1
|
Sun L, Wang G, Wu Z, Xie Y, Zhou L, Xiao L, Wang H. Swimming exercise reduces the vulnerability to stress and contributes to the AKT/GSK3β/CRMP2 pathway and microtubule dynamics mediated protective effects on neuroplasticity in male C57BL/6 mice. Pharmacol Biochem Behav 2021; 211:173285. [PMID: 34626621 DOI: 10.1016/j.pbb.2021.173285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/25/2022]
Abstract
While swimming exercise has been shown to positively affect the development of the nervous system, it still remains unclear whether it reduces the vulnerability to stress. In this study, male C57BL/6 mice were exposed to swimming training for 5 weeks, and then subjected to chronic unpredictable mild stress (CUMS) for 4 weeks. We found that swimming exercise prevented anxiety-like and depressive phenotypes induced by CUMS, including increased anxiety-like behavior in the open field test (OFT) and elevated plus-maze (EPM) test and increased despair behavior in the tail suspension test (TST). Moreover, the control+stress group showed reduced expression of phosphorylated AKT kinase (p-AKT), phosphorylated glycogen synthase kinase-3β (p-GSK3β), and tubulin-tyrosine ligase (Tyr-tubulin) and increased protein expression of phosphorylated collapsin response mediator protein 2 (p-CRMP-2); the control+control, swim+control, and swim+stress groups exhibited higher expression of these proteins than the control+stress group. This study confirmed that swimming exercise could reduce the vulnerability of individuals to stress and that it contributes to the AKT/GSK-3β/CRMP-2 pathway and microtubule dynamics mediated protective effects on neuroplasticity. The AKT/GSK-3β/CRMP-2 pathway and microtubule dynamics may be involved in resilience to stress.
Collapse
Affiliation(s)
- Limin Sun
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| | - Gaohua Wang
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China.
| | - Zuotian Wu
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| | - Yumeng Xie
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| | - Lin Zhou
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| | - Ling Xiao
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| |
Collapse
|
2
|
Shortall SE, Brown AM, Newton-Mann E, Dawe-Lane E, Evans C, Fowler M, King MV. Calbindin Deficits May Underlie Dissociable Effects of 5-HT 6 and mGlu 7 Antagonists on Glutamate and Cognition in a Dual-Hit Neurodevelopmental Model for Schizophrenia. Mol Neurobiol 2020; 57:3439-3457. [PMID: 32533466 PMCID: PMC7340678 DOI: 10.1007/s12035-020-01938-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
Despite several compounds entering clinical trials for the negative and cognitive symptoms of schizophrenia, few have progressed beyond phase III. This is partly attributed to a need for improved preclinical models, to understand disease and enable predictive evaluation of novel therapeutics. To this end, one recent approach incorporates "dual-hit" neurodevelopmental insults like neonatal phencyclidine plus isolation rearing (PCP-Iso). Glutamatergic dysfunction contributes to schizophrenia pathophysiology and may represent a treatment target, so we used enzyme-based microsensors to evaluate basal- and drug-evoked glutamate release in hippocampal slices from rats that received neonatal PCP and/or isolation rearing. 5-HT6 antagonist-evoked glutamate release (thought to be mediated indirectly via GABAergic disinhibition) was reduced in PCP-Iso, as were cognitive effects of a 5-HT6 antagonist in a hippocampal glutamate-dependent novel object discrimination task. Yet mGlu7 antagonist-evoked glutamatergic and cognitive responses were spared. Immunohistochemical analyses suggest these findings (which mirror the apparent lack of clinical response to 5-HT6 antagonists in schizophrenia) are not due to reduced hippocampal 5-HT input in PCP-Iso, but may be explained by reduced calbindin expression. This calcium-binding protein is present in a subset of GABAergic interneurons receiving preferential 5-HT innervation and expressing 5-HT6 receptors. Its loss (in schizophrenia and PCP-Iso) would be expected to reduce interneuron firing and potentially prevent further 5-HT6 antagonist-mediated disinhibition, without impacting on responses of VIP-expressing interneurons to mGlu7 antagonism. This research highlights the importance of improved understanding for selection of appropriate preclinical models, especially where disease neurobiology impacts on cells mediating the effects of potential therapeutics.
Collapse
Affiliation(s)
- Sinead E Shortall
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Angus M Brown
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Eliot Newton-Mann
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Erin Dawe-Lane
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Chanelle Evans
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Maxine Fowler
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Madeleine V King
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
3
|
Iba H, Watanabe T, Matsuzawa K, Saimiya M, Tanaka M, Nagao M, Moriyama H, Kubota K, Katsurabayashi S, Iwasaki K. Effect of Yokukansan and Yokukansankachimpihange on Aggressive Behavior, 5-HT Receptors and Arginine Vasopressin Expression in Social Isolation-Reared Mice. Biol Pharm Bull 2020; 42:2009-2015. [PMID: 31787717 DOI: 10.1248/bpb.b19-00499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The traditional herbal medicines yokukansan (YKS) and yokukansankachimpihange (YKSCH) are prescribed for neurosis, insomnia or night crying and irritability in children. YKSCH comprises YKS and two additional herbs, a chimpi and a hange, and is used to treat digestive function deficiencies. However, the differences between the effects of YKS and YKSCH on brain function are unclear. The present study examined the effects of YKS and YKSCH on aggressive behavior in mice reared under a social isolation (SI) condition. Mice were housed individually for 6 weeks. YKS and YKSCH were administered orally for 2 weeks before aggression tests. SI increased aggressive behavior against naïve mice, and YKS, but not YKSCH, significantly attenuated this aggressive behavior. Because serotonin (5-HT)2A and 5-HT3A receptor antagonists are reported to have anti-aggressive effects, the mRNA levels of these receptors were examined. YKS attenuated the SI-induced increase in 5-HT2A and 5-HT3A receptor mRNA in the amygdala. On the other hand, YKSCH attenuated the SI-induced increase in 5-HT1A receptor mRNA. YKS and YKSCH did not affect 5-HT and its metabolite 5-hydroxyindoleacetic acid content in the amygdala. However, YKSCH increased the mRNA level of arginine vasopressin (AVP), which is a neuropeptide that has been implicated in aggression, in the amygdala. These results suggest that YKS ameliorates aggressive behavior by decreasing 5-HT2A and 5-HT3A receptor expression. The YKSCH-induced increase in AVP may disrupt the anti-aggressive effect of YKS. YKS may be more effective than YKSCH for treating irritability if digestive function deficiencies are not considered.
Collapse
Affiliation(s)
- Hikari Iba
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Takuya Watanabe
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University.,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University
| | - Kanae Matsuzawa
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Maki Saimiya
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Masako Tanaka
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Masaki Nagao
- A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University
| | - Hiroshi Moriyama
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Kaori Kubota
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University.,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University
| | | | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University.,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University
| |
Collapse
|
4
|
Neuronal glutamatergic changes and peripheral markers of cytoskeleton dynamics change synchronically 24 h after sub-anaesthetic dose of ketamine in healthy subjects. Behav Brain Res 2019; 359:312-319. [DOI: 10.1016/j.bbr.2018.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022]
|
5
|
Singh H, Wray N, Schappi JM, Rasenick MM. Disruption of lipid-raft localized Gα s/tubulin complexes by antidepressants: a unique feature of HDAC6 inhibitors, SSRI and tricyclic compounds. Neuropsychopharmacology 2018; 43:1481-1491. [PMID: 29463911 PMCID: PMC5983546 DOI: 10.1038/s41386-018-0016-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/11/2018] [Accepted: 01/18/2018] [Indexed: 01/06/2023]
Abstract
Current antidepressant therapies meet with variable therapeutic success and there is increasing interest in therapeutic approaches not based on monoamine signaling. Histone deacetylase 6 (HDAC6), which also deacetylates α-tubulin shows altered expression in mood disorders and HDAC6 knockout mice mimic traditional antidepressant treatments. Nonetheless, a mechanistic understanding for HDAC6 inhibitors in the treatment of depression remains elusive. Previously, we have shown that sustained treatment of rats or glioma cells with several antidepressants translocates Gαs from lipid rafts toward increased association with adenylyl cyclase (AC). Concomitant with this is a sustained increase in cAMP production. While Gαs modifies microtubule dynamics, tubulin also acts as an anchor for Gαs in lipid-rafts. Since HDAC-6 inhibitors potentiate α-tubulin acetylation, we hypothesize that acetylation of α-tubulin disrupts tubulin-Gαs raft-anchoring, rendering Gαs free to activate AC. To test this, C6 Glioma (C6) cells were treated with the HDAC-6 inhibitor, tubastatin-A. Chronic treatment with tubastatin-A not only increased α-tubulin acetylation but also translocated Gαs from lipid-rafts, without changing total Gαs. Reciprocally, depletion of α-tubulin acetyl-transferase-1 ablated this phenomenon. While escitalopram and imipramine also disrupt Gαs/tubulin complexes and translocate Gαs from rafts, they evoke no change in tubulin acetylation. Finally, two indicators of downstream cAMP signaling, cAMP response element binding protein phosphorylation (pCREB) and expression of brain-derived-neurotrophic-factor (BDNF) were both elevated by tubastatin-A. These findings suggest HDAC6 inhibitors show a cellular profile resembling traditional antidepressants, but have a distinct mode of action. They also reinforce the validity of antidepressant-induced Gαs translocation from lipid-rafts as a biosignature for antidepressant response that may be useful in the development of new antidepressant compounds.
Collapse
Affiliation(s)
- Harinder Singh
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Nathan Wray
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Jeffrey M Schappi
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mark M Rasenick
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Jesse Brown VAMC, Chicago, IL, 60612, USA.
| |
Collapse
|
6
|
Sonei N, Amiri S, Jafarian I, Anoush M, Rahimi-Balaei M, Bergen H, Haj-Mirzaian A, Hosseini MJ. Mitochondrial dysfunction bridges negative affective disorders and cardiomyopathy in socially isolated rats: Pros and cons of fluoxetine. World J Biol Psychiatry 2017; 18:39-53. [PMID: 27031288 DOI: 10.3109/15622975.2016.1149218] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objectives Depression is tightly associated with cardiovascular comorbidity and accounts for high financial and social burden worldwide. Mitochondrial dysfunction contributes to the pathophysiology of depression and cardiovascular disorders; its contribution to depression-cardiovascular comorbidity has not yet been investigated. Methods Adolescent rats were subjected to 4 weeks of isolation (social isolation stress or SIS) or social conditions (control), and then they were divided into treatment (fluoxetine, 7.5 mg/kg/day for 21 days) and non-treatment groups. After different housing conditions and treatment, animals were evaluated by behavioural tests (n = 6-8) and mitochondrial assessments (n = 3) of brain and cardiac tissues. Results We found that juvenile SIS induced behavioural abnormalities and mitochondrial dysfunction in adulthood. We showed that juvenile SIS was associated with impaired respiratory chain complex, which leads to reactive oxygen species formation, oxidative damage and ATP abatement in both brain and heart. Administration of FLX (7.5 mg/kg/day) during the isolation period attenuated the effects of SIS on the brain mitochondria and behavioural abnormalities, but had little or no effect on SIS-induced mitochondrial dysfunction in cardiac tissue. Conclusions This suggests that juvenile SIS predisposes the co-occurrence of depression and cardiovascular disease through mitochondrial dysfunction and that therapeutic effect of fluoxetine is partly mediated by its effect on mitochondrial function.
Collapse
Affiliation(s)
- Nazanin Sonei
- a Zanjan Applied Pharmacology Research Center , Zanjan University of Medical Sciences , Zanjan , Iran.,b Department of Pharmacology and Toxicology, School of Pharmacy , Zanjan University of Medical Sciences , Zanjan , Iran
| | - Shayan Amiri
- c Department of Pharmacology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,d Experimental Medicine Research Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Iman Jafarian
- a Zanjan Applied Pharmacology Research Center , Zanjan University of Medical Sciences , Zanjan , Iran.,b Department of Pharmacology and Toxicology, School of Pharmacy , Zanjan University of Medical Sciences , Zanjan , Iran
| | - Mahdieh Anoush
- a Zanjan Applied Pharmacology Research Center , Zanjan University of Medical Sciences , Zanjan , Iran.,b Department of Pharmacology and Toxicology, School of Pharmacy , Zanjan University of Medical Sciences , Zanjan , Iran
| | - Maryam Rahimi-Balaei
- e Department of Human Anatomy and Cell Science , College of Medicine, Faculty of Health Sciences, University of Manitoba , Winnipeg , Manitoba , Canada
| | - Hugo Bergen
- e Department of Human Anatomy and Cell Science , College of Medicine, Faculty of Health Sciences, University of Manitoba , Winnipeg , Manitoba , Canada
| | - Arya Haj-Mirzaian
- c Department of Pharmacology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,d Experimental Medicine Research Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Mir-Jamal Hosseini
- a Zanjan Applied Pharmacology Research Center , Zanjan University of Medical Sciences , Zanjan , Iran.,b Department of Pharmacology and Toxicology, School of Pharmacy , Zanjan University of Medical Sciences , Zanjan , Iran
| |
Collapse
|
7
|
Darcet F, Gardier AM, David DJ, Guilloux JP. Chronic 5-HT4 receptor agonist treatment restores learning and memory deficits in a neuroendocrine mouse model of anxiety/depression. Neurosci Lett 2016; 616:197-203. [DOI: 10.1016/j.neulet.2016.01.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/22/2015] [Accepted: 01/26/2016] [Indexed: 12/15/2022]
|
8
|
Parésys L, Hoffmann K, Froger N, Bianchi M, Villey I, Baulieu EE, Fuchs E. Effects of the Synthetic Neurosteroid: 3β-Methoxypregnenolone (MAP4343) on Behavioral and Physiological Alterations Provoked by Chronic Psychosocial Stress in Tree Shrews. Int J Neuropsychopharmacol 2015; 19:pyv119. [PMID: 26476437 PMCID: PMC4851265 DOI: 10.1093/ijnp/pyv119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/14/2015] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Most currently available active antidepressant drugs are selective serotonin/noradrenaline reuptake inhibitors. However, as their clinical efficacy is not immediate, long-term administration is often accompanied by substantial side effects, and numerous patients remain non- or partial responders. We have recently found that the synthetic neurosteroid derivative 3β-methoxypregnenolone, which binds to the microtubule-associated protein-2, can provide a novel therapeutic approach in experimental model of depressive disorders in rats. To further validate the antidepressant-like efficacy of 3β-methoxypregnenolone, we investigated effects of a longer treatment (4-week oral administration; 50mg/kg/d) in a nonrodent species, the tree shrew, exposed to psychosocial stress that elicits close-to-human alterations observed in patients with depressive disorders. METHODS During the experimental period, physiological parameters were registered, including core body temperature and electroencephalogram, while animals were videotaped to analyze their avoidance behavior. Morning urine samples were collected for measurements of cortisol and noradrenaline levels. RESULTS We found that treatment with 3β-methoxypregnenolone abolished stress-triggered avoidance behavior and prevented hormone hypersecretion, hypothermia, and sleep disturbances, further suggesting its antidepressant-like efficacy. Comparative treatment with fluoxetine also prevented some of the physiological alterations, while the hypersecretion of cortisol and sleep disturbances were not or partially restored by fluoxetine, suggesting a better efficacy of 3β-methoxypregnenolone. Alpha-tubulin isoforms were measured in hippocampi: we found that 3β-methoxypregnenolone reversed the specific decrease in acetylation of α-tubulin induced by psychosocial stress, while it did not modify the psychosocial stress-elicited reduction of tyrosinated α-tubulin. CONCLUSIONS Taken together, these data strongly suggest a potent antidepressant-like effect of 3β-methoxypregnenolone on translational parameters.
Collapse
Affiliation(s)
| | | | - Nicolas Froger
- MAPREG SAS, Le Kremlin-Bicêtre, France (Drs Parésys, Froger, Bianchi, Villey, and Baulieu); German Primate Center, Göttingen, Germany (Drs Hoffmann and Fuchs).
| | | | | | | | | |
Collapse
|
9
|
Treatment of cognitive dysfunction in major depressive disorder—a review of the preclinical evidence for efficacy of selective serotonin reuptake inhibitors, serotonin–norepinephrine reuptake inhibitors and the multimodal-acting antidepressant vortioxetine. Eur J Pharmacol 2015; 753:19-31. [DOI: 10.1016/j.ejphar.2014.07.044] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/06/2014] [Accepted: 07/24/2014] [Indexed: 02/02/2023]
|
10
|
Wang QS, Tian JS, Cui YL, Gao S. Genipin is active via modulating monoaminergic transmission and levels of brain-derived neurotrophic factor (BDNF) in rat model of depression. Neuroscience 2014; 275:365-73. [DOI: 10.1016/j.neuroscience.2014.06.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/30/2014] [Accepted: 06/17/2014] [Indexed: 12/17/2022]
|
11
|
Green MR, McCormick CM. Effects of stressors in adolescence on learning and memory in rodent models. Horm Behav 2013; 64:364-79. [PMID: 23998678 DOI: 10.1016/j.yhbeh.2012.09.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/04/2012] [Accepted: 09/23/2012] [Indexed: 02/07/2023]
Abstract
This article is part of a Special Issue "Puberty and Adolescence". Learning and memory is affected by a myriad of factors, including exposure to stressors and the corresponding rise in circulating glucocorticoids. Nevertheless, the effects of stressors depend on the sex, species, the type of stressor used, the duration of exposure, as well as the developmental time-point in which stressors are experienced. Effects of stress in adolescence, however, have received less attention than other developmental periods. In adolescence, the hypothalamic-pituitary-adrenal axis and brain regions involved in learning and memory, which also richly express corticosteroid receptors, are continuing to develop, and thus the effects of stress exposures would be expected to differ from those in adulthood. We conclude from a review of the available literature in animal models that hippocampal function is particularly sensitive to adolescent stressors, and the effects tend to be most evident several weeks after the exposure, suggesting stressors alter the developmental trajectory of the hippocampus.
Collapse
Affiliation(s)
- Matthew R Green
- Department of Psychology, Brock University, 500 Glenridge Ave., St. Catharines, Ontario, Canada
| | | |
Collapse
|
12
|
Ampuero E, Stehberg J, Gonzalez D, Besser N, Ferrero M, Diaz-Veliz G, Wyneken U, Rubio FJ. Repetitive fluoxetine treatment affects long-term memories but not learning. Behav Brain Res 2013; 247:92-100. [DOI: 10.1016/j.bbr.2013.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
|
13
|
Gao S, Cui YL, Yu CQ, Wang QS, Zhang Y. Tetrandrine exerts antidepressant-like effects in animal models: Role of brain-derived neurotrophic factor. Behav Brain Res 2013; 238:79-85. [DOI: 10.1016/j.bbr.2012.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 10/07/2012] [Accepted: 10/11/2012] [Indexed: 01/17/2023]
|
14
|
Raftogianni A, Stamatakis A, Papadopoulou A, Vougas K, Anagnostopoulos AK, Stylianopoulou F, Tsangaris GT. Effects of an early experience of reward through maternal contact or its denial on laterality of protein expression in the developing rat hippocampus. PLoS One 2012; 7:e48337. [PMID: 23118990 PMCID: PMC3485191 DOI: 10.1371/journal.pone.0048337] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/24/2012] [Indexed: 01/01/2023] Open
Abstract
Laterality is a basic characteristic of the brain which is detectable early in life. Although early experiences affect laterality of the mature brain, there are no reports on their immediate neurochemical effects during neonatal life, which could provide evidence as to the mechanisms leading to the lateralized brain. In order to address this issue, we determined the differential protein expression profile of the left and right hippocampus of 13-day-old rat control (CTR) pups, as well as following exposure to an early experience involving either receipt (RER) or denial (DER) of the expected reward of maternal contact. Proteomic analysis was performed by 2-dimensional polyacrylamide gel electrophoresis (PAGE) followed by mass spectroscopy. The majority of proteins found to be differentially expressed either between the three experimental groups (DER, RER, CTR) or between the left and right hemisphere were cytoskeletal (34%), enzymes of energy metabolism (32%), and heat shock proteins (17%). In all three groups more proteins were up-regulated in the left compared to the right hippocampus. Tubulins were found to be most often up-regulated, always in the left hippocampus. The differential expression of β-tubulin, β-actin, dihydropyrimidinase like protein 1, glial fibrillary acidic protein (GFAP) and Heat Shock protein 70 revealed by the proteomic analysis was in general confirmed by Western blots. Exposure to the early experience affected brain asymmetry: In the RER pups the ratio of proteins up-regulated in the left hippocampus to those in the right was 1.8, while the respective ratio was 3.6 in the CTR and 3.4 in the DER. Our results could contribute to the elucidation of the cellular mechanisms mediating the effects of early experiences on the vulnerability for psychopathology, since proteins shown in our study to be differentially expressed (e.g. tubulins, dihydropyrimidinase like proteins, 14-3-3 protein, GFAP, ATP synthase, α-internexin) have also been identified in proteomic analyses of post-mortem brains from psychiatric patients.
Collapse
Affiliation(s)
- Androniki Raftogianni
- Laboratory of Biology-Biochemistry, Department of Basic Sciences, School of Health Sciences, University of Athens, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
15
|
Ladurelle N, Gabriel C, Viggiano A, Mocaër E, Baulieu EE, Bianchi M. Agomelatine (S20098) modulates the expression of cytoskeletal microtubular proteins, synaptic markers and BDNF in the rat hippocampus, amygdala and PFC. Psychopharmacology (Berl) 2012; 221:493-509. [PMID: 22160164 DOI: 10.1007/s00213-011-2597-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/18/2011] [Indexed: 11/25/2022]
Abstract
RATIONALE Agomelatine is described as a novel and clinical effective antidepressant drug with melatonergic (MT(1)/MT(2)) agonist and 5-HT(2C) receptor antagonist properties. Previous studies suggest that modulation of neuronal plasticity and microtubule dynamics may be involved in the treatment of depression. OBJECTIVE The present study investigated the effects of agomelatine on microtubular, synaptic and brain-derived neurotrophic factor (BDNF) proteins in selected rat brain regions. METHODS Adult male rats received agomelatine (40 mg/kg i.p.) once a day for 22 days. The pro-cognitive effect of agomelatine was tested in the novel object recognition task and antidepressant activity in the forced swimming test. Microtubule dynamics markers, microtubule-associated protein type 2 (MAP-2), phosphorylated MAP-2, synaptic markers [synaptophysin, postsynaptic density-95 (PSD-95) and spinophilin] and BDNF were measured by Western blot in the hippocampus, amygdala and prefrontal cortex (PFC). RESULTS Agomelatine exerted pro-cognitive and antidepressant activity and induced molecular changes in the brain areas examined. Agomelatine enhanced microtubule dynamics in the hippocampus and to a higher magnitude in the amygdala. By contrast, in the PFC, a decrease in microtubule dynamics was observed. Spinophilin (dendritic spines marker) was decreased, and BDNF increased in the hippocampus. Synaptophysin (presynaptic) and spinophilin were increased in the PFC and amygdala, while PSD-95 (postsynaptic marker) was increased in the amygdala, consistent with the phenomena of synaptic remodelling. CONCLUSIONS Agomelatine modulates cytoskeletal microtubule dynamics and synaptic markers. This may play a role in its pharmacological behavioural effects and may result from the melatonergic agonist and 5-HT(2C) antagonist properties of the compound.
Collapse
Affiliation(s)
- Nataly Ladurelle
- Institut National de la Santé et de la Recherche Médicale-UMR788, Le Kremlin-Bicêtre, France
| | | | | | | | | | | |
Collapse
|
16
|
Blockade of dopamine D₃ but not D₂ receptors reverses the novel object discrimination impairment produced by post-weaning social isolation: implications for schizophrenia and its treatment. Int J Neuropsychopharmacol 2012; 15:471-84. [PMID: 21414250 DOI: 10.1017/s1461145711000435] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dopamine D₃ receptors are densely expressed in mesolimbic projection areas, and selective antagonists enhance cognition, consistent with their potential therapeutic use in the treatment of schizophrenia. This study examines the effect of dopamine D₃ vs. D₂ receptor antagonists on the cognitive impairment and hyperactivity produced by social isolation of rat pups, in a neurodevelopmental model of certain deficits of schizophrenia. Three separate groups of male Lister hooded rats were group-housed or isolation-reared from weaning. Six weeks later rats received either vehicle or the dopamine D₃ selective antagonist, S33084 (0.04 and 0.16 mg/kg), the preferential D₃ antagonist, S33138 (0.16 and 0.63 mg/kg) or the preferential D₂ antagonist, L-741,626 (0.63 mg/kg) s.c. 30 min prior to recording; horizontal locomotor activity in a novel arena for 60 min and, the following day, novel object discrimination using a 2-h inter-trial interval. Isolation rearing induced locomotor hyperactivity in a novel arena and impaired novel object discrimination compared to that in group-housed littermates. Both S33084 and S33138 restored novel object discrimination deficits in isolation-reared rats without affecting discrimination in group-housed controls. By contrast, L-741,626 impaired novel object discrimination in group-housed rats, without affecting impairment in isolates. S33084 (0.16 mg/kg), S33138 and, less markedly, L741,626 reduced the locomotor hyperactivity in isolates without attenuating activity in group-housed controls. Selective blockade of dopamine D₃ receptors reverses the visual recognition memory deficit and hyperactivity produced by isolation rearing. These data support further investigation of the potential use of dopamine D₃ receptor antagonists to treat schizophrenia.
Collapse
|
17
|
Piubelli C, Gruber S, El Khoury A, Mathé AA, Domenici E, Carboni L. Nortriptyline influences protein pathways involved in carbohydrate metabolism and actin-related processes in a rat gene-environment model of depression. Eur Neuropsychopharmacol 2011; 21:545-62. [PMID: 21168998 DOI: 10.1016/j.euroneuro.2010.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/24/2010] [Accepted: 11/09/2010] [Indexed: 01/21/2023]
Abstract
Although most available antidepressants increase monoaminergic neurotransmission, their therapeutic efficacy is likely mediated by longer-term molecular adaptations. To investigate the molecular changes induced by chronic antidepressant treatment we analysed proteomic changes in rat pre-frontal/frontal cortex and hippocampus after nortriptyline (NT) administration. A wide-scale analysis of protein expression was performed on the Flinders Sensitive Line (FSL), a genetically-selected rat model of depression, and the control Flinders Resistant Line (FRL). The effect of NT treatment was examined in a gene-environment interaction model, applying maternal separation (MS) to both strains. In the forced swim test, FSL rats were significantly more immobile than FRL animals, whereas NT treatment reduced immobility time. MS alone did not modify immobility time, but it impaired the response to NT in the FSL strain. In the proteomic analysis, in FSL rats NT treatment chiefly modulated cytoskeleton proteins and carbohydrate metabolism. In the FRL strain, changes influenced protein polymerization and intracellular transport. After MS, NT treatment mainly affected proteins in nucleotide metabolism in FSL rats and synaptic transmission and neurite morphogenesis pathways in FRL rats. When the effects of NT treatment and MS were compared between strains, carbohydrate metabolic pathways were predominantly modulated.
Collapse
|
18
|
Escitalopram modulates neuron-remodelling proteins in a rat gene-environment interaction model of depression as revealed by proteomics. Part I: genetic background. Int J Neuropsychopharmacol 2011; 14:796-833. [PMID: 21054914 DOI: 10.1017/s1461145710001318] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The wide-scale analysis of protein expression provides a powerful strategy for the molecular exploration of complex pathophysiological mechanisms, such as the response to antidepressants. Using a 2D proteomic approach we investigated the Flinders Sensitive Line (FSL), a genetically selected rat model of depression, and the control Flinders Resistant Line (FRL). To evaluate gene-environment interactions, FSL and FRL pups were separated from their mothers for 3 h (maternal separation, MS), as early-life trauma is considered an important antecedent of depression. All groups were treated with either escitalopram (Esc) admixed to food (25 mg/kg.d) or vehicle for 1 month. At the week 3, forced swim tests were performed. Protein extracts from prefrontal/frontal cortex and hippocampus were separated by 2D electrophoresis. Proteins displaying statistically significant differences in expression levels were identified by mass spectrometry. Immobility time values in the forced swim test were higher in FSL rats and reduced by antidepressant treatment. Moreover, the Esc-induced reduction in immobility time was not detected in MS rats. The impact of genetic background in response to Esc was specifically investigated here. Bioinformatics analyses highlighted gene ontology terms showing tighter associations with the modulated proteins. Esc modulated protein belonging to cytoskeleton organization in FSL; carbohydrate metabolism and intracellular transport in FRL. Proteins differently modulated in the two strains after MS and Esc play a role in cytoskeleton organization, vesicle-mediated transport, apoptosis regulation and macromolecule catabolism. These findings suggest pathways involved in neuronal remodelling as molecular correlates of response to antidepressants in a model of vulnerability.
Collapse
|
19
|
Gardiner J, Overall R, Marc J. The microtubule cytoskeleton acts as a key downstream effector of neurotransmitter signaling. Synapse 2011; 65:249-56. [PMID: 20687109 DOI: 10.1002/syn.20841] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microtubules are well known to play a key role in the trafficking of neurotransmitters to the synapse. However, less attention has been paid to their role as downstream effectors of neurotransmitter signaling in the target neuron. Here, we show that neurotransmitter-based signaling to the microtubule cytoskeleton regulates downstream microtubule function through several mechanisms. These include tubulin posttranslational modification, binding of microtubule-associated proteins, release of microtubule-interacting second messenger molecules, and regulation of tubulin expression levels. We review the evidence for neurotransmitter regulation of the microtubule cytoskeleton, focusing on the neurotransmitters serotonin, melatonin, dopamine, glutamate, glycine, and acetylcholine. Some evidence suggests that microtubules may even play a more direct role in propagating action potentials through conductance of electric current. In turn, there is evidence for the regulation of neurotransmission by the microtubule cytoskeleton.
Collapse
Affiliation(s)
- John Gardiner
- The School of Biological Sciences, The University of Sydney 2006, New South Wales, Australia.
| | | | | |
Collapse
|
20
|
Pisu MG, Dore R, Mostallino MC, Loi M, Pibiri F, Mameli R, Cadeddu R, Secci PP, Serra M. Down-regulation of hippocampal BDNF and Arc associated with improvement in aversive spatial memory performance in socially isolated rats. Behav Brain Res 2011; 222:73-80. [PMID: 21420441 DOI: 10.1016/j.bbr.2011.03.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 10/18/2022]
Abstract
Rats deprived of social contact with other rats at a young age experience a form of prolonged stress that leads to long-lasting changes in behavioral profile. Such isolation is thought to be anxiogenic for these normally gregarious animals, and the abnormal reactivity of isolated rats to environmental stimuli is thought to be a product of prolonged stress. We now show that isolation of rats at weaning reduced immobility time in the forced swim test, decreased sucrose intake and preference, and down-regulated both brain-derived neurotrophic factor (BDNF) and activity-regulated cytoskeletal associated protein (Arc) in the hippocampus. In the Morris water maze, isolated rats showed a reduced latency to reach the hidden platform during training, indicative of an improved learning performance, compared with group-housed rats. The cumulative search error during place training trials indicated a reliable difference between isolated and group-housed rats on days 4 and 5. The probe trial revealed a significant decrease of the average proximity to the target location in the isolated rats suggesting an improvement in spatial memory. Isolated rats also showed an increase in the plasma level of corticosterone on the 5th day of training and increased expression of BDNF and Arc in the hippocampus on both days 1 and 5. These results show that social isolation from weaning in rats results in development of depressive-like behavior but has a positive effect on spatial learning, supporting the existence of a facilitating effect of stress on cognitive function.
Collapse
|
21
|
Influence of social isolation in the rat on serotonergic function and memory--relevance to models of schizophrenia and the role of 5-HT₆ receptors. Neuropharmacology 2011; 61:400-7. [PMID: 21414329 DOI: 10.1016/j.neuropharm.2011.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/24/2011] [Accepted: 03/02/2011] [Indexed: 11/23/2022]
Abstract
There is increasing awareness of the importance that early environmental factors have on brain development and their role in the neurobiology of neurodevelopmental disorders including schizophrenia. The isolation reared rat attempts to model adverse effects that human social isolation (absence of social contact) can have on normal brain development. The isolation reared rat also models aspects of schizophrenia including the development of persistent learning and memory deficits. This short review concentrates on the effects of isolation rearing on cognition, including deficits in novel object discrimination, and the neural mechanisms that may underlie this impairment. There is evidence that a key effect of social isolation may be loss of neuronal plasticity combined with change in the functional state of various cortical and hippocampal neurotransmitters, including glutamate and serotonin. Reduced glutamate function may underlie the deficits in novel object discrimination, which can be reversed by administration of a 5-HT(6) receptor antagonist. This suggests that the 5-HT(6) antagonists may act by reducing 5-HT(6) receptor mediated activation of GABA, resulting in glutamate disinhibition. Thus drugs acting at 5-HT(6) receptors may offer a novel approach to treat neurodevelopmental cognitive symptoms, including those seen in schizophrenia.
Collapse
|
22
|
Jones CA, Brown AM, Auer DP, Fone KCF. The mGluR2/3 agonist LY379268 reverses post-weaning social isolation-induced recognition memory deficits in the rat. Psychopharmacology (Berl) 2011; 214:269-83. [PMID: 20607219 DOI: 10.1007/s00213-010-1931-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 06/22/2010] [Indexed: 01/31/2023]
Abstract
RATIONALE Current antipsychotics are ineffective at treating the negative and cognitive symptoms of schizophrenia, so there is a substantial need to develop more effective therapeutics for this debilitating disorder. The type II metabotropic glutamate receptor (mGluR2/3) is a novel, potential therapeutic target requiring evaluation in appropriate preclinical models of schizophrenia. OBJECTIVE This study evaluated the potent, selective mGluR2/3 agonist, LY379268, on the behavioural deficits induced by rearing rat pups in social isolation from weaning, a neurodevelopmental model of schizophrenia, to investigate its antipsychotic potential. METHODS Male Lister Hooded rats were weaned on post-natal day 23-25 and either group-housed (3-4 per cage) or isolation-reared for 6 weeks. At subsequent weekly intervals, animals received acute systemic injection of either vehicle or LY379268 (1 mg/kg; i.p.) 30 min prior to recording locomotor activity in a novel arena, novel object recognition, pre-pulse inhibition of acoustic startle and conditioned emotional response paradigms. RESULTS Isolation rearing induced locomotor hyperactivity, deficits in novel object recognition, conditioned emotional behaviour and attenuated the magnitude of the initial acoustic startle response in the PPI paradigm compared to that of group-housed controls. LY379268 reversed the isolation-induced locomotor hyperactivity, the object recognition deficit, and restored startle responses in isolated animals, whilst having no effect on conditioned emotional response impairments. CONCLUSIONS These data show that LY379268 can reverse some, but not all, post-weaning social isolation-induced changes which have translational relevance to core symptom defects in schizophrenia and support a potential therapeutic role of mGluR2/3 agonists in its treatment.
Collapse
Affiliation(s)
- Caitlin A Jones
- School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | | | | | | |
Collapse
|
23
|
Regulation of cytoskeleton machinery, neurogenesis and energy metabolism pathways in a rat gene-environment model of depression revealed by proteomic analysis. Neuroscience 2011; 176:349-80. [DOI: 10.1016/j.neuroscience.2010.12.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 12/09/2010] [Indexed: 11/15/2022]
|
24
|
Hermes G, Li N, Duman C, Duman R. Post-weaning chronic social isolation produces profound behavioral dysregulation with decreases in prefrontal cortex synaptic-associated protein expression in female rats. Physiol Behav 2010; 104:354-9. [PMID: 21185848 DOI: 10.1016/j.physbeh.2010.12.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/15/2010] [Accepted: 12/16/2010] [Indexed: 11/25/2022]
Abstract
Early life stressors in rodents, including maternal separation and social isolation, have been shown to disrupt brain development and profoundly affect a wide-range of behaviors in adult animals. In this study, we focus on the development of female Sprague-Dawley rats in the presence and absence of conspecifics during the critical period of social play. Similar studies in male rodents have shown that this form of social deprivation results in dysregulated dopaminergic and serotonergic functions in the brain with core features of neuropsychiatric disorders including anxiety disorder and schizophrenia. Here we examined the behavioral and biochemical effects of post-weaning social isolation in female rats. Our findings demonstrated that isolation rearing produced marked deficits in social interaction behaviors and increased anxiety in open-field and novelty-suppressed feeding tests. The expression of synaptic-associated proteins PSD95 and synapsin I as well as glutamate receptors subunits GluR1 and NR1 in the prefrontal cortex (PFC) were significantly reduced in isolation-reared female rats. Current findings provide evidence that in female rats, post-weaning environmental disruption can result in profound dysregulation of synapse-related proteins and behavior.
Collapse
Affiliation(s)
- Gretchen Hermes
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | | | | | | |
Collapse
|