1
|
Li T, Nalavenkata S, Fainberg J. Imaging in Diagnosis and Active Surveillance for Prostate Cancer: A Review. JAMA Surg 2025; 160:93-99. [PMID: 39535781 DOI: 10.1001/jamasurg.2024.4811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Importance Active surveillance (AS) has become an increasingly important option for managing low-risk and select intermediate-risk prostate cancer. Although imaging, particularly multiparametric magnetic resonance imaging (mpMRI), has emerged in the prebiopsy pathway for the diagnosis of prostate cancer, the role of mpMRI in patient selection for AS and the necessity of prostate biopsies during AS remain poorly defined. Despite well-founded biopsy schedules, there has been substantial investigation into whether imaging may supplant the need for prostate biopsies during AS. This review aimed to summarize the contemporary role of imaging in the diagnosis and surveillance of prostate cancer. Observations Multiparametric MRI is the most established form of imaging in prostate cancer, with routine prebiopsy use being shown to help urologists distinguish between clinically significant and clinically insignificant disease. The visibility of these lesions on mpMRI closely correlates with their behavior, with visible disease portending a worse prognosis. Combined with other clinical data, risk calculators may better delineate patients with higher-risk disease and exclude them from undergoing AS. While current evidence suggests that mpMRI cannot replace the need for prostate biopsy during AS due to the possibility of missing higher-risk disease, the addition of prostate biomarkers may help to reduce the frequency of these biopsies. The role of prostate-specific antigen positron emission tomography/computed tomography is still emerging but has shown promising early results as an adjunct to mpMRI in initial diagnosis. Conclusions and Relevance Imaging in prostate cancer helps to better select patients appropriate for AS, and future studies may strengthen the predictive capabilities of risk calculators. Multiparametric MRI has been shown to be imperative to rationalizing biopsies for patients enrolled in AS. However, heterogeneity in the evidence of mpMRI during AS has suggested that further prospective studies and randomized clinical trials, particularly in homogenizing reporting standards, may reveal a more defined role in monitoring disease progression.
Collapse
Affiliation(s)
- Thomas Li
- University of Sydney, Sydney, New South Wales, Australia
| | - Sunny Nalavenkata
- Department of Surgery (Urology Service), Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jonathan Fainberg
- Department of Surgery (Urology Service), Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
2
|
van den Bergh RCN, Schoots IG, Cornford PA. Standard Repeat Biopsies During Active Surveillance for Prostate Cancer: Are They Necessary in the Magnetic Resonance Imaging Era? Eur Urol 2025; 87:5-7. [PMID: 39327115 DOI: 10.1016/j.eururo.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Active surveillance (AS) remains an important part of the efforts to decrease overtreatment of prostate cancer. The increasing use of magnetic resonance imaging (MRI) can reduce the need for repeat biopsy during AS. If MRI findings remain unchanged and clinical characteristics such as prostate-specific antigen density are favourable, the relative risks and benefits of repeat biopsy should be discussed with individual patients.
Collapse
Affiliation(s)
| | - Ivo G Schoots
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Philip A Cornford
- Department of Urology, Liverpool University Hospitals NHS Trust, Liverpool, UK
| |
Collapse
|
3
|
Dias AB, Woo S, Leni R, Rajwa P, Kasivisvanathan V, Ghai S, Haider M, Gandaglia G, Brembilla G. Is MRI ready to replace biopsy during active surveillance? Eur Radiol 2024; 34:7716-7727. [PMID: 38965093 DOI: 10.1007/s00330-024-10863-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 07/06/2024]
Abstract
Active surveillance (AS) is a conservative management option recommended for patients diagnosed with low-risk prostate cancer (PCa) and selected cases with intermediate-risk PCa. The adoption of prostate MRI in the primary diagnostic setting has sparked interest in its application during AS. This review aims to examine the role and performance of multiparametric MRI (mpMRI) across the entire AS pathway, from initial stratification to follow-up, also relative to the utilization of the Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) criteria. Given the high negative predictive value of mpMRI in detecting clinically significant PCa (csPCa), robust evidence supports its use in patient selection and risk stratification at the time of diagnosis or confirmatory biopsy. However, conflicting results have been observed when using MRI in evaluating disease progression during follow-up. Key areas requiring clarification include addressing the clinical significance of MRI-negative csPCa, optimizing MRI quality, determining the role of biparametric MRI (bpMRI) or mpMRI protocols, and integrating artificial intelligence (AI) for improved performance. CLINICAL RELEVANCE STATEMENT: MRI plays an essential role in the selection, stratification, and follow up of patients in active surveillance (AS) for prostate cancer. However, owing to existing limitations, it cannot fully replace biopsies in the context of AS. KEY POINTS: Multiparametric MRI (mpMRI) has become a crucial tool in active surveillance (AS) for prostate cancer (PCa). Conflicting results have been observed regarding multiparametric MRI efficacy in assessing disease progression. Standardizing MRI-guided protocols will be critical in addressing current limitations in active surveillance for prostate cancer.
Collapse
Affiliation(s)
- Adriano B Dias
- University Medical Imaging Toronto; Joint Department of Medical Imaging; University Health Network-Sinai Health System-Women's College Hospital, University of Toronto, Toronto, ON, Canada
| | - Sungmin Woo
- Department of Radiology, NYU Langone Health, New York, NY, USA
| | - Riccardo Leni
- Division of Experimental Oncology, Department of Urology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Pawel Rajwa
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Urology, Medical University of Silesia, Zabrze, Poland
| | - Veeru Kasivisvanathan
- Division of Surgery & Interventional Science, University College London, London, UK; Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
| | - Sangeet Ghai
- University Medical Imaging Toronto; Joint Department of Medical Imaging; University Health Network-Sinai Health System-Women's College Hospital, University of Toronto, Toronto, ON, Canada
| | - Masoom Haider
- University Medical Imaging Toronto; Joint Department of Medical Imaging; University Health Network-Sinai Health System-Women's College Hospital, University of Toronto, Toronto, ON, Canada
| | - Giorgio Gandaglia
- Division of Experimental Oncology, Department of Urology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giorgio Brembilla
- Vita-Salute San Raffaele University, Milan, Italy.
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
4
|
Zahalka AH, Fram E, Garden E, Howard L, Wiggins E, Babar M, Annam J, Reagan A, Eilender B, de Hoedt A, Freedland SJ, Tewari A, Watts KL. Association between beta-blocker atenolol use and prostate cancer upgrading in active surveillance. BJUI COMPASS 2024; 5:1095-1100. [PMID: 39539558 PMCID: PMC11557265 DOI: 10.1002/bco2.441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
Objectives The objective of this study is to investigate the association between the use of beta-adrenergic antagonist atenolol and risk of pathologic upgrade in patients on active surveillance, considering growing literature implicating adrenergic innervation with disease progression mediated through beta-adrenergic signalling. Patients and Methods Men with low-risk or favourable intermediate-risk prostate cancer who were placed on an active surveillance protocol between 2006 and 2020 across three diverse urban hospitals were included. Exposure was duration of atenolol use, and outcome was pathologic grade group upgrading (to GG ≥ 3) on final prostate biopsy. Cox proportional hazard regression models were used to determine the associations between atenolol use and risk of upgrading with time, on a per-examination basis. Results A total of 467 men with initial GG ≤ 2 were included. Postdiagnosis atenolol use was associated with a decreased risk of pathologic upgrade to GG ≥ 3 on final repeat biopsy (HR 0.81, 95% CI 0.39-0.98). Longer duration of postdiagnosis atenolol use (>2 years) and greater cumulative atenolol dose (>730 defined daily doses) were associated with a more pronounced decreased risk of upgrade to GG ≥ 3 (HR 0.41, 95% CI 0.05-0.88, and HR 0.32, 95% CI 0.15-0.99, respectively). Initiation of atenolol use prior to prostate cancer diagnosis had a slightly greater protective effect than drug initiation postdiagnosis (HR 0.79, 95% CI 0.43-0.98, and HR 0.83, 95% CI 0.30-0.99, respectively). Conclusions Beta-adrenergic blockade with atenolol use in men on active surveillance is associated with a reduced risk for clinically significant grade group pathologic upgrade.
Collapse
Affiliation(s)
- Ali H. Zahalka
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of UrologyUT Southwestern Medical CenterDallasTexasUSA
| | - Ethan Fram
- Department of UrologyAlbert Einstein College of Medicine/Montefiore Medical CenterBronxNew YorkUSA
| | - Evan Garden
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Lauren Howard
- Division of UrologyCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Emily Wiggins
- Division of UrologyCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Mustufa Babar
- Department of UrologyAlbert Einstein College of Medicine/Montefiore Medical CenterBronxNew YorkUSA
| | - Jay Annam
- Department of UrologyAlbert Einstein College of Medicine/Montefiore Medical CenterBronxNew YorkUSA
| | - Allison Reagan
- Division of UrologyCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Benjamin Eilender
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of UrologyUT Southwestern Medical CenterDallasTexasUSA
| | - Amanda de Hoedt
- Section of UrologyDurham VA Medical CenterDurhamNorth CarolinaUSA
| | - Stephen J. Freedland
- Division of UrologyCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Section of UrologyDurham VA Medical CenterDurhamNorth CarolinaUSA
| | - Ash Tewari
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Kara L. Watts
- Department of UrologyAlbert Einstein College of Medicine/Montefiore Medical CenterBronxNew YorkUSA
| |
Collapse
|
5
|
Hougen HY, Reis IM, Han S, Prakash NS, Thomas J, Stoyanova R, Castillo RP, Kryvenko ON, Ritch CR, Nahar B, Gonzalgo ML, Gaston SM, Abramowitz MC, Dal Pra A, Mahal BA, Pollack A, Parekh DJ, Punnen S. Evaluating 4Kscore's role in predicting progression on active surveillance for prostate cancer independently of clinical information and PIRADS score. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00898-w. [PMID: 39333697 DOI: 10.1038/s41391-024-00898-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/21/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND 4Kscore is used to aid the decision for prostate biopsy, however its role in active surveillance (AS) has not been investigated in a magnetic resonance imaging (MRI)-based protocol. Our objective was to assess the association between 4Kscore and progression in men undergoing AS on a prospective MRI-based protocol. METHODS This was a single-institution, single-arm, non-therapeutic, interventional trial of 166 men with biopsy-confirmed prostate cancer enrolled between 2014-2020. Patients were placed on a trial-mandated AS protocol including yearly multiparametric (mp)MRI, prostate biopsy, and 4Kscore followed for 48 months after diagnosis. We analyzed protocol-defined and grade progression at confirmatory and subsequent surveillance biopsies. RESULTS Out of 166 patients, 83 (50%) men progressed per protocol and of them 41 (24.7% of whole cohort) progressed by grade. At confirmatory biopsy, men with a baseline 4Kscore ≥ 20% had a higher risk of grade progression compared to those with 4Kscore < 20% (OR = 4.04, 95% CI: 1.05-15.59, p = 0.043) after adjusting for National Comprehensive Cancer Network (NCCN) risk and baseline PIRADS score. At surveillance biopsies, most recent 4Kscore ≥ 20% significantly predicted per protocol (OR = 2.61, 95% CI: 1.03-6.63, p = 0.044) and grade progression (OR = 5.13, 95% CI: 1.63-16.11, p = 0.005). CONCLUSIONS For patients on AS, baseline 4Kscore predicted grade progression at confirmatory biopsy, and most recent 4Kscore predicted per-protocol and grade progression at surveillance biopsy.
Collapse
Affiliation(s)
- Helen Y Hougen
- University of Iowa Hospitals and Clinics, Department of Urology, Iowa City, IA, USA.
| | - Isildinha M Reis
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
- Biostatistics and Bioinformatics Shared Resources, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sunwoo Han
- Biostatistics and Bioinformatics Shared Resources, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Jamie Thomas
- Desai Sethi Urology Institute, University of Miami, Miami, FL, USA
| | - Radka Stoyanova
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - R Patricia Castillo
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Oleksandr N Kryvenko
- Desai Sethi Urology Institute, University of Miami, Miami, FL, USA
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chad R Ritch
- Desai Sethi Urology Institute, University of Miami, Miami, FL, USA
| | - Bruno Nahar
- Desai Sethi Urology Institute, University of Miami, Miami, FL, USA
| | - Mark L Gonzalgo
- Desai Sethi Urology Institute, University of Miami, Miami, FL, USA
| | - Sandra M Gaston
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matthew C Abramowitz
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alan Dal Pra
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Brandon A Mahal
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alan Pollack
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dipen J Parekh
- Desai Sethi Urology Institute, University of Miami, Miami, FL, USA
| | - Sanoj Punnen
- Desai Sethi Urology Institute, University of Miami, Miami, FL, USA
| |
Collapse
|
6
|
Cornford P, van den Bergh RCN, Briers E, Van den Broeck T, Brunckhorst O, Darraugh J, Eberli D, De Meerleer G, De Santis M, Farolfi A, Gandaglia G, Gillessen S, Grivas N, Henry AM, Lardas M, van Leenders GJLH, Liew M, Linares Espinos E, Oldenburg J, van Oort IM, Oprea-Lager DE, Ploussard G, Roberts MJ, Rouvière O, Schoots IG, Schouten N, Smith EJ, Stranne J, Wiegel T, Willemse PPM, Tilki D. EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer-2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol 2024; 86:148-163. [PMID: 38614820 DOI: 10.1016/j.eururo.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND AND OBJECTIVE The European Association of Urology (EAU)-European Association of Nuclear Medicine (EANM)-European Society for Radiotherapy and Oncology (ESTRO)-European Society of Urogenital Radiology (ESUR)-International Society of Urological Pathology (ISUP)-International Society of Geriatric Oncology (SIOG) guidelines provide recommendations for the management of clinically localised prostate cancer (PCa). This paper aims to present a summary of the 2024 version of the EAU-EANM-ESTRO-ESUR-ISUP-SIOG guidelines on the screening, diagnosis, and treatment of clinically localised PCa. METHODS The panel performed a literature review of all new data published in English, covering the time frame between May 2020 and 2023. The guidelines were updated, and a strength rating for each recommendation was added based on a systematic review of the evidence. KEY FINDINGS AND LIMITATIONS A risk-adapted strategy for identifying men who may develop PCa is advised, generally commencing at 50 yr of age and based on individualised life expectancy. The use of multiparametric magnetic resonance imaging in order to avoid unnecessary biopsies is recommended. When a biopsy is considered, a combination of targeted and regional biopsies should be performed. Prostate-specific membrane antigen positron emission tomography imaging is the most sensitive technique for identifying metastatic spread. Active surveillance is the appropriate management for men with low-risk PCa, as well as for selected favourable intermediate-risk patients with International Society of Urological Pathology grade group 2 lesions. Local therapies are addressed, as well as the management of persistent prostate-specific antigen after surgery. A recommendation to consider hypofractionation in intermediate-risk patients is provided. Patients with cN1 PCa should be offered a local treatment combined with long-term intensified hormonal treatment. CONCLUSIONS AND CLINICAL IMPLICATIONS The evidence in the field of diagnosis, staging, and treatment of localised PCa is evolving rapidly. These PCa guidelines reflect the multidisciplinary nature of PCa management. PATIENT SUMMARY This article is the summary of the guidelines for "curable" prostate cancer. Prostate cancer is "found" through a multistep risk-based screening process. The objective is to find as many men as possible with a curable cancer. Prostate cancer is curable if it resides in the prostate; it is then classified into low-, intermediary-, and high-risk localised and locally advanced prostate cancer. These risk classes are the basis of the treatments. Low-risk prostate cancer is treated with "active surveillance", a treatment with excellent prognosis. For low-intermediary-risk active surveillance should also be discussed as an option. In other cases, active treatments, surgery, or radiation treatment should be discussed along with the potential side effects to allow shared decision-making.
Collapse
Affiliation(s)
- Philip Cornford
- Department of Urology, Liverpool University Hospitals NHS Trust, Liverpool, UK.
| | | | | | | | | | - Julie Darraugh
- European Association of Urology, Arnhem, The Netherlands
| | - Daniel Eberli
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Gert De Meerleer
- Department of Radiation Oncology, University Hospital Leuven, Leuven, Belgium
| | - Maria De Santis
- Department of Urology, Universitätsmedizin Berlin, Berlin, Germany; Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Andrea Farolfi
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giorgio Gandaglia
- Division of Oncology/Unit of Urology, Soldera Prostate Cancer Laboratory, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Silke Gillessen
- Oncology Institute of Southern Switzerland (IOSI), EOC, Bellinzona, Switzerland; Faculty of Biomedical Sciences, USI, Lugano, Switzerland
| | - Nikolaos Grivas
- Department of Urology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ann M Henry
- Leeds Cancer Centre, St. James's University Hospital and University of Leeds, Leeds, UK
| | - Michael Lardas
- Department of Urology, Metropolitan General Hospital, Athens, Greece
| | | | - Matthew Liew
- Department of Urology, Liverpool University Hospitals NHS Trust, Liverpool, UK
| | | | - Jan Oldenburg
- Akershus University Hospital (Ahus), Lørenskog, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Inge M van Oort
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daniela E Oprea-Lager
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU Medical Center, Amsterdam, The Netherlands
| | | | - Matthew J Roberts
- Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, Australia; Faculty of Medicine, The University of Queensland Centre for Clinical Research, Herston, QLD, Australia
| | - Olivier Rouvière
- Department of Imaging, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France; Université de Lyon, Université Lyon 1, UFR Lyon-Est, Lyon, France
| | - Ivo G Schoots
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Emma J Smith
- European Association of Urology, Arnhem, The Netherlands
| | - Johan Stranne
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Urology, Sahlgrenska University Hospital-Västra Götaland, Gothenburg, Sweden
| | - Thomas Wiegel
- Department of Radiation Oncology, University Hospital Ulm, Ulm, Germany
| | - Peter-Paul M Willemse
- Department of Urology, Cancer Center University Medical Center Utrecht, Utrecht, The Netherlands
| | - Derya Tilki
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg Eppendorf, Hamburg, Germany; Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Department of Urology, Koc University Hospital, Istanbul, Turkey
| |
Collapse
|
7
|
Bernardino R, Sayyid RK, Leão R, Zlotta AR, van der Kwast T, Klotz L, Fleshner NE. Using active surveillance for Gleason 7 (3+4) prostate cancer: A narrative review. Can Urol Assoc J 2024; 18:135-144. [PMID: 38381936 PMCID: PMC11034964 DOI: 10.5489/cuaj.8539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The interest in broadening the application of active surveillance (AS) has been increasing, encompassing patients who may not strictly adhere to the conventional criteria for low-risk prostate cancer (PCa), particularly those diagnosed with small-volume Gleason grade group 2 disease. Nonetheless, accurately identifying individuals with low intermediate-risk PCa who can safely undergo AS without facing disease progression remains a challenge.This review aims to delve into the progression of this evolving trend specifically within this cohort of men, while also examining strategies aimed at minimizing irreversible disease advancement. Additionally, we address the criteria for patient selection, recommended followup schedules, and the indicators prompting intervention.
Collapse
Affiliation(s)
- Rui Bernardino
- Division of Urology, Department of Surgical Oncology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Computational and Experimental Biology Group, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Portugal
| | - Rashid K. Sayyid
- Division of Urology, Department of Surgical Oncology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | | | - Alexandre R. Zlotta
- Division of Urology, Department of Surgical Oncology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Theodorus van der Kwast
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Laurence Klotz
- Division of Urology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Neil E. Fleshner
- Division of Urology, Department of Surgical Oncology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
8
|
Sanmugalingam N, Sushentsev N, Lee KL, Caglic I, Englman C, Moore CM, Giganti F, Barrett T. The PRECISE Recommendations for Prostate MRI in Patients on Active Surveillance for Prostate Cancer: A Critical Review. AJR Am J Roentgenol 2023; 221:649-660. [PMID: 37341180 DOI: 10.2214/ajr.23.29518] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) recommendations were published in 2016 to standardize the reporting of MRI examinations performed to assess for disease progression in patients on active surveillance for prostate cancer. Although a limited number of studies have reported outcomes from use of PRECISE in clinical practice, the available studies have demonstrated PRECISE to have high pooled NPV but low pooled PPV for predicting progression. Our experience in using PRECISE in clinical practice at two teaching hospitals has highlighted issues with its application and areas requiring clarification. This Clinical Perspective critically appraises PRECISE on the basis of this experience, focusing on the system's key advantages and disadvantages and exploring potential changes to improve the system's utility. These changes include consideration of image quality when applying PRECISE scoring, incorporation of quantitative thresholds for disease progression, adoption of a PRECISE 3F sub-category for progression not qualifying as substantial, and comparisons with both the baseline and most recent prior examinations. Items requiring clarification include derivation of a patient-level score in patients with multiple lesions, intended application of PRECISE score 5 (i.e., if requiring development of disease that is no longer organ-confined), and categorization of new lesions in patients with prior MRI-invisible disease.
Collapse
Affiliation(s)
- Nimalan Sanmugalingam
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
| | - Nikita Sushentsev
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
| | - Kang-Lung Lee
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Iztok Caglic
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
| | - Cameron Englman
- Division of Surgery & Interventional Science, University College London, London, UK
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Caroline M Moore
- Division of Surgery & Interventional Science, University College London, London, UK
- Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
| | - Francesco Giganti
- Division of Surgery & Interventional Science, University College London, London, UK
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Tristan Barrett
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
| |
Collapse
|
9
|
Aerts J, Hendrickx S, Berquin C, Lumen N, Verbeke S, Villeirs G, Van Praet C, De Visschere P. Clinical Application of the Prostate Cancer Radiological Estimation of Change in Sequential Evaluation Score for Reporting Magnetic Resonance Imaging in Men on Active Surveillance for Prostate Cancer. EUR UROL SUPPL 2023; 56:39-46. [PMID: 37822515 PMCID: PMC10562144 DOI: 10.1016/j.euros.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 10/13/2023] Open
Abstract
Background The Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) score has been developed to standardise prostate magnetic resonance imaging (MRI) reporting in men on active surveillance (AS) for prostate cancer (PCa). Objective To evaluate the feasibility of PRECISE scoring and assess its diagnostic accuracy. Design setting and participants All PCa patients on AS with a baseline MRI and at least one follow-up MRI scan between January 2008 and September 2022 at a single tertiary referral centre were included in a database. The follow-up protocol of the Prostate Cancer International Active Surveillance (PRIAS) study was used. All scans were retrospectively re-reported by a dedicated uroradiologist and appointed a Prostate Imaging Reporting and Data System (version 2.1) and PRECISE score. Outcome measurements and statistical analysis Clinically significant progression was defined by histopathological upgrading (on biopsy or radical prostatectomy) to grade group ≥3 and/or evolution to T3 stage. A survival analysis was performed to assess differential progression-free survival (PFS) according to the PRECISE score. Results and limitations A total of 188 patients were included for an analysis with a total of 358 repeat MRI scans and 144 repeat biopsies. The median follow-up was 46 mo (interquartile range 21-74). Radiological progression (PRECISE 4-5) had sensitivity, specificity, negative predictive value, and positive predictive value of, respectively, 78%, 70%, 90%, and 49% for clinically significant progression. Four-year PFS was 91% for PRECISE 1-3 versus 66% for PRECISE 4-5 (p < 0.001). In total, 137 patients underwent a confirmation MRI scan within 18 mo after diagnosis. Four-year PFS in this group was 81% for PRECISE 1-3 versus 43% for PRECISE 4-5 (p < 0.001). Limitations include retrospective design and no strict adherence to AS protocol. Conclusions Implementation of PRECISE scoring for PCa patients on AS is feasible and offers a prognostic value. Patients with PRECISE score 4-5 on confirmation MRI within 18 mo after diagnosis have a three-fold higher risk of clinically significant progression after 4 yr. Patient summary Patients with low-risk prostate cancer can be followed up carefully. In this study, we evaluate the standardised reporting of repeat magnetic resonance imaging scans (using the Prostate Cancer Radiological Estimation of Change in Sequential Evaluation [PRECISE] recommendations). PRECISE scoring is feasible and helps identify patients in need of further treatment.
Collapse
Affiliation(s)
- Jan Aerts
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Sigi Hendrickx
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Camille Berquin
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Nicolaas Lumen
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Sofie Verbeke
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Geert Villeirs
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | | | - Pieter De Visschere
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
10
|
Bhanji Y, Mamawala M, de la Calle CM, Landis P, Epstein JI, Simopoulos DN, Macura KJ, Pavlovich CP. Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) Magnetic Resonance Imaging Scoring to Predict Clinical Outcomes in Active Surveillance for Grade Group 1 Prostate Cancer. Urology 2023; 180:194-199. [PMID: 37536582 DOI: 10.1016/j.urology.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVE To determine whether radiological change on serial multiparametric magnetic resonance imaging scored using the Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) Scoring system predicts grade reclassification (GR) at surveillance biopsy in men on active surveillance (AS) with Grade Group 1 (GG1) prostate cancer (PCa). METHODS We retrospectively reviewed records of 255 men with low-risk PCa on AS with magnetic resonance imaging (MRI)-informed diagnostic and confirmatory biopsies and studied the subset who had surveillance biopsies (n = 163) within 6months of an interval MRI. RESULTS We studied 309 PRECISE scores in 255 men. 14% demonstrated radiological progression (PRECISE 4-5) on interval MRI performed within 24months, compared to 34% of those whose interval MRI was performed at a >3-year interval (P = .002). 28% (46/163) of men undergoing surveillance biopsy experienced GR to ≥ GG2 PCa. There was no significant increase in the rate of GR with increasing PRECISE score (PRECISE 1-2: 24%, PRECISE 3: 23%, PRECISE 4-5: 38%; P = .11). There was a significant increase in the rate of GR with increasing PI-RADS score (P < .05). On multivariable analysis, a PI-RADS score of 4-5 was significantly associated with GR compared to men who had a highest PI-RADS ≤3 (OR=1.98 [95% CI: 1.45-3.09, P = .01]). CONCLUSION In a low-risk AS cohort with limited follow-up, a patient's highest PI-RADS rather than their PRECISE score on interval MRI was predictive of GR on surveillance biopsy.
Collapse
Affiliation(s)
- Yasin Bhanji
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mufaddal Mamawala
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Claire M de la Calle
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Patricia Landis
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jonathan I Epstein
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Demetrios N Simopoulos
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Katarzyna J Macura
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christian P Pavlovich
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
11
|
Harder FN, Heming CAM, Haider MA. mpMRI Interpretation in Active Surveillance for Prostate Cancer-An overview of the PRECISE score. Abdom Radiol (NY) 2023; 48:2449-2455. [PMID: 37160473 DOI: 10.1007/s00261-023-03912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/11/2023]
Abstract
Active surveillance (AS) is now included in all major guidelines for patients with low-risk PCa and selected patients with intermediate-risk PCa. Several studies have highlighted the potential benefit of multiparametric magnetic resonance imaging (mpMRI) in AS and it has been adopted in some guidelines. However, uncertainty remains about whether serial mpMRI can help to safely reduce the number of required repeat biopsies under AS. In 2017, the European School of Oncology initiated the Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) panel which proposed the PRECISE scoring system to assess the likelihood of radiological tumor progression on serial mpMRI. The PRECISE scoring system remains the only major system evaluated in multiple publications. In this review article, we discuss the current body of literature investigating the application of PRECISE as it is not as yet an established standard in mpMRI reporting. We delineate the strengths of PRECISE and its potential added value. Also, we underline potential weaknesses of the PRECISE scoring system, which might be tackled in future versions to further increase its value in AS.
Collapse
Affiliation(s)
- Felix N Harder
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
- Joint Department of Medical Imaging, University Health Network, Sinai Health System and University of Toronto, Toronto, ON, M5G 1X5, Canada
| | - Carolina A M Heming
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
- Joint Department of Medical Imaging, University Health Network, Sinai Health System and University of Toronto, Toronto, ON, M5G 1X5, Canada
- Radiology Department, Instituto Nacional do Cancer (INCa), Rio de Janeiro, Brazil
| | - Masoom A Haider
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, M5G 1X5, Canada.
- Joint Department of Medical Imaging, University Health Network, Sinai Health System and University of Toronto, Toronto, ON, M5G 1X5, Canada.
| |
Collapse
|
12
|
de Vos II, Luiting HB, Roobol MJ. Active Surveillance for Prostate Cancer: Past, Current, and Future Trends. J Pers Med 2023; 13:629. [PMID: 37109015 PMCID: PMC10145015 DOI: 10.3390/jpm13040629] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
In response to the rising incidence of indolent, low-risk prostate cancer (PCa) due to increased prostate-specific antigen (PSA) screening in the 1990s, active surveillance (AS) emerged as a treatment modality to combat overtreatment by delaying or avoiding unnecessary definitive treatment and its associated morbidity. AS consists of regular monitoring of PSA levels, digital rectal exams, medical imaging, and prostate biopsies, so that definitive treatment is only offered when deemed necessary. This paper provides a narrative review of the evolution of AS since its inception and an overview of its current landscape and challenges. Although AS was initially only performed in a study setting, numerous studies have provided evidence for the safety and efficacy of AS which has led guidelines to recommend it as a treatment option for patients with low-risk PCa. For intermediate-risk disease, AS appears to be a viable option for those with favourable clinical characteristics. Over the years, the inclusion criteria, follow-up schedule and triggers for definitive treatment have evolved based on the results of various large AS cohorts. Given the burdensome nature of repeat biopsies, risk-based dynamic monitoring may further reduce overtreatment by avoiding repeat biopsies in selected patients.
Collapse
Affiliation(s)
- Ivo I. de Vos
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands (M.J.R.)
| | | | | |
Collapse
|
13
|
Barletta F, Mazzone E, Stabile A, Scuderi S, Brembilla G, de Angelis M, Cirulli GO, Cucchiara V, Gandaglia G, Karnes RJ, Roupret M, De Cobelli F, Montorsi F, Briganti A. Assessing the need for systematic biopsies in addition to targeted biopsies according to the characteristics of the index lesion at mpMRI. Results from a large, multi-institutional database. World J Urol 2022; 40:2683-2688. [PMID: 36149448 DOI: 10.1007/s00345-022-04155-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE We hypothesized that systematic biopsies (SBx) value for clinically significant PCa (csPCa) detection, in addition to mpMRI targeted biopsies (TBx), may vary significantly according to mpMRI index lesion (IL) characteristics. METHODS We identified 1350 men with an mpMRI suspicious lesion (PI-RADS ≥ 3), defined as IL, who underwent TBx and SBx at three referral centres. The outcome was SBx added value in csPCa (grade group ≥ 2 PCa detected at SBx and missed by TBx) detection. To this aim, we performed multivariable logistic regression analyses (MVA). Furthermore, we explored the interaction between IL volume and SBx csPCa added value, across different PI-RADS categories, using lowess function. RESULTS Overall, 569 (42%) men had csPCa at TBx and 78 (6%) csPCa were identified at SBx only. At MVA PSA (OR 0.90; p < 0.05) and IL volume (OR 0.58; p < 0.05) were associated with SBx csPCa added value. At interaction analyses, a nonlinear correlation between PI-RADS and SBx csPCa added value was identified with a decrease from roughly 10 to 4% followed by a substantial plateau at 1.2 ml and 0.6 ml for PI-RADS 3 and 4, respectively. For PI-RADS 5 lesions SBx csPCa added was constantly lower than 4%. CONCLUSIONS Increasing IL volume in PI-RADS 3 and 4 lesions is associated with reduction in SBx csPCa added value. For diagnostic purposes, SBx could be omitted in men with IL larger than 1.2 ml and 0.6 ml for PI-RADS 3 and 4, respectively. Conversely, for PI-RADS 5, SBx csPCa added value was minimal regardless of IL volume.
Collapse
Affiliation(s)
- Francesco Barletta
- Department of Urology and Division of Experimental Oncology, URI, Urological Research Institute, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Elio Mazzone
- Department of Urology and Division of Experimental Oncology, URI, Urological Research Institute, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Armando Stabile
- Department of Urology and Division of Experimental Oncology, URI, Urological Research Institute, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simone Scuderi
- Department of Urology and Division of Experimental Oncology, URI, Urological Research Institute, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giorgio Brembilla
- Department of Radiology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mario de Angelis
- Department of Urology and Division of Experimental Oncology, URI, Urological Research Institute, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Ottone Cirulli
- Department of Urology and Division of Experimental Oncology, URI, Urological Research Institute, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vito Cucchiara
- Department of Urology and Division of Experimental Oncology, URI, Urological Research Institute, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giorgio Gandaglia
- Department of Urology and Division of Experimental Oncology, URI, Urological Research Institute, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Morgan Roupret
- Urology, GRC No 5, Predictive Onco-Urology, AP-HP, Hôpital Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Francesco De Cobelli
- Department of Radiology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Montorsi
- Department of Urology and Division of Experimental Oncology, URI, Urological Research Institute, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Briganti
- Department of Urology and Division of Experimental Oncology, URI, Urological Research Institute, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
14
|
Fiard G, Giganti F. How MRI is changing prostate cancer management: a focus on early detection and active surveillance: Comment l'IRM est en train de révolutionner la prise en charge du cancer de la prostate : focus sur la détection précoce et la surveillance active. Prog Urol 2022; 32:6S19-6S25. [PMID: 36719642 DOI: 10.1016/s1166-7087(22)00171-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION The last decade has witnessed major changes in prostate cancer management. Among these, the advent of magnetic resonance imaging (MRI), by allowing the visualisation of the cancerous lesion inside the prostatic gland, opened new management horizons. MATERIAL AND METHODS We conducted a narrative review of the literature published since 2010, focusing on the place of MRI in the early detection, active surveillance and prostate cancer screening settings. RESULTS Multiparametric magnetic resonance imaging (mpMRI), interpreted using the PI-RADS scoring system, has allowed a shift from systematic to mpMRI-targeted biopsies, supported by level I evidence. Studies are ongoing to evaluate the role of MRI as a triage and screening tool. The integration of mpMRI has allowed for a better selection of active surveillance candidates, reducing the risk of misclassification. The PRECISE recommendations have been created to assess the likelihood of radiological change over time from the previous or baseline mpMRI scan, and serial mpMRI appears promising to reduce the need for repeat biopsy in active surveillance. CONCLUSION Growing evidence supports the use of MRI at all stages of the prostate cancer pathway, relying on images of optimal diagnostic quality and experience in prostate MRI reporting and biopsy targeting. © 2022 Elsevier Masson SAS. All rights reserved.
Collapse
Affiliation(s)
- G Fiard
- Department of Urology, Grenoble Alpes University Hospital, Grenoble, France; Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France.
| | - F Giganti
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK; Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|
15
|
Kinnaird A, Yerram NK, O’Connor L, Brisbane W, Sharma V, Chuang R, Jayadevan R, Ahdoot M, Daneshvar M, Priester A, Delfin M, Tran E, Barsa DE, Sisk A, Reiter RE, Felker E, Raman S, Kwan L, Choyke PL, Merino MJ, Wood BJ, Turkbey B, Pinto PA, Marks LS. Magnetic Resonance Imaging-Guided Biopsy in Active Surveillance of Prostate Cancer. J Urol 2022; 207:823-831. [PMID: 34854746 PMCID: PMC10506469 DOI: 10.1097/ju.0000000000002343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The underlying premise of prostate cancer active surveillance (AS) is that cancers likely to metastasize will be recognized and eliminated before cancer-related disease can ensue. Our study was designed to determine the prostate cancer upgrading rate when biopsy guided by magnetic resonance imaging (MRGBx) is used before entry and during AS. MATERIALS AND METHODS The cohort included 519 men with low- or intermediate-risk prostate cancer who enrolled in prospective studies (NCT00949819 and NCT00102544) between February 2008 and February 2020. Subjects were preliminarily diagnosed with Gleason Grade Group (GG) 1 cancer; AS began when subsequent MRGBx confirmed GG1 or GG2. Participants underwent confirmatory MRGBx (targeted and systematic) followed by surveillance MRGBx approximately every 12 to 24 months. The primary outcome was tumor upgrading to ≥GG3. RESULTS Upgrading to ≥GG3 was found in 92 men after a median followup of 4.8 years (IQR 3.1-6.5) after confirmatory MRGBx. Upgrade-free probability after 5 years was 0.85 (95% CI 0.81-0.88). Cancer detected in a magnetic resonance imaging lesion at confirmatory MRGBx increased risk of subsequent upgrading during AS (HR 2.8; 95% CI 1.3-6.0), as did presence of GG2 (HR 2.9; 95% CI 1.1-8.2) In men who upgraded ≥GG3 during AS, upgrading was detected by targeted cores only in 27%, systematic cores only in 25% and both in 47%. In 63 men undergoing prostatectomy, upgrading from MRGBx was found in only 5 (8%). CONCLUSIONS When AS begins and follows with MRGBx (targeted and systematic), upgrading rate (≥GG3) is greater when tumor is initially present within a magnetic resonance imaging lesion or when pathology is GG2 than when these features are absent.
Collapse
Affiliation(s)
- Adam Kinnaird
- Department of Urology, David Geffen School of Medicine, UCLA, Los Angeles, California
- Division of Urology, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Centre for Urologic Research and Excellence (ACURE), Edmonton, Alberta, Canada
- Cancer Research Institute of Northern Alberta (CRINA),Edmonton, Alberta, Canada
| | - Nitin K. Yerram
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Luke O’Connor
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Wayne Brisbane
- Department of Urology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Vidit Sharma
- Department of Urology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Ryan Chuang
- Department of Urology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Rajiv Jayadevan
- Department of Urology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Michael Ahdoot
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael Daneshvar
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alan Priester
- Department of Bioengineering, UCLA, Los Angeles, California
| | - Merdie Delfin
- Department of Urology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Elizabeth Tran
- Department of Urology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Danielle E. Barsa
- Department of Urology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Anthony Sisk
- Department of Pathology & Laboratory Medicine, UCLA, Los Angeles, California
| | - Robert E. Reiter
- Department of Urology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Ely Felker
- Department of Radiological Sciences, UCLA, Los Angeles, California
| | - Steve Raman
- Department of Radiological Sciences, UCLA, Los Angeles, California
| | - Lorna Kwan
- Department of Urology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Peter L. Choyke
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Maria J. Merino
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Bradford J. Wood
- Center for Interventional Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Baris Turkbey
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Peter A. Pinto
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Leonard S. Marks
- Department of Urology, David Geffen School of Medicine, UCLA, Los Angeles, California
| |
Collapse
|
16
|
Sushentsev N, Rundo L, Blyuss O, Nazarenko T, Suvorov A, Gnanapragasam VJ, Sala E, Barrett T. Comparative performance of MRI-derived PRECISE scores and delta-radiomics models for the prediction of prostate cancer progression in patients on active surveillance. Eur Radiol 2022; 32:680-689. [PMID: 34255161 PMCID: PMC8660717 DOI: 10.1007/s00330-021-08151-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To compare the performance of the PRECISE scoring system against several MRI-derived delta-radiomics models for predicting histopathological prostate cancer (PCa) progression in patients on active surveillance (AS). METHODS The study included AS patients with biopsy-proven PCa with a minimum follow-up of 2 years and at least one repeat targeted biopsy. Histopathological progression was defined as grade group progression from diagnostic biopsy. The control group included patients with both radiologically and histopathologically stable disease. PRECISE scores were applied prospectively by four uro-radiologists with 5-16 years' experience. T2WI- and ADC-derived delta-radiomics features were computed using baseline and latest available MRI scans, with the predictive modelling performed using the parenclitic networks (PN), least absolute shrinkage and selection operator (LASSO) logistic regression, and random forests (RF) algorithms. Standard measures of discrimination and areas under the ROC curve (AUCs) were calculated, with AUCs compared using DeLong's test. RESULTS The study included 64 patients (27 progressors and 37 non-progressors) with a median follow-up of 46 months. PRECISE scores had the highest specificity (94.7%) and positive predictive value (90.9%), whilst RF had the highest sensitivity (92.6%) and negative predictive value (92.6%) for predicting disease progression. The AUC for PRECISE (84.4%) was non-significantly higher than AUCs of 81.5%, 78.0%, and 80.9% for PN, LASSO regression, and RF, respectively (p = 0.64, 0.43, and 0.57, respectively). No significant differences were observed between AUCs of the three delta-radiomics models (p-value range 0.34-0.77). CONCLUSIONS PRECISE and delta-radiomics models achieved comparably good performance for predicting PCa progression in AS patients. KEY POINTS • The observed high specificity and PPV of PRECISE are complemented by the high sensitivity and NPV of delta-radiomics, suggesting a possible synergy between the two image assessment approaches. • The comparable performance of delta-radiomics to PRECISE scores applied by expert readers highlights the prospective use of the former as an objective and standardisable quantitative tool for MRI-guided AS follow-up. • The marginally superior performance of parenclitic networks compared to conventional machine learning algorithms warrants its further use in radiomics research.
Collapse
Affiliation(s)
- Nikita Sushentsev
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK.
- Department of Radiology, University of Cambridge School of Clinical Medicine, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| | - Leonardo Rundo
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Oleg Blyuss
- School of Physics, Engineering & Computer Science, University of Hertfordshire, Hatfield, UK
- Department of Paediatrics and Paediatric Infectious Diseases, Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Applied Mathematics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Tatiana Nazarenko
- Department of Mathematics and Institute for Women's Health, University College London, London, UK
| | - Aleksandr Suvorov
- World-Class Research Center "Digital Biodesign and Personalised Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vincent J Gnanapragasam
- Division of Urology, Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Urology Translational Research and Clinical Trials Office, University of Cambridge, Cambridge, UK
| | - Evis Sala
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Tristan Barrett
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Ellis EE, Frye TP. Role of multi-parametric magnetic resonance imaging fusion biopsy in active surveillance of prostate cancer: a systematic review. Ther Adv Urol 2022; 14:17562872221106883. [PMID: 35872881 PMCID: PMC9297445 DOI: 10.1177/17562872221106883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Our goal is to review current literature regarding the role of multi-parametric magnetic resonance imaging (mpMRI) in the active surveillance (AS) of prostate cancer (PCa) and identify trends in rate of reclassification of risk category, performance of fusion biopsy (FB) versus systematic biopsy (SB), and progression-free survival. Methods: We performed a comprehensive literature search in PubMed and identified 121 articles. A narrative summary was performed. Results: Thirty-two articles were chosen to be featured in this review. SB and FB are complementary in detecting higher-grade disease in follow-up. While FB was more likely than SB to detect clinically significant disease, FB missed 6.4–11% of clinically significant disease. Imaging factors that predicted upgrading include number of lesions on magnetic resonance imaging (MRI), lesion density, and MRI suspicion level. Conclusion: Incorporating mpMRI FB in conjunction with SB should be part of contemporary AS protocols. mpMRI should additionally be used routinely for follow-up; however, mpMRI is not currently sensitive enough in detecting disease progression to replace biopsy in the surveillance protocol.
Collapse
Affiliation(s)
| | - Thomas P Frye
- University of Rochester Medical Center, 601 Elmwood Ave Box 656, Rochester, NY 14620, USA
| |
Collapse
|
18
|
Luzzago S, Piccinelli ML, Mistretta FA, Bianchi R, Cozzi G, Di Trapani E, Cioffi A, Catellani M, Fontana M, Jannello LMI, Botticelli FMG, Marvaso G, Alessi S, Pricolo P, Ferro M, Matei DV, Jereczek-Fossa BA, Fusco N, Petralia G, de Cobelli O, Musi G. Repeat MRI during active surveillance: natural history of prostatic lesions and upgrading rates. BJU Int 2021; 129:524-533. [PMID: 34687137 DOI: 10.1111/bju.15623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To assess upgrading rates in patients on active surveillance (AS) for prostate cancer (PCa) after serial multiparametric magnetic resonance imaging (mpMRI). METHODS We conducted a retrospective analysis of 558 patients. Five different criteria for mpMRI progression were used: 1) a Prostate Imaging Reporting and Data System (PI-RADS) score increase; 2) a lesion size increase; 3) an extraprostatic extension score increase; 4) overall mpMRI progression; and 5) the number of criteria met for mpMRI progression (0 vs 1 vs 2-3). In addition, two definitions of PCa upgrading were evaluated: 1) International Society of Urological Pathology Grade Group (ISUP GG) ≥2 with >10% of pattern 4 and 2) ISUP GG ≥ 3. Estimated annual percent changes methodology was used to show the temporal trends of mpMRI progression criteria. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of mpMRI progression criteria were also analysed. Multivariable logistic regression models tested PCa upgrading rates. RESULTS Lower rates over time for all mpMRI progression criteria were observed. The NPV of serial mpMRI scans ranged from 90.5% to 93.5% (ISUP GG≥2 with >10% of pattern 4 PCa upgrading) and from 98% to 99% (ISUP GG≥3 PCa upgrading), depending on the criteria used for mpMRI progression. A prostate-specific antigen density (PSAD) threshold of 0.15 ng/mL/mL was used to substratify those patients who would be able to skip a prostate biopsy. In multivariable logistic regression models assessing PCa upgrading rates, all five mpMRI progression criteria achieved independent predictor status. CONCLUSION During AS, approximately 27% of patients experience mpMRI progression at first repeat MRI. However, the rates of mpMRI progression decrease over time at subsequent mpMRI scans. Patients with stable mpMRI findings and with PSAD < 0.15 ng/mL/mL could safely skip surveillance biopsies. Conversely, patients who experience mpMRI progression should undergo a prostate biopsy.
Collapse
Affiliation(s)
- Stefano Luzzago
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Mattia Luca Piccinelli
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy.,Università degli Studi di Milano, Milan, Italy
| | | | - Roberto Bianchi
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Gabriele Cozzi
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Ettore Di Trapani
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Antonio Cioffi
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Michele Catellani
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Matteo Fontana
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy.,Università degli Studi di Milano, Milan, Italy
| | - Letizia Maria Ippolita Jannello
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy.,Università degli Studi di Milano, Milan, Italy
| | | | - Giulia Marvaso
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Department of Radiotherapy, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Sarah Alessi
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Paola Pricolo
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Matteo Ferro
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Deliu-Victor Matei
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Barbara A Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Department of Radiotherapy, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Department of Pathology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Ottavio de Cobelli
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Gennaro Musi
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Wallström J, Geterud K, Kohestani K, Maier SE, Pihl CG, Socratous A, Stranne J, Arnsrud-Godtman R, Månsson M, Hellström M, Hugosson J. Prostate Cancer Screening with Magnetic Resonance Imaging: Results from the Second Round of the Göteborg Prostate Cancer Screening 2 Trial. Eur Urol Oncol 2021; 5:54-60. [PMID: 34580053 DOI: 10.1016/j.euo.2021.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/23/2021] [Accepted: 09/05/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND The Göteborg 2 prostate cancer (PC) screening (G2) trial evaluates screening with prostate-specific antigen (PSA) followed by magnetic resonance imaging (MRI) in case of elevated PSA levels. OBJECTIVE To assess the safety of using a 2-yr interval in men who were previously screened positive with PSA but had negative MRI or positive MRI with a negative biopsy. DESIGN, SETTING, AND PARTICIPANTS A total of 61 201 men aged 50-60 yr were randomized and 38 366 were invited for screening (years 2015-2020). Men with positive MRI (Prostate Imaging Reporting and Data System [PI-RADS] score ≥3) were scheduled for targeted biopsies. Men with negative MRI or negative biopsies were reinvited after 2 yr. Round 1 and 2 MRI scans (PI-RADS ≥3) of men not diagnosed with PC in round 1 were re-read and classified according to Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) by two radiologists. Interval PCs (detected outside the program before invitation to round 2) were identified by linking to the Regional PC Registry. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Tabulation of overall detection of PC was done. RESULTS AND LIMITATIONS Between October 2017 and June 2020, 474 men with round 1 elevated PSA and MRI underwent a second screening. Of those, 19% had nonelevated PSA in round 2 and were not examined further. Of the remaining 376 men, 89% had negative MRI. Targeted biopsies yielded 14 PCs: nine grade group (GG) 1 and five GG 2-3. In men with PI-RADS ≥3 and PC diagnosed in round 2, only two (GG 1) progressed according to the PRECISE criteria and the remainder were stable. Ten interval PCs were diagnosed: seven GG 1, one GG 2, and two GG 5. The two GG 5 PCs were PI-RADS 4 and 5 with negative round 1 biopsy. CONCLUSIONS A 2-yr interval seems to be safe in men with negative MRI, while men with PI-RADS 4 and 5 lesions with negative biopsies should have a closer follow-up. PATIENT SUMMARY In prostate cancer screening, a 2-yr follow-up seems to be safe if magnetic resonance imaging did not show highly suspicious findings.
Collapse
Affiliation(s)
- Jonas Wallström
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Radiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Kjell Geterud
- Department of Radiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Kimia Kohestani
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Urology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Stephan E Maier
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Radiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Carl-Gustaf Pihl
- Department of Pathology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andreas Socratous
- Department of Radiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Johan Stranne
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Urology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Rebecka Arnsrud-Godtman
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Urology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Marianne Månsson
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mikael Hellström
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Radiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Jonas Hugosson
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Urology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
20
|
Sushentsev N, Rundo L, Blyuss O, Gnanapragasam VJ, Sala E, Barrett T. MRI-derived radiomics model for baseline prediction of prostate cancer progression on active surveillance. Sci Rep 2021; 11:12917. [PMID: 34155265 PMCID: PMC8217549 DOI: 10.1038/s41598-021-92341-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
Nearly half of patients with prostate cancer (PCa) harbour low- or intermediate-risk disease considered suitable for active surveillance (AS). However, up to 44% of patients discontinue AS within the first five years, highlighting the unmet clinical need for robust baseline risk-stratification tools that enable timely and accurate prediction of tumour progression. In this proof-of-concept study, we sought to investigate the added value of MRI-derived radiomic features to standard-of-care clinical parameters for improving baseline prediction of PCa progression in AS patients. Tumour T2-weighted imaging (T2WI) and apparent diffusion coefficient radiomic features were extracted, with rigorous calibration and pre-processing methods applied to select the most robust features for predictive modelling. Following leave-one-out cross-validation, the addition of T2WI-derived radiomic features to clinical variables alone improved the area under the ROC curve for predicting progression from 0.61 (95% confidence interval [CI] 0.481-0.743) to 0.75 (95% CI 0.64-0.86). These exploratory findings demonstrate the potential benefit of MRI-derived radiomics to add incremental benefit to clinical data only models in the baseline prediction of PCa progression on AS, paving the way for future multicentre studies validating the proposed model and evaluating its impact on clinical outcomes.
Collapse
Affiliation(s)
- Nikita Sushentsev
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK.
| | - Leonardo Rundo
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Oleg Blyuss
- School of Physics, Engineering & Computer Science, University of Hertfordshire, Hatfield, UK
- Department of Paediatrics and Paediatric Infectious Diseases, Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Applied Mathematics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vincent J Gnanapragasam
- Division of Urology, Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Urology Translational Research and Clinical Trials Office, University of Cambridge, Cambridge, UK
| | - Evis Sala
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Tristan Barrett
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| |
Collapse
|
21
|
The Importance of Being PRECISE in Prostate Magnetic Resonance Imaging and Active Surveillance. Eur Urol 2021; 79:560-563. [PMID: 33546915 DOI: 10.1016/j.eururo.2021.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/12/2021] [Indexed: 01/28/2023]
|
22
|
Moore CM, Cole AP, Allen C, Giganti F. Let's Follow the Golden Mean: Using Magnetic Resonance Imaging to Determine the Need for Biopsy in Men on Active Surveillance. Eur Urol Oncol 2020; 4:235-236. [PMID: 33358393 DOI: 10.1016/j.euo.2020.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Caroline M Moore
- Department of Urology, University College London Hospital NHS Foundation Trust, London, UK; Division of Surgery & Interventional Science, University College London, London, UK.
| | - Alexander P Cole
- Department of Urology, University College London Hospital NHS Foundation Trust, London, UK; Division of Urological Surgery, Centre for Surgery and Public Health, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Clare Allen
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Francesco Giganti
- Division of Surgery & Interventional Science, University College London, London, UK; Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| |
Collapse
|