1
|
Zhang Q, Liu Y, Ren L, Li J, Lin W, Lou L, Wang M, Li C, Jiang Y. Proteomic analysis of DEN and CCl 4-induced hepatocellular carcinoma mouse model. Sci Rep 2024; 14:8013. [PMID: 38580754 PMCID: PMC10997670 DOI: 10.1038/s41598-024-58587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/01/2024] [Indexed: 04/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) seriously threatens human health, mostly developed from liver fibrosis or cirrhosis. Since diethylnitrosamine (DEN) and carbon tetrachloride (CCl4)-induced HCC mouse model almost recapitulates the characteristic of HCC with fibrosis and inflammation, it is taken as an essential tool to investigate the pathogenesis of HCC. However, a comprehensive understanding of the protein expression profile of this model is little. In this study, we performed proteomic analysis of this model to elucidate its proteomic characteristics. Compared with normal liver tissues, 432 differentially expressed proteins (DEPs) were identified in tumor tissues, among which 365 were up-regulated and 67 were down-regulated. Through Gene Ontology (GO) analysis, Ingenuity Pathway Analysis (IPA), protein-protein interaction networks (PPI) analysis and Gene-set enrichment analysis (GSEA) analysis of DEPs, we identified two distinguishing features of DEN and CCl4-induced HCC mouse model in protein expression, the upregulation of actin cytoskeleton and branched-chain amino acids metabolic reprogramming. In addition, matching DEPs from the mouse model to homologous proteins in the human HCC cohort revealed that the DEN and CCl4-induced HCC mouse model was relatively similar to the subtype of HCC with poor prognosis. Finally, combining clinical information from the HCC cohort, we screened seven proteins with prognostic significance, SMAD2, PTPN1, PCNA, MTHFD1L, MBOAT7, FABP5, and AGRN. Overall, we provided proteomic data of the DEN and CCl4-induced HCC mouse model and highlighted the important proteins and pathways in it, contributing to the rational application of this model in HCC research.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Yuhui Liu
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Liangliang Ren
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Junqing Li
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
- School of Basic Medical Science, Anhui Medical University, Hefei, 230032, China
| | - Weiran Lin
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Lijuan Lou
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Minghan Wang
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Chaoying Li
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Ying Jiang
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China.
- School of Basic Medical Science, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Qiu L, Ma Z, Sun J, Wu Z, Wang M, Wang S, Zhao Y, Liang S, Hu M, Li Y. Establishment of a Spontaneous Liver Fibrosis Model in NOD/SCID Mice Induced by Natural Aging. BIOLOGY 2023; 12:1493. [PMID: 38132319 PMCID: PMC10740877 DOI: 10.3390/biology12121493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Liver fibrosis, a critical pathological feature of chronic liver diseases, arises from a multitude of pathogenic factors. Consequently, establishing an appropriate animal model to simulate liver fibrosis holds immense significance for comprehending its underlying pathogenesis. Despite the numerous methodologies available for generating liver fibrosis models, they often deviate substantially from the spontaneous age-related liver fibrosis process. In this study, compared with young (12 weeks) and middle-aged NOD/SCID mice (32 weeks), there were a large number of fibrous septum and collagen in the liver tissue of old NOD/SCID mice (43 weeks, 43 W). Immunohistochemical analysis unequivocally indicated heightened α-SMA content within the liver tissue of the 43 W mice, thereby underscoring aging's role in triggering the epithelial-to-mesenchymal transition. In addition, SA-β-gal staining as well as P21 expression were increased, and SIRT1 and SIRT3 expression were decreased in 43 W mice. A comprehensive evaluation encompassing transmission electron microscopy and fluorescence quantitative analysis elucidated compromised mitochondrial function and reduced antioxidant capacity in hepatocytes of the 43 W mice. Furthermore, the aging process activated the pro-fibrotic TGF-β-SMAD pathway, concurrently inducing hepatocellular inflammation. The results of the present study not only validate the successful construction of a spontaneous liver fibrosis mouse model through natural aging induction but also provide initial insights into the mechanisms underpinning age-induced liver fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Min Hu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming 650214, China; (L.Q.); (Z.M.); (J.S.); (Z.W.); (M.W.); (S.W.); (Y.Z.); (S.L.)
| | - Yanjiao Li
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming 650214, China; (L.Q.); (Z.M.); (J.S.); (Z.W.); (M.W.); (S.W.); (Y.Z.); (S.L.)
| |
Collapse
|
3
|
Soltani F, Kaartinen MT. Transglutaminases in fibrosis-overview and recent advances. Am J Physiol Cell Physiol 2023; 325:C885-C894. [PMID: 37642242 DOI: 10.1152/ajpcell.00322.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Transglutaminases (TGs) are a family of protein cross-linking enzymes that are capable of stiffening and insolubilizing proteins and creating protein networks, and thereby altering biological functions of proteins. Their role in fibrosis progression has been widely investigated with a focus on kidney, lung, liver, and heart where activity is triggered by various stimuli including hypoxia, inflammation, and hyperglycemia. TG2 has been considered one of the key enzymes in the pathogenesis of fibrosis mainly through transforming growth factor beta (TGF-beta) signaling and matrix cross-linking mechanisms. Although TG2 has been most widely studied in this context, the involvement of other TGs, TG1 and Factor XIII-A (FXIII-A), is beginning to emerge. This mini-review highlights the major steps taken in the TG and fibrosis research and summarizes the most recent advances and contributions of TG2, TG1, and FXIII-A to the progression of fibrosis in various animal models. Also, their mechanisms of action as well as therapeutic prospects are discussed.
Collapse
Affiliation(s)
- Fatemeh Soltani
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Mari T Kaartinen
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences), McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Huang L, Ni J, Duncan T, Song Z, Johnson TS. Development of a unilateral ureteral obstruction model in cynomolgus monkeys. Animal Model Exp Med 2021; 4:359-368. [PMID: 34977487 PMCID: PMC8690991 DOI: 10.1002/ame2.12185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023] Open
Abstract
Background Chronic kidney disease (CKD) has a high global prevalence and large unmet need. Central to developing new CKD therapies are in vivo models in CKD. However, next-generation antibody, protein, and gene therapies are highly specific, meaning some do not cross-react with rodent targets. This complicates preclinical development, as established in vivo rodent models cannot be utilized unless tool therapeutics are also developed. Tool compounds can be difficult to develop and, if available, typically have different epitopes, sequences, and/or altered affinity, making it unclear how efficacious the lead therapeutic may be, or what dosing regimen to investigate. To address this, we aimed to develop a nonhuman primate model of CKD. Methods In vivo rodent unilateral ureteral obstruction (UUO) models kidney fibrosis and is commonly used due to its rapidity, consistency, and ease. We describe translation of this model to the cynomolgus monkey, specifically optimizing the model duration to allow adequate time for assessment of novel therapeutics prior to the fibrotic plateau. Results We demonstrated that disease developed more slowly in cynomolgus monkeys than in rodents post-UUO, with advanced fibrosis developing by 6 weeks. The tubulointerstitial fibrosis in cynomolgus monkeys was more consistent with human obstructive disease than in rodents, having a more aggressive tubular basement expansion and a higher fibroblast infiltration. The fibrosis was also associated with increased transglutaminase activity, consistent with that seen in patients with CKD. Conclusion This cynomolgus monkey UUO model can be used to test potential human-specific therapeutics in kidney fibrosis.
Collapse
Affiliation(s)
| | - Jia Ni
- Research and DevelopmentPrisys BiotechnologiesPudongChina
- Present address:
Haisco Pharmaceutical Group Co., LtdChengduChina
| | | | - Zhizhan Song
- Research and DevelopmentPrisys BiotechnologiesPudongChina
| | - Timothy S. Johnson
- Immunology Therapeutic AreaUCB PharmaSloughUK
- Present address:
Experimental Renal Medicine, Oncology & Human Metabolism, School of MedicineUniversity of SheffieldSheffieldUK
| |
Collapse
|
5
|
Qi P, Ma MZ, Kuai JH. Identification of growth differentiation factor 15 as a pro-fibrotic factor in mouse liver fibrosis progression. Int J Exp Pathol 2021; 102:148-156. [PMID: 33983642 DOI: 10.1111/iep.12398] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/08/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was elucidate the inhibitory role of growth differentiation factor 15 (GDF15) in liver fibrosis and its possible activation mechanism in hepatic stellate cells (HSCs) of mice. We generated a GDF15-neutralizing antibody that can inhibit TGF-β1-induced activation of the TGF-β/Smad2/3 pathway in LX-2 cells. All the mice in this study were induced by carbon tetrachloride and thioacetamide. In addition, primary HSCs from mice were isolated from fresh livers using Nycodenz density gradient separation. The severity and extent of liver fibrosis were evaluated by Sirius Red and Masson staining. The effect of GDF15 on the activation of the TGF-β pathway was detected using dual-luciferase reporter and Western blotting assays. The expression of GDF15 in cirrhotic liver tissue was higher than that in normal liver tissue. Blocking GDF15 with a neutralizing antibody resulted in a delay in primary hepatic stellate cell activation and remission of liver fibrosis induced by carbon tetrachloride or thioacetamide. Meanwhile, TGF-β pathway activation was partly inhibited by a GDF15-neutralizing antibody in primary HSCs. These results indicated that GDF15 plays an important role in regulating HSC activation and liver fibrosis progression. The inhibition of GDF15 attenuates chemical-inducible liver fibrosis and delays hepatic stellate cell activation, and this effect is probably mainly attributed to its regulatory role in TGF-β signalling.
Collapse
Affiliation(s)
- Peng Qi
- Department of Cardiac Surgery Intensive Care Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Ming-Ze Ma
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing-Hua Kuai
- Department of Gastroenterology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| |
Collapse
|
6
|
Ding K, Liu M, Wei X, Huang R, Chen J, Lu S, Wang D, Lu W. Comparison of MR-PWI quantitative and semi-quantitative parameters for the evaluation of liver fibrosis. BMC Med Imaging 2021; 21:8. [PMID: 33407215 PMCID: PMC7789507 DOI: 10.1186/s12880-020-00539-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Background To evaluate different stages of liver fibrosis in cynomolgus monkeys by comparing magnetic resonance-perfusion weighted imaging (MR-PWI) quantitative and semi-quantitative parameters, and confirm the best detection indicators for diagnosis of liver fibrosis. Methods A liver fibrosis model of different stages (S0–S4) was established in cynomolgus monkeys. The changes in MR-PWI quantitative and semi-quantitative parameters with the progression of liver fibrosis were investigated. Results MR-PWI quantitative parameters gradually decreased with the progression of liver fibrosis. Hepatic arterial perfusion index (HPI) was found to increase with the progression of liver fibrosis and significant differences of HPI between each group were observed. There was a highly positive correlation between HPI and the stages of liver fibrosis. Receiver operating characteristic (ROC) curve analysis showed that HPI had the highest efficacy of the MR-PWI quantitative parameters for the diagnosis of liver fibrosis. The MR-PW semi-quantitative parameters gradually reduced with the progression of liver fibrosis, and the differences were statistically significant between stages S3–S4 and S0–S2. Time to peak (TPP) gradually extended and showed a positive correlation with the stages of liver fibrosis. TTP had the highest efficacy of the semi-quantitative parameters for diagnosis of liver fibrosis. Conclusions Both the MR-PWI quantitative and semi-quantitative parameters of the liver fibrosis model in cynomolgus monkeys varied at different stages of liver fibrosis, and HPI and TTP were the best detection indices for quantitative and semi-quantitative evaluation of liver fibrosis, respectively.
Collapse
Affiliation(s)
- Ke Ding
- Department of Radiology, The Third Affiliated Hospital of Guangxi Medical University, No. 13, Dancun Road, Nanning, 530031, China.
| | - Manrong Liu
- Department of Ultrasound, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, China
| | - Xue Wei
- Department of Radiology, The Third Affiliated Hospital of Guangxi Medical University, No. 13, Dancun Road, Nanning, 530031, China
| | - Ruisui Huang
- Department of Radiology, The Third Affiliated Hospital of Guangxi Medical University, No. 13, Dancun Road, Nanning, 530031, China
| | - Jiong Chen
- Department of Radiology, The Third Affiliated Hospital of Guangxi Medical University, No. 13, Dancun Road, Nanning, 530031, China
| | - Shanjin Lu
- Department of Radiology, The Third Affiliated Hospital of Guangxi Medical University, No. 13, Dancun Road, Nanning, 530031, China
| | - Dacheng Wang
- Department of Radiology, The Third Affiliated Hospital of Guangxi Medical University, No. 13, Dancun Road, Nanning, 530031, China
| | - Wei Lu
- Department of Pathology, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, China
| |
Collapse
|
7
|
Pattanayak S, Acharya R, Mishra N, Kumar A, Bose P, Pattnaik A, Mukhopadhyay K, Sunita P. Naringin, a natural flavonone glycoside attenuates N-nitrosodiethylamine- induced hepatocellular carcinoma in sprague-dawley rats. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_94_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Baeza-Raja B, Goodyear A, Liu X, Lam K, Yamamoto L, Li Y, Dodson GS, Takeuchi T, Kisseleva T, Brenner DA, Dabbagh K. Pharmacological inhibition of P2RX7 ameliorates liver injury by reducing inflammation and fibrosis. PLoS One 2020; 15:e0234038. [PMID: 32492075 PMCID: PMC7269334 DOI: 10.1371/journal.pone.0234038] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular adenosine triphosphate (eATP) released by damaged cells, and its purinergic receptors, comprise a crucial signaling network after injury. Purinergic receptor P2X7 (P2RX7), a major driver of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation and IL-1β processing, has been shown to play a role in liver injury in murine diet- and chemically-induced liver injury models. It is unclear, however, whether P2RX7 plays a role in non-alcoholic steatohepatitis (NASH) and which cell type is the main target of P2RX7 pharmacological inhibition. Here, we report that P2RX7 is expressed by infiltrating monocytes and resident Kupffer cells in livers from NASH-affected individuals. Using primary isolated human cells, we demonstrate that P2RX7 expression in CD14+ monocytes and Kupffer cells primarily mediates IL-1β release. In addition, we show that pharmacological inhibition of P2RX7 in monocytes and Kupffer cells, blocks IL-1β release, reducing hepatocyte caspase 3/7 activity, IL-1β-mediated CCL2 and CCL5 chemokine gene expression and secretion, and hepatic stellate cell (HSC) procollagen secretion. Consequently, in a chemically-induced nonhuman primate model of liver fibrosis, treatment with a P2RX7 inhibitor improved histological characteristics of NASH, protecting from liver inflammation and fibrosis. Taken together, these findings underscore the critical role of P2RX7 in the pathogenesis of NASH and implicate P2RX7 as a promising therapeutic target for the management of this disease.
Collapse
Affiliation(s)
- Bernat Baeza-Raja
- Second Genome Inc., South San Francisco, California, United States of America
| | - Andrew Goodyear
- Second Genome Inc., South San Francisco, California, United States of America
| | - Xiao Liu
- Department of Surgery, University of California San Diego, La Jolla, California, United States of America
| | - Kevin Lam
- Department of Surgery, University of California San Diego, La Jolla, California, United States of America
| | - Lynn Yamamoto
- Second Genome Inc., South San Francisco, California, United States of America
| | - Yingwu Li
- Second Genome Inc., South San Francisco, California, United States of America
| | - G. Steven Dodson
- Second Genome Inc., South San Francisco, California, United States of America
| | - Toshi Takeuchi
- Second Genome Inc., South San Francisco, California, United States of America
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, La Jolla, California, United States of America
| | - David A. Brenner
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Karim Dabbagh
- Second Genome Inc., South San Francisco, California, United States of America
| |
Collapse
|
9
|
Yasuda K, Kotaka M, Toyohara T, Sueta SI, Katakai Y, Ageyama N, Uemoto S, Osafune K. A nonhuman primate model of liver fibrosis towards cell therapy for liver cirrhosis. Biochem Biophys Res Commun 2020; 526:661-669. [PMID: 32248968 DOI: 10.1016/j.bbrc.2020.03.148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/25/2020] [Indexed: 01/14/2023]
Abstract
Orthotopic liver transplantation (OLT) is the only curative treatment for refractory chronic liver failure in liver cirrhosis. However, the supply of donated livers does not meet the demand for OLT due to donor organ shortage. Cell therapy using hepatocyte-like cells derived from human induced pluripotent stem cells (hiPSC-HLCs) is expected to mitigate the severity of liver failure, postpone OLT and ameliorate the insufficient liver supply. For the successful clinical translation of hiPSC-based cell therapy against liver cirrhosis, realistic animal models are required. In this study, we created a nonhuman primate (NHP) liver fibrosis model by repeated administrations of thioacetamide (TAA) and evaluated the short-term engraftment of hiPSC-HLCs in the fibrotic liver. The NHP liver fibrosis model reproduced well the pathophysiology of human liver cirrhosis including portal hypertension. Under immunosuppressive treatment, we transplanted ALBUMIN-GFP reporter hiPSC-HLC aggregates into the fibrotic livers of the NHP model via the portal vein. Fourteen days after the transplantation, GFP-expressing hiPSC-HLC clusters were detected in the portal areas of the fibrotic livers. These results will facilitate preclinical studies using the NHP liver fibrosis model and help establish iPSC-based cell therapies against liver cirrhosis.
Collapse
Affiliation(s)
- Katsutaro Yasuda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Hepatobiliary Pancreatic Surgery and Transplantation, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Maki Kotaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takafumi Toyohara
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shin-Ichi Sueta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuko Katakai
- The Corporation for Production and Research of Laboratory Primates, Sakura 1-16-2, Tsukuba, Ibaraki, 305-0003, Japan
| | - Naohide Ageyama
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Hachimandai 1-1, Tsukuba, Ibaraki, 305-0843, Japan
| | - Shinji Uemoto
- Department of Hepatobiliary Pancreatic Surgery and Transplantation, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
10
|
Novel liver fibrosis model in Macaca fascicularis induced by thioacetamide. Sci Rep 2020; 10:2450. [PMID: 32051422 PMCID: PMC7016167 DOI: 10.1038/s41598-020-58739-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Although transplantation is the only definitive treatment for liver cirrhosis, there remains a shortage of donors, necessitating that novel treatments be developed. We aimed to establish a liver fibrosis model in Macaca fascicularis that can help accelerate preclinical research. Liver fibrosis was induced by administering thioacetamide (TAA) and carbon tetrachloride (CCl4). Analysis of residual liver function and fibrosis progression was based on clinical indices, such as the Child-Pugh score or fibrotic markers, besides histology. TAA-induced marked fibrosis, whereas CCl4 did not induce fibrosis. Concerning residual liver function, both of TAA and CCl4 worsened the indices of the Child-Pugh score, but only the TAA model increased the retention ratio of indocyanine green. The TAA-induced fibrosis model in Macaca fascicularis worsens fibrosis and residual liver function, mimicking Child-Pugh grade B. Given that our model was evaluated by clinical indices, it could be applicable to preclinical research.
Collapse
|
11
|
Zhang HE, Henderson JM, Gorrell MD. Animal models for hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2018; 1865:993-1002. [PMID: 31007176 DOI: 10.1016/j.bbadis.2018.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) represents ~90% of all cases of primary liver cancer and occurs predominantly in patients with underlying chronic liver disease and cirrhosis. Establishing appropriate animal models for HCC is required for basic and translational studies, especially the models that can recapitulate one of the human disease settings. Current animal models can be categorized as chemically-induced, genetically-engineered, xenograft, or a combination of these with each other or with a metabolic insult. A single approach to resemble human HCC in animals is not sufficient. Combining pathogenic insults in animal models may more realistically recapitulate the multiple etiologic agents occurring in humans. Combining chemical injury with metabolic disorder or alcohol consumption in mice reduces the time taken to hepatocarcinogenesis. Genetically-engineering weak activation of HCC-promoting pathways combined with disease-specific injury models will possibly mimic the pathophysiology of human HCC in distinct clinical settings.
Collapse
Affiliation(s)
- Hui Emma Zhang
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia; The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - James M Henderson
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia; The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - Mark D Gorrell
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia; The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia.
| |
Collapse
|
12
|
Naiken S, Griffiths MA, Hurdial JR, Narainapoulle S, Honess P. Reference intervals for biochemical and haematological analytes of juvenile captive-bred long-tailed macaques (Macaca fascicularis) from Mauritius with examination of the effects of individual characteristics using principal component analysis. J Med Primatol 2016; 45:277-289. [PMID: 27506181 DOI: 10.1111/jmp.12224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND The Mauritian cynomolgus macaque (Macaca fascicularis) is widely used in biomedical research. Determining reference intervals for biochemical and haematological analytes provides an important tool for clinical diagnosis and pre-clinical research. METHODS Blood samples from 736 Mauritian long-tailed macaques were analysed to determine reference intervals of 13 biochemical and 10 haematological analytes. The need for partitioning the reference interval between males and females was determined. To examine the variation associated with age, body weight and sex on the analytes, our correlating, multivariate data set was first reduced using principal component analysis, and then the effect of these characteristics on factor scores was examined using GLM analysis. RESULTS Partitioning of reference intervals, based on sex, was recommended for albumin, alkaline phosphatase and mean corpuscular haemoglobin. Sex significantly influenced the concentration of lymphocytes, granulocytes and white blood cells. CONCLUSION These findings provide useful reference data for research involving Mauritian long-tailed macaques.
Collapse
Affiliation(s)
| | | | | | | | - Paul Honess
- Bioculture (Mauritius) Ltd, Senneville, Mauritius
| |
Collapse
|
13
|
Henderson JM, Zhang HE, Polak N, Gorrell MD. Hepatocellular carcinoma: Mouse models and the potential roles of proteases. Cancer Lett 2016; 387:106-113. [PMID: 27045475 DOI: 10.1016/j.canlet.2016.03.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/24/2016] [Accepted: 03/24/2016] [Indexed: 02/07/2023]
Abstract
Primary liver cancer is the second most common cause of mortality from cancer. The most common models of hepatocellular carcinoma, which use a chemical and/or metabolic insult, xenograft, or genetic manipulation, are discussed in this review. In the tumour microenvironment lymphocytes, fibroblasts, endothelial cells and antigen presenting cells are important determinants of cell fate. These cells make a range of proteases that modify the biological activity of other proteins, particularly extracellular matrix proteins that alter cell migration of tumour cells, fibroblasts and leucocytes, and chemokines that alter leucocyte migration. The DPP4 family of post-proline peptidase enzymes modifies cell movement and the activities of many bioactive molecules including growth factors and chemokines.
Collapse
Affiliation(s)
- James M Henderson
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 Australia
| | - Hui Emma Zhang
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 Australia
| | - Natasa Polak
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 Australia
| | - Mark D Gorrell
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 Australia.
| |
Collapse
|
14
|
Hauff P, Gottwald U, Ocker M. Early to Phase II drugs currently under investigation for the treatment of liver fibrosis. Expert Opin Investig Drugs 2014; 24:309-27. [PMID: 25547844 DOI: 10.1517/13543784.2015.997874] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Chronic liver diseases represent a high unmet medical need and are characterized by persistent inflammation, parenchymal damage and fibrotic remodeling, leading eventually to cirrhosis and hepatic failure. Besides the persisting high prevalence of chronic viral hepatitis B and C, the dramatic increase in nonalcoholic steatohepatitis is now considered to be a major pathophysiologic driver for fibrosis development and subsequently cirrhosis. Increasing evidence suggests that also liver cirrhosis can regress when treated adequately. AREAS COVERED Herein, the authors review the underlying pathophysiologic mechanisms leading to fibrotic remodeling in the liver. They also highlight the options for novel treatment strategies by using molecular targeted agents. EXPERT OPINION New in vitro and preclinical animal models, and the careful selection of patients with high disease dynamics for clinical studies, provide a sound basis for the clinical development of antifibrotic agents in humans. Surrogate parameters of liver function, inflammation, tissue remodeling and damage, as well as noninvasive imaging techniques, can be applied in clinical trials to provide fast readouts and novel and reliable endpoints for trial design, and provide an attractive regulatory environment for this emerging disease area.
Collapse
|