toxicology 2016; 377:73-80. [PMID: 28049044 DOI: 10.1016/j.tox.2016.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/20/2016] [Accepted: 12/31/2016] [Indexed: 02/07/2023]
Abstract
The etiology of chronic bile duct injury and fibrosis in patients with autoimmune cholestatic liver diseases is complex, and likely involves immune cells such as lymphocytes. However, most models of biliary fibrosis are not autoimmune in nature. Biliary fibrosis can be induced experimentally by prolonged exposure of mice to the bile duct toxicant alpha-naphthylisothiocyanate (ANIT). We determined whether lymphocytes contributed to ANIT-mediated biliary hyperplasia and fibrosis in mice. Hepatic accumulation of T-lymphocytes and increased serum levels of anti-nuclear-autoantibodies were evident in wild-type mice exposed to ANIT (0.05% ANIT in chow). This occurred alongside bile duct hyperplasia and biliary fibrosis. To assess the role of lymphocytes in ANIT-induced biliary fibrosis, we utilized RAG1-/- mice, which lack T- and B-lymphocytes. ANIT-induced bile duct injury, indicated by increased serum alkaline phosphatase activity, was reduced in ANIT-exposed RAG1-/- mice compared to ANIT-exposed wild-type mice. Despite this reduction in biliary injury, ANIT-induced bile duct hyperplasia was similar in wild-type and RAG1-/- mice. However, hepatic induction of profibrogenic genes including COL1A1, ITGβ6 and TGFβ2 was markedly attenuated in ANIT-exposed RAG1-/- mice compared to ANIT-exposed wild-type mice. Peribiliary collagen deposition was also reduced in ANIT-exposed RAG1-/- mice. The results indicate that lymphocytes exacerbate bile duct injury and fibrosis in ANIT-exposed mice without impacting bile duct hyperplasia.
Collapse
Affiliation(s)
- Nikita Joshi
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA; Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Anna K Kopec
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Holly Cline-Fedewa
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - James P Luyendyk
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA; Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
6
|
Golbar HM, Izawa T, Wijesundera KK, Bondoc A, Tennakoon AH, Kuwamura M, Yamate J. Depletion of Hepatic Macrophages Aggravates Liver Lesions Induced in Rats by Thioacetamide (TAA). Toxicol Pathol 2016; 44:246-58. [PMID: 26957569 DOI: 10.1177/0192623315621191] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hepatic macrophages play crucial roles in hepatotoxicity. We investigated immunophenotypes of macrophages in liver injury induced in rats by thioacetamide (TAA; 300 mg/kg, intraperitoneal) after hepatic macrophage depletion; hepatic macrophages were depleted by liposomal clodronate (CLD; 10 ml/kg, i.v.) one day before TAA injection. Samples were obtained on post-TAA injection days 0, 1, 2, 3, 5, and 7. TAA injection induced coagulation necrosis of hepatocytes on days 1 through 3 and subsequent reparative fibrosis on days 5 and 7 in the centrilobular area, accompanied by increased numbers of M1 macrophages (expressing cluster of differentiation [CD]68 and major histocompatibility complex class II) and M2 macrophages (expressing CD163 and CD204) mainly on days 1 through 3. TAA + CLD treatment markedly decreased the numbers of M1 and M2 macrophages mainly on days 1 through 3; CD163(+) Kupffer cells were most sensitive to CLD depletion. In TAA + CLD-treated rats, interestingly, coagulation necrosis of hepatocytes was prolonged with more increased levels of hepatic enzymes (aspartate transaminase, alanine transaminase, and alkaline phosphatase) to TAA-treated rats; reparative fibrosis was incomplete and replaced by dystrophic calcification in the injured area, indicating the aggravated damage. Furthermore, in TAA + CLD-treated rats, inflammatory factors (monocyte chemoattractant protein [MCP]-1, interferon-γ, tumor necrosis factor-α, and interleukin-10) and fibrosis-related factors (transforming growth factor-β1, matrix metalloproteinase-2, tissue inhibitor of metalloproteinase-1) were decreased at messenger RNA levels, indicating abnormal macrophage functions. It was clearly demonstrated that hepatic macrophages have important roles in tissue damage and remodeling in hepatotoxicity.
Collapse
Affiliation(s)
- Hossain M Golbar
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Takeshi Izawa
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Kavindra K Wijesundera
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Alexandra Bondoc
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Anusha H Tennakoon
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Mitsuru Kuwamura
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Jyoji Yamate
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
7
|
Histopathological Analysis of Rat Hepatotoxicity Based on Macrophage Functions: in Particular, an Analysis for Thioacetamide-induced Hepatic Lesions. Food Saf (Tokyo) 2016; 4:61-73. [PMID: 32231908 DOI: 10.14252/foodsafetyfscj.2016012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022] Open
Abstract
Hepatic macrophages play an important role in homeostasis. The functional abnormalities of hepatic macrophages primarily or secondarily influence chemically induced hepatotoxicity. However, the evaluation system based on their functions has not yet been established. Recently, a new concept (M1-/M2-macrophage polarization) was proposed; M1-macropahges are induced by INF-γ, and show high phagocytosis/tissue damage, whereas M2-macropahges are induced by IL-4 and play roles in reparative fibrosis by releasing IL-10 and TGF-β1. In hepatogenesis, CD68-expressing M1-macrophages predominantly exist in embryos; in neonates, in contrast, CD163-/CD204-expressing M2-macrophages appear along the sinusoids and mature as Kupffer cells. Activated Kupffer cells by liposome decrease AST and ALT values, whereas AST and ALT values are increased under Kupffer cells depleted with clodronate treatment. Since Kupffer cells may be involved in clearance of liver enzymes, macrophage condition should be taken into consideration when hepatotoxicity is analyzed. In TAA-induced acute hepatic lesions, INF-γ, TNF-α and IL-6 for M1-factors and IL-4 for M2-factors are already increased before histopathological change; the appearance of CD68-expressing M1-macrophages and CD163-expressing M2-macrophages follows in injured centrilobular lesions, and TGF-β1 and IL-10 are increased for reparative fibrosis. CD68-expressing M1-macrophages co-express MHC class II and Iba-1, whereas CD163-expressing M2-macrophages also express CD204 and Galectin-3. Under macrophage depletion by clodoronate, TAA-treated rat livers show prolonged coagulation necrosis of hepatocytes, and then develop dystrophic calcification without reparative fibrosis. The depletion of hepatic macrophages influences hepatic lesion development. Collectively, a histopathological analysis method for hepatotoxicity according to M1-/M2-macrophage polarization would lead to the refinement of hazard characterization of chemicals in food and feed.
Collapse
|
8
|
Joshi N, Ray JL, Kopec AK, Luyendyk JP. Dose-dependent effects of alpha-naphthylisothiocyanate disconnect biliary fibrosis from hepatocellular necrosis. J Biochem Mol Toxicol 2016; 31:1-7. [PMID: 27605088 DOI: 10.1002/jbt.21834] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/10/2016] [Indexed: 12/26/2022]
Abstract
Exposure of rodents to the xenobiotic α-naphthylisothiocyanate (ANIT) is an established model of experimental intrahepatic bile duct injury. Administration of ANIT to mice causes neutrophil-mediated hepatocellular necrosis. Prolonged exposure of mice to ANIT also produces bile duct hyperplasia and liver fibrosis. However, the mechanistic connection between ANIT-induced hepatocellular necrosis and bile duct hyperplasia and fibrosis is not well characterized. We examined impact of two different doses of ANIT, by feeding chow containing ANIT (0.05%, 0.1%), on the severity of various liver pathologies in a model of chronic ANIT exposure. ANIT-elicited increases in liver inflammation and hepatocellular necrosis increased with dose. Remarkably, there was no connection between increased hepatocellular necrosis and bile duct hyperplasia and peribiliary fibrosis, as these pathologies increased similarly in mice exposed to either dose of ANIT. The results indicate that the severity of hepatocellular necrosis does not dictate the extent of bile duct hyperplasia/fibrosis in ANIT-exposed mice.
Collapse
Affiliation(s)
- Nikita Joshi
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, 48824, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jessica L Ray
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA
| | - Anna K Kopec
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - James P Luyendyk
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
9
|
Kopec AK, Joshi N, Luyendyk JP. Role of hemostatic factors in hepatic injury and disease: animal models de-liver. J Thromb Haemost 2016; 14:1337-49. [PMID: 27060337 PMCID: PMC5091081 DOI: 10.1111/jth.13327] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 12/14/2022]
Abstract
Chronic liver damage is associated with unique changes in the hemostatic system. Patients with liver disease often show a precariously rebalanced hemostatic system, which is easily tipped towards bleeding or thrombotic complications by otherwise benign stimuli. In addition, some clinical studies have shown that hemostatic system components contribute to the progression of liver disease. There is a strong basic science foundation for clinical studies with this particular focus. Chronic and acute liver disease can be modeled in rodents and large animals with a variety of approaches, which span chronic exposure to toxic xenobiotics, diet-induced obesity, and surgical intervention. These experimental approaches have now provided strong evidence that, in addition to perturbations in hemostasis caused by liver disease, elements of the hemostatic system have powerful effects on the progression of experimental liver toxicity and disease. In this review, we cover the basis of the animal models that are most often utilized to assess the impact of the hemostatic system on liver disease, and highlight the role that coagulation proteases and their targets play in experimental liver toxicity and disease, emphasizing key similarities and differences between models. The need to characterize hemostatic changes in existing animal models and to develop novel animal models recapitulating the coagulopathy of chronic liver disease is highlighted. Finally, we emphasize the continued need to translate knowledge derived from highly applicable animal models to improve our understanding of the reciprocal interaction between liver disease and the hemostatic system in patients.
Collapse
Affiliation(s)
- Anna K. Kopec
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan 48824
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Nikita Joshi
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - James P. Luyendyk
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan 48824
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
10
|
Pervin M, Golbar HM, Bondoc A, Izawa T, Kuwamura M, Yamate J. Immunophenotypical characterization and influence on liver homeostasis of depleting and repopulating hepatic macrophages in rats injected with clodronate. ACTA ACUST UNITED AC 2015; 68:113-24. [PMID: 26610753 DOI: 10.1016/j.etp.2015.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 01/15/2023]
Abstract
Hepatic macrophages (including Kupffer cells) play a crucial role in the homeostasis and act as mediators of inflammatory response in the liver. Hepatic macrophages were depleted in male F344 rats by a single intravenous injection of liposomal clodronate (CLD; 50mg/kg body weight), and immunophenotypical characteristics of depleting and repopulating macrophages were analyzed by different antibodies specific for macrophages. CD163(+) Kupffer cells were almost completely depleted on post-injection (PI) days 1-12. Macrophages reacting to CD68, Iba-1, and Gal-3 were drastically reduced in number on PI day 1 and then recovered gradually until PI day 12. MHC class II(+) and CD204(+) macrophages were moderately decreased during the observation period. Although hepatic macrophages detectable by different antibodies were reduced in varying degrees, Kupffer cells were the most susceptible to CLD. Liver situation influenced by depleted hepatic macrophages was also investigated. No marked histological changes were seen in the liver, but the proliferating activity of hepatocytes was significantly increased, supported by changes of gene profiles relating to cell proliferation on microarray analysis on PI day 1; the values of AST and ALT were significantly elevated; macrophage induction/activation factors (such as MCP-1, CSF-1, IL-6 and IL-4) were increased exclusively on PI day 1, whereas anti-inflammatory factors such as IL-10 and TGF-β1 remained significantly decreased after macrophage depletion. The present study confirmed importance of hepatic macrophages in liver homeostasis. The condition of hepatic macrophages should be taken into consideration when chemicals capable of inhibiting macrophage functions are evaluated.
Collapse
Affiliation(s)
- Munmun Pervin
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - Hossain M Golbar
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - Alexandra Bondoc
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - Mitsuru Kuwamura
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - Jyoji Yamate
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan.
| |
Collapse
|
11
|
Participation of bone morphogenetic protein (BMP)-6 and osteopontin in cisplatin (CDDP)-induced rat renal fibrosis. ACTA ACUST UNITED AC 2015; 67:99-107. [DOI: 10.1016/j.etp.2014.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/02/2014] [Accepted: 10/21/2014] [Indexed: 01/08/2023]
|
12
|
Golbar HM, Izawa T, Wijesundera KK, Tennakoon AH, Katou-Ichikawa C, Tanaka M, Kuwamura M, Yamate J. Expression of nestin in remodelling of α-naphthylisothiocyanate-induced acute bile duct injury in rats. J Comp Pathol 2014; 151:255-63. [PMID: 25087881 DOI: 10.1016/j.jcpa.2014.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/12/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
Abstract
The function of the intermediate filament protein nestin is poorly understood. The significance of nestin expression was assessed in α-naphthylisothiocyanate (ANIT)-induced cholangiocyte injury lesions in F344 rats. Liver samples obtained from rats injected intraperitoneally with ANIT (75 mg/kg) on post-injection days 0 (control) and 1-12 were labelled immunohistochemically for expression of nestin and markers specific for mesenchymal cells (vimentin), hepatic stellate cells (HSCs) (desmin and glial fibrillary acidic protein [GFAP]), endothelial cells (rat endothelial cell antigen [RECA]-1), cholangiocytes (cytokeratin [CK] 19) and cellular proliferation (Ki67). Cholangiocyte injury led to infiltration of neutrophils and macrophages followed by aggregation of mesenchymal cells and regeneration of bile ducts. Nestin expression was detected in mesenchymal cells (vimentin positive) on days 1-7 with a peak on days 3-5 and in newly-formed RECA-1-positive endothelial cells on day 3. Nestin expression was also observed in regenerating CK19-positive cholangiocytes on days 2-5, with a peak on day 3. Labelling for Ki67 showed proliferation of cholangiocytes, mesenchymal cells and HSCs. Real-time reverse transcriptase polymerase chain reaction with microdissected samples showed significantly elevated nestin mRNA on day 3. The findings suggest an association between nestin expression and cellular proliferation. Based on these findings, it was considered that nestin-expressing mesenchymal cells, HSCs and endothelial cells may be possible progenitors of repopulating cholangiocytes. Nestin expression may serve as an indicator for cellular remodelling and behaviour of injured and repopulating bile ducts.
Collapse
Affiliation(s)
- H M Golbar
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - T Izawa
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - K K Wijesundera
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - A H Tennakoon
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - C Katou-Ichikawa
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - M Tanaka
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - M Kuwamura
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - J Yamate
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan.
| |
Collapse
|
13
|
Joshi N, Kopec AK, Towery K, Williams KJ, Luyendyk JP. The antifibrinolytic drug tranexamic acid reduces liver injury and fibrosis in a mouse model of chronic bile duct injury. J Pharmacol Exp Ther 2014; 349:383-92. [PMID: 24633426 DOI: 10.1124/jpet.113.210880] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hepatic fibrin deposition has been shown to inhibit hepatocellular injury in mice exposed to the bile duct toxicant α-naphthylisothiocyanate (ANIT). Degradation of fibrin clots by fibrinolysis controls the duration and extent of tissue fibrin deposition. Thus, we sought to determine the effect of treatment with the antifibrinolytic drug tranexamic acid (TA) and plasminogen activator inhibitor-1 (PAI-1) deficiency on ANIT-induced liver injury and fibrosis in mice. Plasmin-dependent lysis of fibrin clots was impaired in plasma from mice treated with TA (1200 mg/kg i.p., administered twice daily). Prophylactic TA administration reduced hepatic inflammation and hepatocellular necrosis in mice fed a diet containing 0.025% ANIT for 2 weeks. Hepatic type 1 collagen mRNA expression and deposition increased markedly in livers of mice fed ANIT diet for 4 weeks. To determine whether TA treatment could inhibit this progression of liver fibrosis, mice were fed ANIT diet for 4 weeks and treated with TA for the last 2 weeks. Interestingly, TA treatment largely prevented increased deposition of type 1 collagen in livers of mice fed ANIT diet for 4 weeks. In contrast, biliary hyperplasia/inflammation and liver fibrosis were significantly increased in PAI-1(-/-) mice fed ANIT diet for 4 weeks. Overall, the results indicate that fibrinolytic activity contributes to ANIT diet-induced liver injury and fibrosis in mice. In addition, these proof-of-principle studies suggest the possibility that therapeutic intervention with an antifibrinolytic drug could form a novel strategy to prevent or reduce liver injury and fibrosis in patients with liver disease.
Collapse
Affiliation(s)
- Nikita Joshi
- Department of Pathobiology & Diagnostic Investigation (A.K.K., K.T., K.J.W., J.P.L.), Department of Pharmacology & Toxicology (N.J.), and Center for Integrative Toxicology (N.J., A.K.K., J.P.L.), Michigan State University, East Lansing, Michigan
| | | | | | | | | |
Collapse
|
14
|
Probert PME, Ebrahimkhani MR, Oakley F, Mann J, Burt AD, Mann DA, Wright MC. A reversible model for periportal fibrosis and a refined alternative to bile duct ligation. Toxicol Res (Camb) 2014. [DOI: 10.1039/c3tx50069a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|