1
|
Gupta D, Shrivastava S, Kumar S, Bhardwaj G, Jain C, Kumar S, Tonk R, Shukla S. Protective effect of rutin on acrylamide induced ovarian inflammation, oxidative stress, DNA damage, and hormonal changes: Based on in silico and in vivo study. J Biochem Mol Toxicol 2024; 38:e23784. [PMID: 39095945 DOI: 10.1002/jbt.23784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/06/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
Acrylamide (AA) is a carcinogenic compound that affects people due to its frequent use in laboratories and industry as well as the high-temperature cooking of foods with high hydrocarbon content. AA is known to cause severe reproductive abnormalities. The main aim of this study is to evaluate the protective effect of rutin (RU), a phytoactive compound, against AA-induced reproductive toxicity in female rats. Initially, rats were exposed to AA (40 mg/kg for 10 days). Therapy of RU was given after AA intoxication consecutively for 3 days. After 24 h of the last treatment, all the animals were sacrificed. The study evaluated reproductive hormones, oxidative stress markers, membrane-bound enzymes, DNA damage, histological findings, and an in silico approach to determine the protective efficacy of RU. The results indicated that RU significantly protected against inflammation, oxidative stress, and DNA damage induced by AA, likely due to its antioxidant properties.
Collapse
Affiliation(s)
- Divya Gupta
- Reproductive Biology and Toxicology Lab, UNESCO Trace Element and Satellite Centre, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Sadhana Shrivastava
- Reproductive Biology and Toxicology Lab, UNESCO Trace Element and Satellite Centre, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Subodh Kumar
- Department of Medical Laboratory Technology, School of Allied Health Sciences and Management, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
- Centre for Precision Medicine and Pharmacy, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Gautam Bhardwaj
- School of Pharmaceutical Science and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Chakresh Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Suresh Kumar
- Department of Medical Laboratory Technology, School of Allied Health Sciences and Management, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Rajiv Tonk
- School of Pharmaceutical Science and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Sangeeta Shukla
- Reproductive Biology and Toxicology Lab, UNESCO Trace Element and Satellite Centre, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, India
| |
Collapse
|
2
|
Alaee S, Khodabandeh Z, Dara M, Hosseini E, Sharma M. Curcumin mitigates acrylamide-induced ovarian antioxidant disruption and apoptosis in female Balb/c mice: A comprehensive study on gene and protein expressions. Food Sci Nutr 2024; 12:4160-4172. [PMID: 38873462 PMCID: PMC11167175 DOI: 10.1002/fsn3.4076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/17/2024] [Accepted: 02/24/2024] [Indexed: 06/15/2024] Open
Abstract
Curcumin is known for its antioxidant properties. This study aimed to investigate the impact of curcumin on acrylamide (ACR)-induced alterations in the first-line antioxidant defense of ovarian tissue. Female Balb/c mice were divided into control, ACR (50 mg/kg), ACR/CUR100 (received Acr + curcumin100 mg/kg), and ACR/CUR200 (Acr + curcumin 200 mg/kg) groups, and received oral treatments for 35 days. Evaluation of antioxidant enzyme expression (Sod, Cat, Gpx genes), pro-apoptotic gene expressions (Bax, Caspase 3), and anti-apoptotic gene expression (Bcl2l1) at mRNA and protein levels was done. Percentage of apoptotic cells using Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was performed. The model group (ACR) showed decreased mRNA expression of Sod, Cat, and Gpx genes compared with the control group. Treatment with two different doses of curcumin (CUR100 and CUR200) significantly increased Sod, Cat, and Gpx gene expression, with CUR200 demonstrating significant recovery. SOD, CAT, and GPX protein levels were similar to mRNA expression trends, significantly increased with curcumin administration. Acrylamide exposure significantly increased Bax and Caspase 3 expression and decreased Bcl2l1 gene expression leading to a notable rise in apoptosis in ACR group as compared to the control group. Conversely, curcumin administration, significantly reduced Bax and Caspase 3 expressions, with an increase in Bcl2l1expression, though not statistically significant. TUNEL assay revealed a substantial decrease in apoptosis in curcumin-received groups. In our study, ACR exposure adversely affected ovarian antioxidant defense thereby leading to increased pro-apoptotic markers. Notably, curcumin treatment effectively mitigated these effects, restored antioxidant potential, and reduced acrylamide-induced toxicity in female mouse ovaries.
Collapse
Affiliation(s)
- Sanaz Alaee
- Department of Reproductive Biology, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
- Stem Cells Technology Research CenterShiraz University of Medical SciencesShirazIran
| | - Zahra Khodabandeh
- Stem Cells Technology Research CenterShiraz University of Medical SciencesShirazIran
| | - Mahintaj Dara
- Stem Cells Technology Research CenterShiraz University of Medical SciencesShirazIran
| | - Elham Hosseini
- Department of Obstetrics and Gynecology, Mousavi Hospital, School of MedicineZanjan University of Medical SciencesZanjanIran
- Zanjan Metabolic Diseases Research CenterZanjan University of Medical SciencesZanjanIran
| | - Mona Sharma
- Department of Reproductive BiologyAIIMSNew DelhiIndia
| |
Collapse
|
3
|
Üremi Ş N, Üremi Ş MM, Gül M, Özsoy EN, Türköz Y. Protective effects of vitamin E against acrylamide-induced hepatotoxicity and nephrotoxicity from fetal development to adulthood: Insights into Akt/NF-κB and Bcl-xL/Bax signaling pathways. Toxicology 2024; 502:153729. [PMID: 38242491 DOI: 10.1016/j.tox.2024.153729] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Acrylamide (ACR), a toxin present in fried and baked carbohydrate-rich foods, is known to cause liver and kidney damage. This study aimed to investigate the mechanisms of oxidative stress, inflammation, and apoptosis that contribute to liver and kidney damage induced by chronic administration of ACR. Additionally, the effectiveness of vitamin E in mitigating these toxic effects was examined. The study initially involved dividing 40 pregnant rats into four groups. After lactation, the research continued with male offspring rats from each group. The offspring rats were divided into Control, Vitamin E, ACR, and ACR + Vitamin E groups. Following ACR administration, liver and kidney function tests were performed on serum samples. Biochemical analyses, evaluation of inflammation markers, histopathological examination, and assessment of protein levels of Akt/IκBα/NF-κB, Bax, Bcl-xL, and Caspase-9 were conducted on liver and kidney tissues. The analysis demonstrated that ACR adversely affected liver and kidney function, resulting in oxidative stress, increased inflammation, and elevated apoptotic markers. Conversely, administration of vitamin E positively impacted these parameters, restoring them to control levels. Based on the results, the mechanism of ACR's action on oxidative stress and inflammation-induced liver and kidney damage may be associated with the activation of apoptotic markers such as Bax and Caspase-9, as well as the Akt/IκBα/NF-κB signaling pathway. Consequently, the protective properties of vitamin E establish it as an essential vitamin for the prevention or mitigation of various ACR-induced damages.
Collapse
Affiliation(s)
- Nuray Üremi Ş
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | | | - Mehmet Gül
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Eda Nur Özsoy
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Yusuf Türköz
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
4
|
Eid A, Ghaleb SS, Zaki A, Ibrahim M, Farghali AA, Ali LE, Abdelgawad MA, Ghoneim MM, Al-Serwi RH, Hassan RM, Ahmad M. Hesperidin Attenuates Titanium Dioxide Nanoparticle-Induced Neurotoxicity in Rats by Regulating Nrf-2/TNF-α Signaling Pathway, the Suppression of Oxidative Stress, and Inflammation. ACS OMEGA 2023; 8:37584-37591. [PMID: 37841165 PMCID: PMC10568688 DOI: 10.1021/acsomega.3c06198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023]
Abstract
Background: Titanium dioxide nanoparticles (TiO2NPs) are widely utilized and consumed mainly as food additives. Oxidative stress is considered to be the basic effect of TiO2NPs through biological interactions. Hesperidin (HSP) is a bioflavonoid (flavanone glycoside) with lipid-lowering, inflammation, oxidative stress suppression, antihypertensive, cancer-fighting, and antiedema effects. Objective: This study was to investigate the possible protective influences of HSP of subchronic oral TiO2NP exposure on the brains of rats, including neurotransmitters, oxidative stress/antioxidant parameters, inflammatory markers, and histological changes in the brains of adult male albino rats. Methodology: The experiment was executed on 80 albino rats. The animals were randomly divided into 4 equal groups. The first group served as a control; the second group was treated with oral doses of HSP (100 mg/kg Bw daily); the third group received TiO2NPs (200 mg/kg Bw orally daily); and the fourth group was treated with TiO2NPs and an oral dose of HSP daily for 8 weeks. Blood samples were obtained for biochemical analysis. Neurotransmitters, oxidative stress biomarker levels, and inflammatory markers were measured in brain homogenates. Histological examination of the brain was performed through H&E staining. Results: Coadministration of hesperidin with TiO2NPs orally for 8 weeks decreased the levels of MDA, TNF-α, AChE, and dopamine in brain homogenates, which were increased in the TiO2NP group. It increased the other oxidative biomarkers (SOD, CAT, and GPx) and Nrf-2 expression levels. Brain histological sections of the TiO2NP-treated group show degeneration, necrosis, congestion, and inflammatory cell infiltration that decreased markedly in the coadministration of hesperidin with the TiO2NP group. Conclusion: Hesperidin cotreatment offers significant protection against TiO2NP-induced oxidative stress and biochemical and histological alteration in the brain.
Collapse
Affiliation(s)
- Amir Eid
- Forensic
Medicine and Clinical Toxicology department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Sherien S. Ghaleb
- Forensic
Medicine and Clinical Toxicology department, Faculty of Medicine, Cairo University, Cairo 11511, Egypt
| | - Amr Zaki
- Forensic
Medicine and Clinical Toxicology department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Marwa Ibrahim
- Biochemistry
and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Cairo 11511, Egypt
| | - Ahmed A. Farghali
- Materials
Science and Nanotechnology Department, Faculty of Postgraduate Studies
for Advanced Sciences (PSAS), Beni-Suef
University, Beni-Suef 62511, Egypt
| | - Lamiaa E. Ali
- Forensic
Medicine and Clinical Toxicology department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohamed A. Abdelgawad
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka 72341, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department
of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Rasha Hamed Al-Serwi
- Department
of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Randa M. Hassan
- Cytology
and Histology department, faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Manar Ahmad
- Forensic
Medicine and Clinical Toxicology department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
5
|
Yan F, Wang L, Zhao L, Wang C, Lu Q, Liu R. Acrylamide in food: Occurrence, metabolism, molecular toxicity mechanism and detoxification by phytochemicals. Food Chem Toxicol 2023; 175:113696. [PMID: 36870671 DOI: 10.1016/j.fct.2023.113696] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/16/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Acrylamide (ACR) is a common pollutant formed during food thermal processing such as frying, baking and roasting. ACR and its metabolites can cause various negative effects on organisms. To date, there have been some reviews summarizing the formation, absorption, detection and prevention of ACR, but there is no systematic summary on the mechanism of ACR-induced toxicity. In the past five years, the molecular mechanism for ACR-induced toxicity has been further explored and the detoxification of ACR by phytochemicals has been partly achieved. This review summarizes the ACR level in foods and its metabolic pathways, as well as highlights the mechanisms underlying ACR-induced toxicity and ACR detoxification by phytochemicals. It appears that oxidative stress, inflammation, apoptosis, autophagy, biochemical metabolism and gut microbiota disturbance are involved in various ACR-induced toxicities. In addition, the effects and possible action mechanisms of phytochemicals, including polyphenols, quinones, alkaloids, terpenoids, as well as vitamins and their analogs on ACR-induced toxicities are also discussed. This review provides potential therapeutic targets and strategies for addressing various ACR-induced toxicities in the future.
Collapse
Affiliation(s)
- Fangfang Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Li Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Chengming Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
6
|
Eldin DN, Fahim HI, Ahmed HY, Abdelgawad MA, Abourehab MAS, Ahmed OM. Preventive Effects of Mandarin Fruit Peel Hydroethanolic Extract, Hesperidin, and Quercetin on Acetaminophen-Induced Hepatonephrotoxicity in Wistar Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7065845. [PMID: 36092164 PMCID: PMC9463012 DOI: 10.1155/2022/7065845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/14/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022]
Abstract
Acetaminophen, also known as N-acetyl-para-aminophenol (NAPAP), is a traditional antipyretic and analgesic that is used extensively around the world to treat colds and fevers. However, a NAPAP excess causes rapid, severe liver and kidney damage. The goal of the study was to examine the protective effects and determine the mechanisms of action of MPHE, hesperidin, and quercetin in NAPAP-induced hepatorenal damage in Wistar rats. Male Wistar rats received a 0.5 g/kg oral supplement of NAPAP every other day for a period of four weeks. During the same period of NAPAP supplementation, MPHE (50 mg/kg), quercetin (20 mg/kg), and hesperidin (20 mg/kg) were administered to rats receiving NAPAP. MPHE, quercetin, and hesperidin treatments significantly improved liver function in NAPAP-supplemented rats. The high serum levels of aminotransferases, alkaline phosphatase, lactate dehydrogenase, and γ-glutamyl transferase as well as total bilirubin were significantly reduced, while the levels of suppressed serum albumin were significantly increased, demonstrating this improvement. Treatments utilizing these natural substances significantly enhanced kidney function as seen by a considerable decline in the increased blood levels of urea, uric acid, and creatinine. Additionally, the injection of MPHE, hesperidin, and quercetin resulted in a decrease in the quantity of lipid peroxides while increasing the activities of superoxide dismutase, glutathione peroxidase, and glutathione-S-transferase in the liver and kidneys. The treatments markedly abated the NAPAP-induced liver and kidney histological perturbations and reduced the NAPAP-induced serum tumor necrosis factor-α level and liver and kidney proapoptotic protein 53 and caspase 3 expressions. Otherwise, serum interleukin-4 level significantly increased by treatments. The MPHE, hesperidin, and quercetin treatments resulted in marked decrease in liver and kidney histopathological scores including inflammation, necrosis, apoptosis, and congestion. In conclusion, the MPHE, quercetin, and hesperidin may induce hepatonephropreventive impacts in NAPAP-supplemented rats via enhancing the antioxidant defense system, anti-inflammatory activity, and antiapoptotic action.
Collapse
Affiliation(s)
- Doaa Nor Eldin
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hanaa I. Fahim
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Heba Y. Ahmed
- Rodents Division, Department of Harmful Animals, Plant Protection Research Institute, Agriculture Research Center, Egypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minya 61519, Egypt
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
7
|
Banc R, Popa DS, Cozma-Petruţ A, Filip L, Kiss B, Fărcaş A, Nagy A, Miere D, Loghin F. Protective Effects of Wine Polyphenols on Oxidative Stress and Hepatotoxicity Induced by Acrylamide in Rats. Antioxidants (Basel) 2022; 11:1347. [PMID: 35883838 PMCID: PMC9312107 DOI: 10.3390/antiox11071347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
In recent years, it has been increasingly suggested that the consumption of natural polyphenols, in moderate amounts, is beneficial for health. The aim of this study was to investigate the efficacy of a red wine (the administered dose of 7 mL/kg/day being equivalent to ~16.5 mg/kg/day total polyphenols) compared to a white wine (the administered dose of 7 mL/kg/day being equivalent to ~1.7 mg/kg/day total polyphenols), on the prevention of acrylamide-induced subacute hepatic injury and oxidative stress in Wistar rats. Hepatic damage due to acrylamide intoxication (the administered dose being 250 µg/kg body weight, for 28 days, by intragastric gavage) was assessed by employing biochemical parameters (aspartate aminotransferase (AST) and alanine aminotransferase (ALT)) and by histopathological studies. Markers of oxidative damage were measured in terms of plasma malondialdehyde (MDA), hepatic Thiobarbituric Acid Reactive Substances (TBARS) and glutathione (GSH) levels, and liver antioxidant enzyme (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)) activities. Regarding hepatic enzyme activities, treatment with red wine significantly decreased the AST values (p < 0.05), while for the ALT values only a normalization tendency was observed. Treatment with red wine and white wine, respectively, significantly prevented the increase in MDA and TBARS levels (p < 0.05), as well as the depletion of GSH (p < 0.05). Red wine treatment normalized the activities of the antioxidant enzymes CAT and SOD in rats intoxicated with acrylamide, while supplementing the diet with white wine did not produce significant differences in the antioxidant enzyme activities. Histopathological findings revealed a moderate protective effect of red wine after four weeks of daily consumption. Our findings provide evidence that red wine, having a higher phenolic content than white wine, has a significant protective effect on oxidative stress and liver injury induced by acrylamide in rats, through its antioxidative activity.
Collapse
Affiliation(s)
- Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (D.M.)
| | - Daniela-Saveta Popa
- Department of Toxicology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.-S.P.); (B.K.); (F.L.)
| | - Anamaria Cozma-Petruţ
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (D.M.)
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (D.M.)
| | - Béla Kiss
- Department of Toxicology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.-S.P.); (B.K.); (F.L.)
| | - Anca Fărcaş
- Department of Mathematics-Informatics, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Andras Nagy
- Department of Veterinary Toxicology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (D.M.)
| | - Felicia Loghin
- Department of Toxicology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.-S.P.); (B.K.); (F.L.)
| |
Collapse
|
8
|
El-Shehawi AM, Sayed S, Hassan MM, Al-Otaibi S, Althobaiti F, Elseehy MM, Soliman M. Taify Pomegranate Juice (TPJ) Abrogates Acrylamide-Induced Oxidative Stress Through the Regulation of Antioxidant Activity, Inflammation, and Apoptosis-Associated Genes. Front Vet Sci 2022; 9:833605. [PMID: 35392110 PMCID: PMC8980525 DOI: 10.3389/fvets.2022.833605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Acrylamide (ACR) has various effects on biological systems, including oxidative stress and its associated metabolic disorders. Previous research reports that plants growing at high altitude have a different profile of antioxidants. In the current report, the Taify pomegranate juice (TPJ) of the Taify pomegranate growing at the Taif region (high altitude), Saudi Arabia, was investigated for its protective activity from ACR-induced oxidative stress. Rats were treated with ACR, TPJ, or TPJ+ACR, and various assays, including blood chemistry, liver function biomarkers, gene expression of endogenous antioxidant enzymes, oxidative stress regulatory genes, inflammation biomarkers, and apoptosis, were estimated using biochemical, real-time PCR, histopathological, and immunohistochemical analysis. TPJ showed a protective function of ACR-induced alteration of AST, ALT, GGT, urea, total proteins, albumin, MDA, and NO. It also increased the level of the endogenous antioxidative enzymes, including SOD, catalase, and GSH. It showed anti-inflammatory activity by reduction the TNF-α, IL-6 secretion and the enhancing of IL-10 levels. At the gene expression level, TPJ upregulated the expression of endogenous antioxidant genes (SOD and catalase) and of antioxidant-regulating genes Nrf2 and HO-1; downregulated the expression of inflammatory genes TGF-β1, COX2, and the apoptotic gene caspase-3; and upregulated the expression of antiapoptotic gene Bcl2. At the histological level, TPJ showed a protective effect from the ACR-induced hepatic histological damage. Results of this study conclude that TPJ has a protective effect from ACR-induced oxidative stress and its associated metabolic alterations through its antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
- *Correspondence: Ahmed M. El-Shehawi
| | - Samy Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, Taif, Saudi Arabia
| | - Mohamed M. Hassan
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Saad Al-Otaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Mona M. Elseehy
- Department of Genetics, Faculty of Agriculture, University of Alexandria, Alexandria, Egypt
| | - Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| |
Collapse
|
9
|
Arikan B, Ozfidan-Konakci C, Yildiztugay E, Zengin G, Alp FN, Elbasan F. Exogenous hesperidin and chlorogenic acid alleviate oxidative damage induced by arsenic toxicity in Zea mays through regulating the water status, antioxidant capacity, redox balance and fatty acid composition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118389. [PMID: 34687779 DOI: 10.1016/j.envpol.2021.118389] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) toxicity is a problem that needs to be solved in terms of both human health and agricultural production in the vast majority of the world. The presence of As causes biomass loss by disrupting the balance of biochemical processes in plants and preventing growth/water absorption in the roots and accumulating in the edible parts of the plant and entering the food chain. A critical method of combating As toxicity is the use of biosafe, natural, bioactive compounds such as hesperidin (HP) or chlorogenic acid (CA). To this end, in this study, the physiological and biochemical effects of HP (100 μM) and CA (50 μM) were investigated in Zea mays under arsenate stress (100 μM). Relative water content, osmotic potential, photosynthesis-related parameters were suppressed under stress. It was determined that stress decreased the activities of the antioxidant system and increased the level of saturated fatty acids and, gene expression of PHT transporters involved in the uptake and translocation of arsenate. After being exposed to stress, HP and CA improved the capacity of superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), glutathione S-transferase (GST) and glutathione peroxidase (GPX) and then ROS accumulation (H2O2) and lipid peroxidation (TBARS) were effectively removed. These phenolic compounds contributed to maintaining the cellular redox status by regulating enzyme/non-enzyme activity/contents involved in the AsA-GSH cycle. HP and CA reversed the adverse effects of excessive metal ion accumulation by re-regulated expression of the PHT1.1 and PHT1.3 genes in response to stress. Exogenously applied HP and CA effectively maintained membrane integrity by regulating saturated/unsaturated fatty acid content. However, the combined application of HP and CA did not show a synergistic protective activity against As stress and had a negative effect on the antioxidant capacity of maize leaves. As a result, HP and CA have great potentials to provide tolerance to maize under As stress by reducing oxidative injury and preserving the biochemical reactions of photosynthesis.
Collapse
Affiliation(s)
- Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey.
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Fatma Nur Alp
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Fevzi Elbasan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| |
Collapse
|
10
|
Mohammed N, Ahmed SA, Hegazy NI, Kashishy K. Ameliorative effects of hesperidin and N-acetylcysteine against formaldehyde-induced-hemato- and genotoxicity. Toxicol Res (Camb) 2021; 10:992-1002. [PMID: 34733484 PMCID: PMC8557673 DOI: 10.1093/toxres/tfab083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 11/14/2022] Open
Abstract
This study investigated the hemato- and genotoxic effects of formaldehyde (FA) and the possible mitigating role of hesperidin (HP) and N-acetylcysteine (NAC), each alone and in combination. Sixty-four adult male albino rats were divided into eight equal groups; the study was conducted for 8 weeks; Group I (negative control: received no medication), Group II (positive control: received distilled water), Group III (received HP 50 mg/kg/day), Group IV (received NAC 50 mg/kg/day), Group V (received FA 10 mg/kg/day), Group VI (FA + HP), Group VII (FA + NAC), and Group VIII (FA + HP + NAC). Groups VI, VII, VIII received the same previously mentioned doses and for the same duration. All treatments were given by intraperitoneal administration. At the end of the study, complete blood count, oxidative stress, histopathological changes, immunohistochemical staining of inducible nitric oxide synthase, and proliferating cell nuclear antigen and genotoxicity by comet assay in the bone marrow of treated rats were assessed. FA administration caused significant hematotoxicity represented by elevated white blood cell numbers and serum malondialdehyde levels and reduced red blood cell numbers, platelets, and serum superoxide dismutase values. Histologically, it induced an increase in fat cell numbers in bone marrow tissue with a widening of marrow spaces and decreased cellularity of hematopoietic cells, megakaryocytes, and granulocytes. FA exposure significantly decreased immunoreactivity for proliferating cell nuclear antigen, whereas the immunoreactivity for inducible nitric oxide synthase was increased. Genotoxicity, as measured by comet assay, revealed a significant increase in comet% and tail length in FA-treated group when compared with other groups. The cotreatment with HP and NAC revealed their ability to protect against hematological changes, oxidative damage, histopathological, and immunohistochemical changes, and genotoxicity induced by FA.
Collapse
Affiliation(s)
- Nourhan Mohammed
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sahar A Ahmed
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nagah I Hegazy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Kamal Kashishy
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
11
|
Caglayan C, Kandemir FM, Darendelioğlu E, Küçükler S, Ayna A. Hesperidin protects liver and kidney against sodium fluoride-induced toxicity through anti-apoptotic and anti-autophagic mechanisms. Life Sci 2021; 281:119730. [PMID: 34147482 DOI: 10.1016/j.lfs.2021.119730] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022]
Abstract
AIM High dose of fluoride intake is associated with toxic effects on liver and kidney tissues. One approach to tackle these toxicities is using natural antioxidants as supplements. This study evaluated the ameliorative effects of hesperidin (HSP) against sodium fluoride (NaF)-induced hepatotoxicity and nephrotoxicity in wistar albino rats. MATERIALS AND METHODS In the present study, the rats were randomly allocated into five groups of seven male rats each group: control, NaF (600 ppm), HSP-200, NaF + HSP-100 and NaF + HSP 200. KEY FINDINGS Hepatic and renal injuries induced by NaF were confirmed by the alteration in kidney function parameters in the serum (urea and creatinine), levels of liver enzymes (ALT, ALP and AST), activities of the antioxidant enzymes (SOD, CAT and GPx) and levels of inflammatory markers (NF-κB, IL-1β and TNF-α). NaF also inhibited PI3K/Akt/mTOR pathway, increased levels of autophagic markers (Beclin-1, LC3A and LC3B) and expression levels of apoptotic and anti-apoptotic proteins (Bax, Bcl-2, cytochrome c, p53 and procaspase-3) in the liver and kidney tissues. Administration of HSP concurrently with NaF significantly ameliorated the deviation in the above-studied parameters. SIGNIFICANCE The results of the current study revealed that HSP could be used as a beneficial adjuvant that confers protection against NaF-induced liver and kidney damage through antioxidant, anti-inflammatory, anti-apoptotic and anti-autophagic mechanisms.
Collapse
Affiliation(s)
- Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000 Bingol, Turkey.
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Ekrem Darendelioğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, 12000-Bingol University, Bingol, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Adnan Ayna
- Department of Chemistry, Faculty of Science and Literature, 12000-Bingol University, Bingol, Turkey
| |
Collapse
|
12
|
Bedir F, Kocatürk H, Yapanoğlu T, Gürsul C, Arslan R, Mammadov R, Çoban A, Altuner D, Suleyman H. Protective effect of taxifolin against prooxidant and proinflammatory kidney damage associated with acrylamide in rats. Biomed Pharmacother 2021; 139:111660. [PMID: 34243628 DOI: 10.1016/j.biopha.2021.111660] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 01/12/2023] Open
Abstract
The current study investigates the biochemical and histopathological effects of taxifolin on acrylamide-induced kidney damage. A 50 mg/kg dose of taxifolin was administered via oral gavage to the taxifolin + acrylamide (TACR) group (n-6) consisting of male albino Wistar rats. The same volume of distilled water used as solvent was orally administered to the acrylamide (ACR) (n-6) and healthy (HG) (n-6) groups. One hour after the administration of taxifolin and distilled water, a 20 mg/kg dose of acrylamide was orally administered to the TACR and ACR groups. This procedure was repeated once a day for 30 days. In the acrylamide group, malondialdehyde (MDA), tumour necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β) levels were found to be high, total glutathione (tGSH) levels were found to be low, and there was severe interstitial haemorrhage; additionally, tubular necrosis, tubular atrophy, leucocyte infiltration, and glomerular structures with expanded Bowman's space were observed. In the taxifolin group, where the increase of MDA, IL-1β, and TNF-α and the decrease of tGSH associated with acrylamide have been prevented, any histopathological finding other than mild necrosis and atrophic tubules was not found. This suggests that Taxifolin would prevent kidney tissue from acrylamide-induced damage would be effective in treating acrylamide-induced nephrotoxicity, inhibiting the increase of MDA, IL-1β and TNF-α, and decreasing tGSH associated with acrylamide.
Collapse
Affiliation(s)
- Fevzi Bedir
- Department of Urology, Health Sciences University, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Hüseyin Kocatürk
- Department of Urology, Health Sciences University, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Turgut Yapanoğlu
- Department of Urology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Cebrail Gürsul
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Remzi Arslan
- Department of Pathology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Renad Mammadov
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Abdülkadir Çoban
- Department of Biochemistry, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Durdu Altuner
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey.
| |
Collapse
|
13
|
Jiang G, Lei A, Chen Y, Yu Q, Xie J, Yang Y, Yuan T, Su D. The protective effects of the Ganoderma atrum polysaccharide against acrylamide-induced inflammation and oxidative damage in rats. Food Funct 2021; 12:397-407. [PMID: 33336655 DOI: 10.1039/d0fo01873b] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, the protective effects of the Ganoderma atrum polysaccharide (PSG-1) on selected tissue (liver, spleen, kidneys and intestine) toxicity induced by acrylamide (AA) in SD rats were investigated. The results showed that pretreatment with PSG-1 could prevent AA-induced damage to liver and kidney functions by increasing the activities of ALT, AST and ALP and the levels of TG, BUN and CR in the serum of AA-treated rats. PSG-1 could also maintain the intestinal barrier function and permeability by preventing the reduction of the serum d-Lac and ET-1 levels in the intestine of AA-treated rats. In addition, AA-induced DNA damage, as indicated by an increase of the 8-OHdG level, was alleviated by pretreatment with PSG-1. Histological observations of the tissues confirmed the protective effects of different doses of PSG-1. Moreover, PSG-1 supplementation reduced oxidative stress and inflammation in rats by upregulating the superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities and IL-10 levels, and preventing the overproduction of malondialdehyde (MDA), IL-1β, IL-6, and TNF-α. Thus, these findings suggest that PSG-1 effectively prevents AA-induced damage in the liver, spleen, kidneys, and intestine of rats, partially by alleviating the inflammatory response and oxidative stress and protecting the intestinal integrity and barrier function.
Collapse
Affiliation(s)
- Guoyong Jiang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Aitong Lei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Ying Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Tongji Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Dan Su
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
14
|
Lin Z, Zhang Y, Li F, Tan X, Luo P, Liu H. Preventive Effects of Three Polysaccharides on the Oxidative Stress Induced by Acrylamide in a Saccharomyces cerevisiae Model. Mar Drugs 2020; 18:E395. [PMID: 32731522 PMCID: PMC7459515 DOI: 10.3390/md18080395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Saccharomyces cerevisiae was used as a model to explore the preventive effect of two marine polysaccharides separately derived from Sepia esculenta ink (SIP) and Laminaria japonica (FL) as well as one terrestrial polysaccharides from Eleocharis tuberosa peel (WCPP) on toxic injury induced by acrylamide (AA). The growth of yeast was evaluated by kinetics indexes including doubling time, lag phase and maximum proliferation density. Meanwhile, intracellular redox state was determined by contents of MDA and GSH, and SOD activity. The results showed that AA inhibited yeast growth and destroyed the antioxidant defense system. Supplement with polysaccharides, the oxidative damage of cells was alleviated. According to the growth recovery of yeast, FL and WCPP had similar degree of capacity against AA associated cytotoxicity, while SIP was 1.5~2 folds as strong as FL and WCPP. SIP and FL significantly reduced production of MDA by AA administration. Moreover, SIP, FL and WCPP increased SOD activity and repressed GSH depletion caused by AA.
Collapse
Affiliation(s)
| | | | | | | | | | - Huazhong Liu
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.); (Y.Z.); (F.L.); (X.T.); (P.L.)
| |
Collapse
|
15
|
Aldawood N, Alrezaki A, Alanazi S, Amor N, Alwasel S, Sirotkin A, Harrath AH. Acrylamide impairs ovarian function by promoting apoptosis and affecting reproductive hormone release, steroidogenesis and autophagy-related genes: An in vivo study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110595. [PMID: 32304918 DOI: 10.1016/j.ecoenv.2020.110595] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Acrylamide (ACR) toxicity is quite common due to its widespread use in industry and due to the Maillard browning reaction that occurs in foods containing high concentrations of hydrocarbons subjected to high temperatures. This study aimed to elucidate the female reproductive toxicity of ACR in vivo. Fifty-day-old Wistar-Albino female rats were treated with different dosages of ACR (2.5, 10, and 50 mg/kg/day). After treatment, the animals were sacrificed, and serum and ovary samples were collected for histological examination, hormone analysis, TUNEL analysis, and RT-PCR studies. We found that ACR acts by significantly reducing ovarian weight and serum progesterone and estradiol concentrations. In addition, ACR treatment led to pyknotic, heterochromatic characteristics and nuclear fragmentation, as evidenced by hematoxylin staining. The TUNEL assay revealed that granulosa cells were affected after the oral administration of ACR, leading to the apoptosis of follicles at different stages of growth. Compared with the control condition, high doses of ACR (50 mg/kg/day) significantly induced the overexpression of INSL3, CYP17a, IGF1, ESR1, ESR2, ATG5, ATG12 and LC3 in the ovary. Moreover, LC3 mRNA levels significantly increased with increasing doses of ACR (2.5, 10 and 50 mg/kg/day), suggesting that ACR treatment induced autophagy. In conclusion, ACR induced ovarian dysfunction by affecting steroid hormone release, increasing apoptosis and mRNA levels of autophagy-related genes. The eventual correlation between apoptotic granulosa cell death and autophagy needs to be further explored.
Collapse
Affiliation(s)
- Nouf Aldawood
- King Saud University, Department of Zoology, College of Science
| | | | - Shamsa Alanazi
- King Saud University, Department of Zoology, College of Science
| | - Nabil Amor
- King Saud University, Department of Zoology, College of Science
| | - Saleh Alwasel
- King Saud University, Department of Zoology, College of Science
| | - Alexander Sirotkin
- Department of Zoology and Anthropology, Constantine the Philosopher University, 949 74, Nitra, Slovakia
| | | |
Collapse
|
16
|
Hamdy SM, El-Khayat Z, Farrag AR, Sayed ON, El-Sayed MM, Massoud D. Hepatoprotective effect of Raspberry ketone and white tea against acrylamide-induced toxicity in rats. Drug Chem Toxicol 2020; 45:722-730. [PMID: 32482111 DOI: 10.1080/01480545.2020.1772279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The current investigation was accomplished to evaluate the hepatoprotective effect of White tea and Raspberry Ketone against toxicity induced by acrylamide in rats. Sixty adult male rats were divided randomly into group (I) control; group (II) rats received RK with dose (6 mg/kg/day); Group III: rats received 5 ml of WT extract/kg/day; Group IV rats received AA (5 mg/kg/day); Group V: rats administrated with both AA (5 mg/kg/day) and RK (6 mg/kg/day) and Group VI: rats administrated AA (5 mg/kg/day) and 5 ml of WT extract/kg/day. The biochemical assays exhibited a significant increase in serum levels of Adiponectin, AST, ALT, ALP of the group treated with acrylamide if compared to the control group and an improvement in their levels of groups V and VI. The histopathological and immunohistochemical findings confirm the biochemical observations. In conclusion, the present investigation proved that the supplementation of WT and RK enhanced the liver histology, immunohistochemistry and biochemistry against the oxidative stress induced by acrylamide.
Collapse
Affiliation(s)
- Soha M Hamdy
- Chemistry Department, Biochemistry Division, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Zakaria El-Khayat
- Medical Biochemistry Department, Medical Division, National Research Centre Cairo, Cairo, Egypt
| | - Abdel Razik Farrag
- Pathology Department, Medical Division, National Research Centre, Cairo, Egypt
| | - Ola N Sayed
- Chemistry Department, Biochemistry Division, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Mervat M El-Sayed
- Chemistry Department, Biochemistry Division, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Diaa Massoud
- Department of Biology, College of Science, Jouf University, Sakakah, Saudi Arabia.,Department of Zoology, Faculty of Science, Fayoum University, Faiyum, Egypt
| |
Collapse
|
17
|
Tabeshpour J, Hosseinzadeh H, Hashemzaei M, Karimi G. A review of the hepatoprotective effects of hesperidin, a flavanon glycoside in citrus fruits, against natural and chemical toxicities. ACTA ACUST UNITED AC 2020; 28:305-317. [PMID: 32277430 DOI: 10.1007/s40199-020-00344-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/30/2020] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Liver is the most important and functional organ in the body to metabolize and detoxify endogenous compounds and xenobiotics. The major goal of the present narrative review is to assess the hepatoprotective properties of hesperidin against a variety of natural and chemical hepatotoxins via different mechanisms. EVIDENCE ACQUISITION Scientific databases such as Scopus, Medline, Web of Science and Google scholar were thoroughly searched, based on different keywords. RESULTS A variety of natural hepatotoxins such as lipopolysaccharide, concanavalin A and microcystins, and chemical hepatotoxins such as ethanol, acrylamide and carbon tetrachloride have been shown to damage hepatocytes as well as other liver cells. In addition to hepatocytes, ethanol can also damage liver hepatic stellate cells, Kupffer cells and sinusoidal endothelial cells. In this regard, the flavanone hesperidin, occur in the rind of citrus fruits, had been demonstrated to possess widespread pharmacological properties. Hesperidin exerts its hepatoprotective properties via different mechanisms including elevation in the activities of nuclear factor-like 2/antioxidant response element and heme oxygenase 1 as well as the levels of enzymatic and non-enzymatic antioxidants. Furthermore, reduction in the levels of high-mobility group box 1 protein, inhibitor of kappa B protein-alpha, matrix metalloproteinase-9 and C-reactive protein are some other important hesperidin-derived hepatoprotective mechanisms. CONCLUSION Based on several research papers, it could be concluded that hesperidin is able to protect against liver damage from inflammation and/or oxidative stress-mediated natural and chemical toxins.
Collapse
Affiliation(s)
- Jamshid Tabeshpour
- Faculty of Pharmacy, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, P. O. Box 1365-91775, Mashhad, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, P. O. Box 1365-91775, Mashhad, Iran.
| |
Collapse
|
18
|
Sun R, Chen W, Cao X, Guo J, Wang J. Protective Effect of Curcumin on Acrylamide-Induced Hepatic and Renal Impairment in Rats: Involvement of CYP2E1. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20910548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
As a chemical extensively used in industrial areas and formed during heating of carbohydrate-rich foods and tobacco, acrylamide (ACR) has been demonstrated to exert a variety of systemic toxic effects including hepatotoxicity and nephrotoxicity. In the present study, we investigated the effect of curcumin, a natural polyphenolic compound in a popular spice known as turmeric, on the hepatic and renal impairment caused by ACR exposure to 40 mg/kg for 4 weeks in rats. The administration of curcumin at doses of 50 and 100 mg/kg to ACR-intoxicated rats significantly decreased the serum levels of alanine transaminase, aspartate transaminase, creatinine, and urea; improved the histological changes of liver and kidney caused by ACR; reduced the number of apoptotic cells; as well as relieved ACR-induced hepatic and renal oxidative stress. Moreover, curcumin inhibited the CYP2E1 overexpression induced by ACR in the liver and kidney tissues. Therefore, curcumin could be applied as a potential strategy for the intervention of ACR-induced systemic toxicity. The inhibition of CYP2E1 might be involved in the protection of curcumin against ACR-induced hepatotoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Rui Sun
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Wenhui Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Xiaolu Cao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Jie Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| |
Collapse
|
19
|
Kunnel SG, Subramanya S, Satapathy P, Sahoo I, Zameer F. Acrylamide Induced Toxicity and the Propensity of Phytochemicals in Amelioration: A Review. Cent Nerv Syst Agents Med Chem 2020; 19:100-113. [PMID: 30734688 DOI: 10.2174/1871524919666190207160236] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/19/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
Abstract
Acrylamide is widely found in baked and fried foods, produced in large amount in industries and is a prime component in toxicity. This review highlights various toxicities that are induced due to acrylamide, its proposed mode of action including oxidative stress cascades and ameliorative mechanisms using phytochemicals. Acrylamide formation, the mechanism of toxicity and the studies on the role of oxidative stress and mitochondrial dysfunctions are elaborated in this paper. The various types of toxicities caused by Acrylamide and the modulation studies using phytochemicals that are carried out on various type of toxicity like neurotoxicity, hepatotoxicity, cardiotoxicity, immune system, and skeletal system, as well as embryos have been explored. Lacunae of studies include the need to explore methods for reducing the formation of acrylamide in food while cooking and also better modulators for alleviating the toxicity and associated dysfunctions along with identifying its molecular mechanisms.
Collapse
Affiliation(s)
- Shinomol George Kunnel
- Department of Biotechnology, Dayananda Sagar College of Engineering (An Autonomous Institute Affiliated to VTU, Belagavi), Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru - 560 078, Karnataka, India
| | - Sunitha Subramanya
- Department of Biotechnology, Dayananda Sagar College of Engineering (An Autonomous Institute Affiliated to VTU, Belagavi), Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru - 560 078, Karnataka, India
| | - Pankaj Satapathy
- Department of Biological Sciences, School of Basic and Applied Sciences, Dayananda Sagar University, Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560 078, Karnataka, India
| | - Ishtapran Sahoo
- Molecular Biology, Thermo Fisher Scientific, Bangalore- 560066, India
| | - Farhan Zameer
- Department of Biological Sciences, School of Basic and Applied Sciences, Dayananda Sagar University, Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560 078, Karnataka, India
| |
Collapse
|
20
|
Elhelaly AE, AlBasher G, Alfarraj S, Almeer R, Bahbah EI, Fouda MMA, Bungău SG, Aleya L, Abdel-Daim MM. Protective effects of hesperidin and diosmin against acrylamide-induced liver, kidney, and brain oxidative damage in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:35151-35162. [PMID: 31686333 DOI: 10.1007/s11356-019-06660-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/01/2019] [Indexed: 05/04/2023]
Abstract
Acrylamide (AA) is a heat-induced toxin formed during thermal processing of many commonly consumed foods, including meat products, French fries, potato crisps, bread, cereals, cookies, and coffee. There is thus potentially high dietary exposure of humans to AA, which can induce significant oxidative stress. Hesperidin (HS) and diosmin (DS) are flavone glycosides that have antioxidant properties. The aim of this study was to investigate the protective effects of HS and DS against AA toxicity. Fifty-six adult male Wistar albino rats were divided into seven groups. The first group was orally administered 0.5% (w/v) dimethyl sulfoxide (DMSO) and considered as the control group. The second and third groups were orally administered 10 mg/kg/day of HS or DS, respectively. The fourth group received 20 mg/kg/day of AA orally for 14 days. The fifth and sixth groups were given 10 mg/kg/day of HS or DS, respectively, followed by AA. The seventh group was given both HS and DS after AA administration. AA intoxication significantly (p ≤ 0.05) increased serum levels of liver function enzymes (ALT, AST, and ALP), kidney function products (urea and creatinine), oxidative DNA damage marker (OHdG), proinflammatory markers (TNF-α, IL-1β, and IL-6), lipid peroxidation marker (malondialdehyde), and nitric oxide (NO). On the other hand, it significantly (p ≤ 0.05) decreased levels of reduced glutathione (GSH) in the liver, kidney, and brain. The activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) in the liver, kidney, and brain tissues were also reduced. HS and DS supplementation prevented lipid peroxidation, normalized the serum parameters altered by AA, and enhanced the tissue concentrations and activities of antioxidant biomarkers. It could be concluded that HS and DS have potent protective effects against oxidative stress, lipid peroxidation, and DNA damage induced by AA toxicity in rats.
Collapse
Affiliation(s)
- Abdelazim E Elhelaly
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Gadah AlBasher
- Department of Zoology, Science College, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saleh Alfarraj
- Department of Zoology, Science College, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rafa Almeer
- Department of Zoology, Science College, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Maged M A Fouda
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
- Department of Zoology, Faculty of Science, Al-Azhar University, Assuit Branch, Assuit, Egypt
| | - Simona G Bungău
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Lotfi Aleya
- Bourgogne Franche-Comté University, Chrono-Environnement Laboratory, UMR CNRS 6249, 25030, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh, 11451, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
21
|
Song T, Li S, Jin J, Yin Z, Lu Y, Bao M, Li Y. Enhanced hydrolyzed polyacrylamide removal from water by an aerobic biofilm reactor-ozone reactor-aerobic biofilm reactor hybrid treatment system: Performance, key enzymes and functional microorganisms. BIORESOURCE TECHNOLOGY 2019; 291:121811. [PMID: 31344634 DOI: 10.1016/j.biortech.2019.121811] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Degradation of hydrolyzed polyacrylamide-containing (HPAM-containing) wastewater was investigated in a lab-scale aerobic-ozonic-aerobic hybrid treatment system. When the HPAM concentration was 500 mg L-1 and the ozone dose was 25 g O3/g TOC, the HPAM removal rate reached 90.79%. Experimental results obtained from gel permeation chromatography (GPC) and rheometer indicated that the refractory HPAM was decomposed into small-molecule compounds. High performance liquid chromatography (HPLC) analysis showed that there was no acrylamide (AM) in the effluent of the system. Microbial communities in two aerobic biofilm reactors (ABRs) were analyzed by Illumina MiSeq Sequencing, which indicated that norank_f_Cytophagaceae, Meiothermus, Bacillus, etc. were keystone functional bacterial genera and Methanobacterium, norank_p_Bathyarchaeota, norank_c_Marine_Group_Ⅰ, etc. were dominant functional archaeal groups. To our knowledge, this is the first study to treat HPAM-containing wastewater using an aerobic-ozonic-aerobic hybrid process. Good removal efficiencies and presence of functional microorganisms demonstrated that the hybrid treatment system was practical for treating HPAM-containing wastewater.
Collapse
Affiliation(s)
- Tianwen Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Shanshan Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiafeng Jin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zichao Yin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yifeng Lu
- Department of Environmental Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Yang Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; China Petrochemical Corporation (Sinopec Group), Beijing 100728, China
| |
Collapse
|
22
|
Hamza RZ, Al-Motaan SE, Malik N. Protective and Antioxidant Role of Selenium Nanoparticles and Vitamin C Against Acrylamide Induced Hepatotoxicity in Male Mice. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.664.674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Turk E, Kandemir FM, Yildirim S, Caglayan C, Kucukler S, Kuzu M. Protective Effect of Hesperidin on Sodium Arsenite-Induced Nephrotoxicity and Hepatotoxicity in Rats. Biol Trace Elem Res 2019; 189:95-108. [PMID: 30066062 DOI: 10.1007/s12011-018-1443-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023]
Abstract
The present study was conducted to investigate the protective effects of hesperidin (HSP) against sodium arsenite (SA)-induced nephrotoxicity and hepatotoxicity in rats. Thirty-five male Sprague Dawley rats were divided into five groups as follows: control, HSP, SA, SA + HSP 100, and SA + HSP 200. Rats were orally gavaged with SA (10 mg/kg body weight) and HSP (100 and 200 mg/kg body weight) for 15 days. SA increased oxidative damage by decreasing antioxidant enzyme activities, such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), and glutathione (GSH) level and increasing malondialdehyde (MDA) level in the kidney and liver tissues. In addition, it increased serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and serum urea and creatinine levels. Furthermore, SA caused inflammation, apoptosis, and oxidative DNA damage by increasing tumor necrosis factor-α (TNF-α), nuclear factor kappa B (NF-κB), interleukin-1β (IL-1β), cysteine aspartate-specific protease-3 (caspase-3), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in the kidney and liver tissues and by increasing liver p53 and kidney interleukin-6 (IL-6) expressions. In other words, HSP administration reduced apoptosis, oxidative stress, inflammation, and oxidative DNA damage significantly in SA-induced kidney and liver tissues depending on dose. In this study, it was seen that HSP showed a protective effect against SA-induced kidney and liver toxicity.
Collapse
Affiliation(s)
- Erdinç Turk
- Department of Pharmacy Professional Sciences, Faculty of Pharmacy, Agri Ibrahim Cecen University, 04100, Ağrı, Turkey.
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Muslum Kuzu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri, Turkey
| |
Collapse
|
24
|
The protective effect of melatonin on the in vitro development of yak embryos against hydrogen peroxide-induced oxidative injury. ZYGOTE 2019; 27:118-125. [PMID: 31010442 DOI: 10.1017/s0967199418000412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
SummaryMelatonin plays a critical role in several types of cells as an antioxidant to protect intracellular molecules from oxidative stress. The anti-oxidation effect of melatonin in yak embryos is largely unknown. We report that melatonin can protect the development of yak preimplantation embryos against oxidative stress induced by hydrogen peroxide (H2O2). Therefore, the quality of blastocysts developed from zygotes exposed to H2O2 was promoted. In addition, we observed that melatonin reduced H2O2-induced intracellular reactive oxygen species (ROS) levels and prevented mitochondrial dysfunction in zygotes. These phenomena revealed the effective antioxidant activity of melatonin to prevent oxidative stress in yak embryos. To determine the underlying mechanism, we further demonstrated that melatonin protected preimplantation embryos from oxidative damage by preserving antioxidative enzymes. Collectively, these results confirmed the anti-oxidation effect of melatonin in yak embryos that significantly improved the quantity and quality of blastocysts in the in vitro production of embryos in yaks.
Collapse
|
25
|
Fouad AA, Abdel-Gaber SA, Abdelghany MI. Hesperidin opposes the negative impact of cyclophosphamide on mice kidneys. Drug Chem Toxicol 2019; 44:223-228. [PMID: 30889984 DOI: 10.1080/01480545.2018.1560467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The present investigation examined the prospective nephroprotective effect of hesperidin (HSN) in mice challenged with a single i.p. injection of cyclophosphamide (CPE) at a dose of 200 mg/kg. HSN (100 and 200 mg/kg/day, p.o.) was given for 10 days, starting 5 days prior to CPE administration. HSN significantly reduced the CPE-induced increments of serum creatinine and cystatin C. HSN also significantly reduced malondialdehyde, nitric oxide, Bax/Bcl-2 ratio, and caspase-3, and significantly raised total antioxidant capacity, and interleukin-10/tumor necrosis factor-α ratio in kidneys of mice received CPE. In addition, HSN significantly prevented the histopathological injury, and kidney injury molecule-1 expression in kidneys of mice given CPE. It was concluded that HSN guarded against nephrotoxic effect of CPE in mice by tackling oxidative/nitrative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Amr A Fouad
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Seham A Abdel-Gaber
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Manal I Abdelghany
- Department of Pathology, Faculty of Medicine, Minia University, El-Minia, Egypt
| |
Collapse
|
26
|
Nutritional and Microbiological Quality of Tiger Nut Tubers (Cyperus esculentus), Derived Plant-Based and Lactic Fermented Beverages. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation5010003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tiger nut (Cyperus esculentus) is a tuber that can be consumed raw or processed into beverages. Its nutritional composition shows a high content of lipid and dietary fiber, close to those of nuts, and a high content of starch, like in other tubers. Tiger nuts also contain high levels of phosphorus, calcium, and phenolic compounds, which contribute to their antioxidant activity. From those characteristics, tiger nuts and derived beverages are particularly relevant to limit food insecurity in regions where the plant can grow. In Europe and United States, the tiger nut derived beverages are of high interest as alternatives to milk and for gluten-free diets. Fermentation or addition of probiotic cultures to tiger nut beverages has proven the ability of lactic acid bacteria to acidify the beverages. Preliminary sensory assays concluded that acceptable products are obtained. In the absence of pasteurization, the safety of tiger nut-based beverages is not warranted. In spite of fermentation, some foodborne pathogens or mycotoxigenic fungi have been observed in fermented beverages. Further studies are required to select a tailored bacterial cocktail which would effectively dominate endogenous flora, preserve bioactive compounds and result in a well-accepted beverage.
Collapse
|
27
|
Rivadeneyra-Domínguez E, Becerra-Contreras Y, Vázquez-Luna A, Díaz-Sobac R, Rodríguez-Landa JF. Alterations of blood chemistry, hepatic and renal function, and blood cytometry in acrylamide-treated rats. Toxicol Rep 2018; 5:1124-1128. [PMID: 30510905 PMCID: PMC6258226 DOI: 10.1016/j.toxrep.2018.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/12/2018] [Accepted: 11/01/2018] [Indexed: 11/24/2022] Open
Abstract
Acrylamide is a vinyl monomer that is widely used for the synthesis of polyacrylamides, the treatment of drinking water, and as an additive in cosmetics. Acrylamide is also produced during the thermal processing of carbohydrate-rich foods. Although the potential toxic effects of acrylamide have been reported, few studies have evaluated biochemical parameters in blood. The present study investigated alterations of blood chemistry, hepatic function, and blood cytometry in acrylamide-treated rats. Thirty-two male Wistar rats were assigned to four experimental groups (n = 8/group): one control group received 0.3 ml of vehicle (saline solution), and the other three groups received acrylamide (25, 50, and 75 mg/kg, i.p., for 14 days). At the end of treatment, blood samples were collected to obtain serum, which was then processed using a Vitros250 device. For blood cytometry, the samples were processed in a Sysmex analyzer. The blood chemistry results showed that urea nitrogen, urea, and creatinine were elevated in the acrylamide-treated groups. Tests of hepatic function showed that total and direct bilirubins, transaminases, and alkaline phosphatase were also elevated compared with vehicle, whereas the levels of total proteins and albumin decreased. Blood cytometry showed that the levels of erythrocytes, hemoglobin, hematocrit, leukocytes, and platelets and mean cell volume decreased in the acrylamide-treated groups compared with vehicle. Overall, the present findings indicate that acrylamide causes deleterious effects on renal and hepatic physiology, producing dose-dependent alterations of blood chemistry and cytometry parameters in male Wistar rats.
Collapse
Affiliation(s)
| | | | - Alma Vázquez-Luna
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, Mexico
- Instituto de Ciencias Básicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Rafaél Díaz-Sobac
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, Mexico
- Instituto de Ciencias Básicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Juan Francisco Rodríguez-Landa
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, Mexico
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| |
Collapse
|