1
|
Del Campo CMZM, Nicolson GL, Sfera A. Neurolipidomics in schizophrenia: A not so well-oiled machine. Neuropharmacology 2024; 260:110117. [PMID: 39153730 DOI: 10.1016/j.neuropharm.2024.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Most patients with schizophrenia (SCZ) do not exhibit violent behaviors and are more likely to be victims rather than perpetrators of violent acts. However, a subgroup of forensic detainees with SCZ exhibit tendencies to engage in criminal violations. Although numerous models have been proposed, ranging from substance use, serotonin transporter gene, and cognitive dysfunction, the molecular underpinnings of violence in SCZ patients remains elusive. Lithium and clozapine have established anti-aggression properties and recent studies have linked low cholesterol levels and ultraviolet (UV) radiation with human aggression, while vitamin D3 reduces violent behaviors. A recent study found that vitamin D3, omega-3 fatty acids, magnesium, and zinc lower aggression in forensic population. In this review article, we take a closer look at aryl hydrocarbon receptor (AhR) and the dysfunctional lipidome in neuronal membranes, with emphasis on cholesterol and vitamin D3 depletion, as sources of aggressive behavior. We also discuss modalities to increase the fluidity of neuronal double layer via membrane lipid replacement (MLR) and natural or synthetic compounds. This article is part of the Special Issue on "Personality Disorders".
Collapse
Affiliation(s)
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, 92647, USA
| | - Adonis Sfera
- Patton State Hospital, Loma Linda University, Department of Psychiatry, University of California, Riverside, USA.
| |
Collapse
|
2
|
Qin Y, Wu Y, Zang H, Cong X, Shen Q, Chen L, Chen X. Lipid Metabolism in Pregnancy Women with Hypothyroidism and Potential Influence on Pregnancy Outcome. J Lipids 2024; 2024:5589492. [PMID: 39015803 PMCID: PMC11251789 DOI: 10.1155/2024/5589492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Thyroid hormone (TH) is essential for maintaining normal physiological processes during pregnancy, including the metabolism of energy materials in both the mother and fetus and the growth and development of fetal bone and nervous system. TH can act on the liver, fat, and other tissues and organs to participate in lipid synthesis and breakdown through multiple pathways. Consequently, abnormal thyroid function is often accompanied by lipid metabolism disorders. Both clinical and subclinical hypothyroidism, as well as dyslipidemia during pregnancy, have been shown to be associated with an increased risk of multiple adverse pregnancy outcomes. Recently, there has been an increased interest in studying the alteration of lipidomic and hypothyroidism (both clinical and subclinical hypothyroidism) during pregnancy. Studies have suggested that altered lipid molecules might be used as potential biomarker and associated with adverse maternal and neonatal outcome. Thus, we summarized the associations between lipid metabolism and clinical or subclinical hypothyroidism during pregnancy in this review. Then, we discussed the underlying mechanisms of thyroid dysfunction and lipid metabolism. In addition, we reviewed the possible effect of dyslipidemia on pregnancy and neonatal outcome. However, the relationship between hypothyroidism during pregnancy and changes in the lipid profile and how to intervene in the occurrence and development of adverse pregnancy outcomes require further study.
Collapse
Affiliation(s)
- Yuxin Qin
- Department of EndocrinologyThe Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou 215000, China
| | - Ying Wu
- Department of EndocrinologyThe Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou 215000, China
| | - Huanhuan Zang
- Department of EndocrinologyThe Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou 215000, China
| | - Xiangguo Cong
- Department of EndocrinologyThe Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou 215000, China
| | - Qiong Shen
- Department of EndocrinologyThe Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou 215000, China
| | - Lei Chen
- Department of EndocrinologyThe Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou 215000, China
| | - Xinxin Chen
- Department of EndocrinologyThe Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou 215000, China
| |
Collapse
|
3
|
Dang R, Wang J, Tang M, Han W, Jiang P. Vitamin D Receptor Activation Attenuates Olanzapine-Induced Dyslipidemia in Mice Through Alleviating Hepatic Endoplasmic Reticulum Stress. Adv Biol (Weinh) 2023; 7:e2300228. [PMID: 37565702 DOI: 10.1002/adbi.202300228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/02/2023] [Indexed: 08/12/2023]
Abstract
The involvement of vitamin D (VD) signaling in atypical antipsychotics (AAPs)-induced metabolic disturbances has been previously established. This study aims to elucidate the role of VD in maintaining endoplasmic reticulum (ER) homeostasis and its impact on AAPs-induced metabolic adverse effects. Female C57BL/6 mice receive either calcitriol or vehicle one week prior to co-treatment with olanzapine (OLZ) for an additional four weeks. Metabolic parameters, hepatic ER homeostasis, and the SREBPs pathway are assessed through biochemical assays and protein expression profiling. HepG2 cells are transfected with vitamin D receptor (VDR) siRNA for VDR knockdown. OLZ-treated HepG2 cells are exposed to calcitriol to examine its effects on SREBPs and the unfolded protein response (UPR) pathways. VDR activation by calcitriol reduces OLZ-induced hepatic ER stress, leading to decreased SREBPs activity and lipid accumulation. Conversely, the knockdown of VDR in HepG2 cells diminishes the protective effects of calcitriol against OLZ-induced ER stress and SREBPs activation. This resulted in sustained UPR activation, elevated cleaved SREBPs levels, and increased lipid accumulation. These findings highlight an essential role of VDR signaling in the beneficial effects of VD on OLZ-induced metabolic side effects. Targeting VDR to resolve ER stress is likely an applicable therapeutic strategy for AAPs-induced metabolic disturbances.
Collapse
Affiliation(s)
- Ruili Dang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Jing Wang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wenxiu Han
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| |
Collapse
|
4
|
Fondjo LA, Osei O, Owiredu WKBA, Obirikorang C, Senu E, Owusu‐Antwi R, Brefo EFJ. Assessment of vitamin D levels and adipokines mediated obesity among psychiatric patients on treatment and treatment naïve: A comparative cross-sectional study. Health Sci Rep 2022; 5:e858. [PMID: 36248351 PMCID: PMC9547132 DOI: 10.1002/hsr2.858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/20/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Background and aims Antipsychotic treatment may contribute to low vitamin D levels and have impact on direct anti-inflammatory activity such as adiponectin activity and indirect proinflammatory activity such as leptin and resistin activity. However, vitamin D levels and adipokines mediated effect on weight gain and increased adiposity are not well evaluated. This study, therefore, assessed vitamin D and adipokines-mediated obesity among Ghanaian psychiatric patients. Methods This comparative cross-sectional study was conducted at psychiatric unit of Komfo Anokye Teaching Hospital, Kumasi, Ghana. Anthropometric measurements, sociodemographic and previous medical history were taken from 300 antipsychotics treatment naïve and active patients. Obesity was classified using World Health Organization (WHO) body mass index (BMI)-specific cut-offs. Blood samples were collected for serum vitamin D and adipokines (adiponectin, leptin, and resistin) analysis using enzyme-linked immunosorbent assay. Statistical analyses were done using SPSS version 26.0 and GraphPad Prism version 8.0. Results We observed higher prevalence of obesity among treatment active psychiatric patients (40.7%) compared to treatment naïve group (16.8%). Vitamin D insufficiency and deficiency prevalence were significantly higher among the treatment active group (25.3%; 39.5%; p < 0.001) and associated with increased odds of obesity (91.8%; cOR = 91.84, 95% confidence interval [CI]: 24.94-338.13). Moreover, adiponectin (84.2%: cOR = 14.15, 95% CI: 5.52-36.27), leptin (55.6% cOR = 2.20, 95% CI: 1.04-4.67), and resistin (79.4%: cOR = -8.34, 95% CI: 3.39-20.55) were significantly associated with increased odds of obesity among treatment active psychiatric. Furthermore, treatment active psychiatric patients exhibited inverse correlation for adiponectin and leptin with BMI (r = -0.62; -0.24), and WHtR (r = -0.53; -0.24); however, a moderate positive correlation for resistin with BMI (r = 0.80), HC (r = 0.67), and WHtR (r = 0.65). Conclusion Obesity is more prevalent in psychiatric patients on antipsychotics such as Olanzapine and Clozapine. Obesity among treatment active psychiatric patients is associated with vitamin D insufficiency and deficiency, low adiponectin and leptin levels but higher resistin level.
Collapse
Affiliation(s)
- Linda A. Fondjo
- Department of Molecular Medicine, School of Medicine and DentistryKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Olivia Osei
- Department of Molecular Medicine, School of Medicine and DentistryKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - William K. B. A. Owiredu
- Department of Molecular Medicine, School of Medicine and DentistryKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Christian Obirikorang
- Department of Molecular Medicine, School of Medicine and DentistryKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Ebenezer Senu
- Department of Molecular Medicine, School of Medicine and DentistryKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Ruth Owusu‐Antwi
- Department of Behavioral Sciences School of Medicine and DentistryKwame Nkrumah University of Science and Technology, KATHKumasiGhana
- Psychiatry DepartmentKomfo Anokye Teaching HospitalKumasiGhana
| | | |
Collapse
|
5
|
Su X, Chen X, Wang B. Relationship between the development of hyperlipidemia in hypothyroidism patients. Mol Biol Rep 2022; 49:11025-11035. [PMID: 36097119 DOI: 10.1007/s11033-022-07423-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022]
Abstract
As shown in the previous studies, hypothyroidism (HT) is identified to be closely associated with the elevated plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and with the decreased plasma levels of high density lipoprotein cholesterol (HDL-C). On the other hand, the thyroid hormone (TH), which has been considered as a vital hormone produced and released by the thyroid gland, are well-established to regulate the metabolism of plasma TC; whereas other evidence proposed that the thyroid-stimulating hormone (TSH) also regulated the plasma cholesterol metabolism independently of the TH, which further promotes the progression of hyperlipidemia. Nevertheless, the potential mechanism is still not illustrated. It is worth noting that several studies has found that the progression of HT-induced hyperlipidemia might be associated with the down-regulated plasma levels of TH and the up-regulated plasma levels of TSH, revealing that HT could promote hyperlipidemia and its related cardio-metabolic disorders. Otherwise, multiple novel identified plasma proteins, such as proprotein convertase subtilisin/kexin type 9 (PCSK9), angiopoietin-like protein (ANGPTLs), and fibroblast growth factors (FGFs), have also been demonstrated to embrace a vital function in modulating the progression of hyperlipidemia induced by HT. In the present comprehensive review, the recent findings which elucidated the association of HT and the progression of hyperlipidemia were summarized. Furthermore, other results which illustrated the underlying mechanisms by which HT facilitates the progression of hyperlipidemia and its cardio-metabolic disorders are also listed in the current review.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, 361000, Xiamen, Fujian, China
| | - Xiang Chen
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, 361000, Xiamen, Fujian, China.
| | - Bin Wang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, 361000, Xiamen, Fujian, China.
| |
Collapse
|
6
|
Fabrazzo M, Agnese S, Cipolla S, Di Vincenzo M, Mancuso E, Volpicelli A, Perris F, Sampogna G, Catapano F, Fiorillo A, Luciano M. Vitamin D Deficiency and Risk Factors Related to Acute Psychiatric Relapses in Patients with Severe Mental Disorders: A Preliminary Study. Brain Sci 2022; 12:973. [PMID: 35892414 PMCID: PMC9329760 DOI: 10.3390/brainsci12080973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
Previous studies have indicated that vitamin (Vit) D deficiency is frequent in psychiatric patients, regardless of diagnostic category. We aimed to assess whether acute psychiatric relapses in inpatients was associated with Vit D deficiency compared to stabilized outpatients. The cohort (152 total patients, 75 males and 77 females) had a mean age of 47.3 ± 14.4 years at admission and was grouped according to psychiatric diagnosis. Psychopathological symptom severity was assessed by the Brief Psychiatric Rating Scale (BPRS), a multidimensional symptom inventory. Total calcium serum levels were measured using standard laboratory methods, while plasma levels of 25-OH-Vit D and parathyroid hormone (PTH) were measured by automated chemiluminescence immunoassays. The psychiatric inpatient subgroup showed a significant difference in serum levels of 25-OH-Vit D and PTH (p < 0.001). Correlation analysis between serum levels of 25-OH-Vit D and BPRS total and subitem scores indicated a significantly negative relationship. In addition, linear regression analysis evidenced that the inpatient condition might predict low PTH and 25-OH-Vit D serum levels. Hospitalized psychiatric patients are at increased risk for Vit D deficiency regardless of their diagnostic categories. The mechanism underlying the association between acute psychiatric relapses and Vit D deficiency remains unclear. Therefore, screening for Vit D deficiency should pertain to the health assessment of patients with major psychiatric disorders.
Collapse
Affiliation(s)
- Michele Fabrazzo
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.A.); (S.C.); (M.D.V.); (E.M.); (A.V.); (F.P.); (G.S.); (F.C.); (A.F.); (M.L.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hyperlipidemia and hypothyroidism. Clin Chim Acta 2022; 527:61-70. [DOI: 10.1016/j.cca.2022.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
|
8
|
Abolghasemi A, Manca C, Iannotti FA, Shen M, Leblanc N, Lacroix S, Martin C, Flamand N, Di Marzo V, Silvestri C. Assessment of the Effects of Dietary Vitamin D Levels on Olanzapine-Induced Metabolic Side Effects: Focus on the Endocannabinoidome-Gut Microbiome Axis. Int J Mol Sci 2021; 22:12361. [PMID: 34830242 PMCID: PMC8620071 DOI: 10.3390/ijms222212361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Vitamin D deficiency is associated with poor mental health and dysmetabolism. Several metabolic abnormalities are associated with psychotic diseases, which can be compounded by atypical antipsychotics that induce weight gain and insulin resistance. These side-effects may be affected by vitamin D levels. The gut microbiota and endocannabinoidome (eCBome) are significant regulators of both metabolism and mental health, but their role in the development of atypical antipsychotic drug metabolic side-effects and their interaction with vitamin D status is unknown. We studied the effects of different combinations of vitamin D levels and atypical antipsychotic drug (olanzapine) exposure on whole-body metabolism and the eCBome-gut microbiota axis in female C57BL/6J mice under a high fat/high sucrose (HFHS) diet in an attempt to identify a link between the latter and the different metabolic outputs induced by the treatments. Olanzapine exerted a protective effect against diet-induced obesity and insulin resistance, largely independent of dietary vitamin D status. These changes were concomitant with olanzapine-mediated decreases in Trpv1 expression and increases in the levels of its agonists, including various N-acylethanolamines and 2-monoacylglycerols, which are consistent with the observed improvement in adiposity and metabolic status. Furthermore, while global gut bacteria community architecture was not altered by olanzapine, we identified changes in the relative abundances of various commensal bacterial families. Taken together, changes of eCBome and gut microbiota families under our experimental conditions might contribute to olanzapine and vitamin D-mediated inhibition of weight gain in mice on a HFHS diet.
Collapse
Affiliation(s)
- Armita Abolghasemi
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Université Laval, Québec, QC G1V 0A6, Canada
| | - Claudia Manca
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Université Laval, Québec, QC G1V 0A6, Canada
| | - Fabio A. Iannotti
- Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Institute of Biomolecular Chemistry, National Council of Research (Consiglio Nazionale delle Ricerche), 80087 Pozzuoli, Italy;
| | - Melissa Shen
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Nadine Leblanc
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada
| | - Sébastien Lacroix
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada
| | - Cyril Martin
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
| | - Nicolas Flamand
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Université Laval, Québec, QC G1V 0A6, Canada
- Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Institute of Biomolecular Chemistry, National Council of Research (Consiglio Nazionale delle Ricerche), 80087 Pozzuoli, Italy;
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada
- École de Nutrition, Faculté des Sciences de L’agriculture et de L’alimentation (FSAA), Université Laval, Québec, QC G1V 0A6, Canada
- Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada
| | - Cristoforo Silvestri
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Université Laval, Québec, QC G1V 0A6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada
- Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
9
|
Yang J, Wang K, Hu T, Wang G, Wang W, Zhang J. Vitamin D3 Supplement Attenuates Blood-Brain Barrier Disruption and Cognitive Impairments in a Rat Model of Traumatic Brain Injury. Neuromolecular Med 2021; 23:491-499. [PMID: 33616826 DOI: 10.1007/s12017-021-08649-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
This study was designed to study the effects of vitamin D3 supplementation on the cognitive dysfunction and neurological function of traumatic brain injury (TBI) and the possible underlying mechanisms. To this purpose, different doses of vitamin D3 were intraperitoneally injection to TBI rats for one week before TBI surgery and three consecutive weeks after TBI. Brain edema evaluation was conducted on the third day and Evans blue staining for blood-brain barrier (BBB) permeability on the seventh day after TBI. Rat behavior was assessed by evaluation of neurological scores and morris water maze. It was revealed that vitamin D levels increased in serum after the administration of vitamin D3 for one week. TBI led to neurological deficit, together with brain edema, BBB disruption and inflammation. Vitamin D3 supplement ameliorated neurological deficit and cognitive impairments induced by TBI. Vitamin D3 administration reduced brain edema and impairments of blood-brain barrier induced by TBI, as well as decreased inflammatory response in TBI rat brain. Our results showed that vitamin D3 administration alleviated neurobehavioral deficits and improved brain edema after TBI. Vitamin D3 inhibited inflammatory cytokines and decreased BBB disruption in TBI rats. Vitamin D3 may be used for the treatment of TBI as a protective intervention.
Collapse
Affiliation(s)
- Jie Yang
- Division of Nutrition, The Affiliated Hospital, Chengde Medical College, Chengde, 067000, Hebei, China
| | - Kunpeng Wang
- Division of Neurosurgery, The Affiliated Hospital, Chengde Medical College, Chengde, 067000, Hebei, China.
| | - Tiemin Hu
- Division of Neurosurgery, The Affiliated Hospital, Chengde Medical College, Chengde, 067000, Hebei, China
| | - Guang Wang
- Division of Neurosurgery, The Affiliated Hospital, Chengde Medical College, Chengde, 067000, Hebei, China
| | - Weixing Wang
- Division of Neurosurgery, The Affiliated Hospital, Chengde Medical College, Chengde, 067000, Hebei, China
| | - Jiwei Zhang
- Division of Neurosurgery, The Affiliated Hospital, Chengde Medical College, Chengde, 067000, Hebei, China
| |
Collapse
|
10
|
Suri T, Suri S, Poremski D, Fang T, Su A. Vitamin D deficiency in long-term hospitalization psychiatric wards in an equatorial nation. Asia Pac Psychiatry 2020; 12:e12390. [PMID: 32333506 DOI: 10.1111/appy.12390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/02/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Vitamin D deficiency and insufficiency have been shown to be prevalent in several populations, including in people who have a mental illness. Deficiency has been linked to specific mental health sequelae. Furthermore, deficiency may be perpetuated by medications routinely prescribed to people with severe mental illness. Therefore, symptoms of mental illness may be exacerbated by deficient levels of vitamin D, and treatments for mental illness may exacerbate deficiency. This study sought to determine the vitamin D levels of people hospitalized for a period longer than a year in an equatorial nation, Singapore. The inpatient population was then categorized according to levels to determine the need for supplementation. METHODS Total 25-hydroxy vitamin D in serum and plasma levels were tested in 403 individuals in long-term psychiatric wards. Blood serum and plasma levels were classified into three groups. Regression models were constructed to test the associations between levels and clinical covariates. RESULTS Forty (9.9%) people had vitamin D levels that were sufficient. A link was found between vitamin D levels and medications given for gastrointestinal illnesses (β -2.48, p = .014, 95%CI -4.46 to-0.51) and between vitamin D levels and length of stay (β -0.13, p = .027, 95%CI -0.24 to-0.01). No other relationships were statistically significant. DISCUSSION Despite its geographic location and opportunities for regular outdoor activity, vitamin D deficiency, and insufficiency are prevalent among people hospitalized for long periods of time in an equatorial nation. The level of deficiency is comparable to those observed in other settings.
Collapse
Affiliation(s)
- Tarun Suri
- Recovery Care, Institute of Mental Health, Singapore
| | - Sandeep Suri
- Recovery Care, Institute of Mental Health, Singapore
| | - Daniel Poremski
- Health Intelligence Unit, Institute of Mental Health, Singapore
| | - Tina Fang
- Clinical Governance and Quality, Institute of Mental Health, Singapore
| | - Alex Su
- Clinical Governance and Quality, Institute of Mental Health, Singapore
| |
Collapse
|
11
|
Luo C, Wang X, Mao X, Huang H, Liu Y, Zhao J, Zhou H, Liu Z, Li X. Metformin attenuates antipsychotic-induced metabolic dysfunctions in MK801-induced schizophrenia-like rats. Psychopharmacology (Berl) 2020; 237:2257-2277. [PMID: 32588080 DOI: 10.1007/s00213-020-05524-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/08/2020] [Indexed: 12/14/2022]
Abstract
RATIONALE Second-generation antipsychotics are the first-line medications prescribed for schizophrenic patients; however, some of them, such as olanzapine and risperidone, may induce metabolic dysfunctions during short-term treatment. Metformin is an effective adjuvant that attenuates antipsychotic-induced metabolic dysfunctions (AIMD) in clinical practice. Whether metformin can reverse AIMD and whether metformin affects the therapeutic effects of antipsychotics in animal models of schizophrenia are questions that still need to be investigated. METHODS In this study, an animal model of schizophrenia was established by consecutive injections of MK801 during the neurodevelopmental period. In adulthood, different dosages of olanzapine or risperidone treatment were administered to the schizophrenia model animals for 14 days. Both therapeutic effects and metabolic adverse effects were measured by behavioral tests, histopathological tests, and biochemical tests. The coadministration of different doses of metformin with olanzapine or risperidone was used to evaluate the effects of metformin on both AIMD and the therapeutic effect of those antipsychotics. RESULTS The MK801-treated rats showed schizophrenia-like behavior and variations in the shape and volume of the hippocampus. Both olanzapine and risperidone reversed the MK801-induced behavioral abnormalities as the dosage increased; however, they degenerated the hepatocytes in the liver and influenced the blood lipid levels and blood glucose levels. The coadministration of metformin did not affect the therapeutic effects of olanzapine or risperidone on behavioral abnormalities but attenuated the metabolic dysfunctions induced by those antipsychotics. CONCLUSION Metformin attenuated the olanzapine- and risperidone-induced metabolic dysfunctions in MK801-induced schizophrenia-like rats without reducing the therapeutic effects of the antipsychotics.
Collapse
Affiliation(s)
- Chao Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, China
- School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xu Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, China
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, China
| | - Hanxue Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, China
| | - Yong Liu
- Mental Health Institute of the Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, China
| | - Jingping Zhao
- Mental Health Institute of the Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, China.
| | - Xiangping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
12
|
Regulatory Roles of SREBF1 and SREBF2 in Lipid Metabolism and Deposition in Two Chinese Representative Fat-Tailed Sheep Breeds. Animals (Basel) 2020; 10:ani10081317. [PMID: 32751718 PMCID: PMC7460493 DOI: 10.3390/ani10081317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Sterol regulatory element binding proteins (SREBPs) play the crucial role in regulating the cholesterol and fatty acid metabolism. However, it is unclear whether SREBPs are involved in the regulation of lipid metabolism in fat-tailed sheep. This study reveals the expression profiles of SREBF1 and SREBF2 in liver and adipose tissues of two Chinese representative fat-tailed sheep breeds, and provides a new insight for the regulatory role of SREBP1 and SREBP2 in fat metabolism and deposition in fat-tailed sheep. Abstract Sterol regulatory element binding proteins (SREBPs) can regulate the lipid homeostasis by regulating its target genes, which are crucial for the cholesterol and fatty acid metabolism. However, the transcriptional regulation role of SREBPs in fat-tailed sheep is unclear. In this study, two Chinese representative breeds of total 80 fat-tailed sheep were employed, serum triglyceride, total cholesterol (TC), non-esterified fatty acid (NEFA), high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and mRNA expressions of SREBF1 and SREBF2 in seven different adipose tissues and liver were examined in sheep at the ages of 4, 6, 8, 10, and 12 months, respectively. The subcellular localization and function of SREBP1/2 were predicted through bioinformatics approaches. The results demonstrated that serum TC and NEFA levels among breeds were significantly different, and most serum indices were dynamically altered in an age-dependent manner. The mRNA expression profiling of SREBF1 and SREBF2 are breed-specific with temporal and spatial expressions differences. Further analysis shows that SREBF1/2 transcriptional levels and tail traits are closely related. All investigations simplify that SREBF1/2 play a crucial role in lipid metabolism and deposition during growth and development of the fat-tailed sheep, which also provides a novel insight for revealing the genetic mechanism of different tail type and meat quality.
Collapse
|
13
|
Yuan T, Wang S, Le J, Li Y. Effects of Atypical Antipsychotics on Neuroactive Vitamins in Patients With Schizophrenia. J Clin Pharmacol 2020; 60:1355-1361. [PMID: 32428979 DOI: 10.1002/jcph.1625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/26/2020] [Indexed: 01/20/2023]
Abstract
In schizophrenia, neuroactive vitamins A/D/E play vital neuroprotective roles in its pathophysiological processes. During medical treatment, atypical antipsychotics, including aripiprazole, amisulpride, olanzapine, and paliperidone, were widely used at present. However, their impact on vitamin metabolism in vivo remained unclear. In this study, we conducted a case-control research to investigate the impacts of antipsychotics on vitamin metabolism. Schizophrenic patients (n = 163), who were divided into 5 groups (aripiprazole group, amisulpride group, olanzapine group, paliperidone group, nonmedication group) according to their different medication patterns, and healthy controls (n = 75) were involved. The concentrations of vitamin A/D/E and antipsychotics were measured using liquid chromatography-tandem mass spectrometry methods. Compared with healthy controls, significantly lower vitamin D and E concentrations were found in the nonmedication group after covariance analysis adjusting for age, sex, albumin, bilirubin, triglyceride, and cholesterol. We found that aripiprazole could affect vitamin D concentrations in vivo, and a positive correlation between aripiprazole concentrations and vitamin D concentrations (r = 0.319, P = 0.025) was observed in aripiprazole group. Such result revealed the very first observation for the influence of atypical antipsychotics medication toward vitamin status in vivo. Our study showed that low concentrations of vitamin D and E in vivo could be associated with schizophrenia, suggesting that hypovitaminosis may lead to a vulnerability to schizophrenia. More importantly, aripiprazole may potentially benefit the patients through improving their vitamin D status in vivo.
Collapse
Affiliation(s)
- Tengfei Yuan
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaoting Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juan Le
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Li C, Peng X, Lv J, Zou H, Liu J, Zhang K, Li Z. SREBP1 as a potential biomarker predicts levothyroxine efficacy of differentiated thyroid cancer. Biomed Pharmacother 2019; 123:109791. [PMID: 31887541 DOI: 10.1016/j.biopha.2019.109791] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND SREBP1 is a well-known transcript factor regulating lipogenesis. It has been reported to play an important role in tumor progress in recent years. However, the roles of SREBP1 in differentiated thyroid cancer (DTC) are uncertain. Based on this, we aimed to investigate the expression of SREBP1 and the influence of SREBP1 on DTC patients. METHODS qRT-PCR and immunohistochemistry were used to detect the expression of SREBPs in DTC tissues and the adjacent normal tissues. The following methods, including the MTS, colony-forming assay, flow cytometry and Hoechst staining were used to detect the biological function of thyroid cancer cells based on SREBP1 interference or not. RESULTS the expression of SREBP1 was significantly different among DTCs, thyroid nodules and the adjacent normal tissues. Briefly, SREBP1 was upregulated follow with the malignancy, but there was no significant difference of SREBP2 between thyroid nodules and the adjacent normal tissues. Further, the ROC curve showed that SREBP1 has higher diagnostic value than SREBP2. SREBP1 expression was significantly related to the tumor size and lymph node metastasis in DTCs. In vitro, the proliferation of thyroid cancer cells was suppressed obviously after interfered with SREBP1, and the apoptotic cells was increased. Further, SREBP1 expression was also associated with the short-term efficacy of levothyroxine in DTC patients. CONCLUSION this is the first time to report that SREBP1 is an oncogene and a pro-proliferation factor in thyroid cancer, indicating that SREBP1 may serve as a potential biomarker and therapeutic target in thyroid cancer.
Collapse
Affiliation(s)
- Cuilin Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Department of Pharmacy, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412007, PR China
| | - Xiaowei Peng
- Department of Head and Neck Surgery and Oncology Plastic Surgery, The Affiliated Cancer Hospital of Xiangya Medical School, CSU, Changsha 410006, PR China
| | - Jing Lv
- Department of Thyroid Surgery, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou 450007, PR China
| | - Hecun Zou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China
| | - Jianqiu Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China
| | - Ke Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China
| | - Zhi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| |
Collapse
|
15
|
Tang M, Floyd S, Cai H, Zhang M, Yang R, Dang R. The status of ω-3 PUFAs influence chronic unpredicted mild stress-induced metabolic side effects in rats through INSIG/SREBP pathway. Food Funct 2019; 10:4649-4660. [PMID: 31292598 DOI: 10.1039/c9fo00076c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Metabolic disturbances, including lipid metabolism, bone metabolism, and glycometabolism, are common in depression. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), which are reported to possess antidepressant effect, have also been shown to regulate metabolism. To further clarify the potential link between ω-3 PUFAs and stress-induced metabolic disturbances, metabolic-related parameters including body weight, visceral fat, fatty acid composition and serum parameters, such as serum lipids, free fatty acid (FFA), glucose (GLU), calcium and phosphorus in rats were measured. Moreover, hepatic insulin induced gene (INSIG)/sterol regulatory element binding protein (SREBP) pathway was also investigated. After 5 weeks of chronic unpredicted mild stress (CUMS) administration, rats were induced to a depressive-like state and exhibited decreased serum high-density lipoprotein (HDL-c), body weight and visceral fat, accompanied by altered C18:2n6c and ω-3/ω-6 PUFAs. Supplement of ω-3 PUFAs showed robust antidepressant effects and has beneficial effects on lipid profile. On the contrary, ω-3 PUFAs deficiency induced the visceral fat accumulation and decreased the serum calcium and phosphorus in stressed rats. Additionally, CUMS significantly increased hepatic expressions of SREBP-cleavage activating protein (SCAP)/SREBP-1 and decreased the expression of INSIG-1. This disturbance of SREBPs system is aggravated by ω-3 PUFAs deficiency and alleviated by ω-3 PUFAs supplementation. This study discloses the novel findings that ω-3 PUFAs deficiency will exacerbate the metabolic disturbances in stressed rats. Furthermore, supplementation of ω-3 PUFAs on individuals with a high risk of depression might be an effective way to prevent metabolic disorders accompanied by depression with the involvement of INSIG/SREBP pathway.
Collapse
Affiliation(s)
- Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.
| | | | | | | | | | | |
Collapse
|
16
|
Zhu W, Heil DP. Associations of vitamin D status with markers of metabolic health: A community-based study in Shanghai, China. Diabetes Metab Syndr 2018; 12:727-732. [PMID: 29699952 DOI: 10.1016/j.dsx.2018.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/09/2018] [Indexed: 12/23/2022]
Abstract
AIMS This study investigated the associations of vitamin D status (i.e., serum 25(OH)D concentration) with markers of metabolic health and metabolic syndrome (MS), as well as possible gender differences in these associations, with metabolic syndrome (MS) for a sample from Shanghai, China. METHODS Demographic and anthropometric data, as well as 25-hydroxyvitamin D (serum 25(OH)D), blood glucose, and lipid concentrations were obtained for 508 urban residents aged 19-70 years. After grouping into tertiles according to their serum 25(OH)D concentrations, linear and logistic regressions were used to evaluate associations between serum 25(OH)D concentration and risk factors for MS across tertiles. RESULTS A 1 ng/mL increase in 25(OH)D was associated with a significant decrease in total cholesterol by 0.25 mmol/L [95% CI: (-0.44, -0.05); P = 0.014] for the third tertile, with reference to the first tertile. Also, 1 ng/mL increase in 25(OH)D was associated with a significant decrease in LDL by 0.18 mmol/L [95% CI: (-0.35, -0.02); P = 0.026] for the third tertile. In addition, participants in the third tertile had a 54% reduction in the OR for MS [95% CI: (-1.10,- 0.02), P = 0.041]. Lastly, while there was no gender difference in vitamin D deficiency status, the non-MS women had significantly higher 25(OH)D level than those with MS (30.1 ± 5.8 vs. 28.5 ± 5.9 ng/mL, P = 0.035), while no such difference was observed for men. CONCLUSIONS Higher serum 25(OH)D concentration was associated with a better metabolic profile and thus a lower risk for developing MS in urban Shanghai residents of China.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Health and Human Development, Montana State University, Bozeman, MT, 59717, USA; Department of Nutrition, Shanghai Institute of Health Sciences, Shanghai, 201318, China
| | - Daniel P Heil
- Department of Health and Human Development, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
17
|
Bruins J, Jörg F, van den Heuvel ER, Bartels-Velthuis AA, Corpeleijn E, Muskiet FAJ, Pijnenborg GHM, Bruggeman R. The relation of vitamin D, metabolic risk and negative symptom severity in people with psychotic disorders. Schizophr Res 2018; 195:513-518. [PMID: 28927862 DOI: 10.1016/j.schres.2017.08.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 11/28/2022]
Affiliation(s)
- J Bruins
- Lentis Mental Health Institution, Hereweg 80, 9725 AG Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, University Center for Psychiatry, Rob Giel Research Center, Hanzeplein 1 (CC72), 9713 GZ Groningen, The Netherlands.
| | - F Jörg
- University of Groningen, University Medical Center Groningen, University Center for Psychiatry, Rob Giel Research Center, Hanzeplein 1 (CC72), 9713 GZ Groningen, The Netherlands; GGZ Friesland Mental Health Institution, Sixmastraat 2, 8932 PA Leeuwarden, The Netherlands.
| | - E R van den Heuvel
- Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, MetaForum, 5600 MB Eindhoven, The Netherlands.
| | - A A Bartels-Velthuis
- Lentis Mental Health Institution, Hereweg 80, 9725 AG Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, University Center for Psychiatry, Rob Giel Research Center, Hanzeplein 1 (CC72), 9713 GZ Groningen, The Netherlands.
| | - E Corpeleijn
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Hanzeplein 1 (CC72), 9713 GZ Groningen, The Netherlands.
| | - F A J Muskiet
- University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Postbus 30.001 (EA40), 9700 RB Groningen, The Netherlands.
| | - G H M Pijnenborg
- University of Groningen, Faculty of Behavioural and Social Sciences, Department of Clinical Psychology & Experimental Psychopathology, Grote Kruisstraat 2/1, 9712 TS Groningen, The Netherlands; GGZ Drenthe Mental Health Institution, Dennenweg 9, 9404 LA Assen, The Netherlands.
| | - R Bruggeman
- University of Groningen, University Medical Center Groningen, University Center for Psychiatry, Rob Giel Research Center, Hanzeplein 1 (CC72), 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
18
|
Vitamin D Receptor Activation Influences NADPH Oxidase (NOX 2) Activity and Protects against Neurological Deficits and Apoptosis in a Rat Model of Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9245702. [PMID: 29410737 PMCID: PMC5749321 DOI: 10.1155/2017/9245702] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/18/2017] [Accepted: 07/30/2017] [Indexed: 12/29/2022]
Abstract
Traumatic brain injury (TBI) is a worldwide phenomenon which results in significant neurological and cognitive deficits in humans. Vitamin D (VD) is implicated as a therapeutic strategy for various neurological diseases now. Recently, inhibition of the NADPH oxidase (NOX2) was reported to protect against oxidative stress (ROS) production. However, whether alterations in NOX2 expression and NOX activity are associated with calcitriol (active metabolite of VD) treatment following TBI remains unclear. In the present study, rats were randomly assigned to the sham, TBI, and calcitriol-treated groups. Calcitriol was administered intraperitoneally (2 μg/kg) at 30 min, 24 h, and 48 h after TBI insult. We observed that calcitriol treatment alleviated neurobehavioral deficits and brain edema following TBI. At the molecular levels, administration of calcitriol activated the expression of VDR and downregulated NOX2 as well as suppressed apoptosis cell rate in the hippocampus CA1 region of TBI rats. In conclusion, our findings indicate that the protective effects of calcitriol may be related to the modulation of NADPH oxidase and thereby ultimately inhibited the progression of apoptosis. Calcitriol may be promising as a protective intervention following TBI, and more study is warranted for its clinical testing in the future.
Collapse
|
19
|
Liu Z, Cui C, Xu P, Dang R, Cai H, Liao D, Yang M, Feng Q, Yan X, Jiang P. Curcumin Activates AMPK Pathway and Regulates Lipid Metabolism in Rats Following Prolonged Clozapine Exposure. Front Neurosci 2017; 11:558. [PMID: 29046626 PMCID: PMC5632657 DOI: 10.3389/fnins.2017.00558] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/22/2017] [Indexed: 12/30/2022] Open
Abstract
Clozapine (CLO) remains an ultimate option for patients with treatment resistant schizophrenia. However, the atypical antipsychotic is often associated with serious metabolic side effects, such as dyslipidemia. Hepatic sterol regulatory element-binding proteins (SREBPs) are central in the allosteric control of a variety of lipid biosynthetic pathways. There is emerging evidence that CLO can activate SREBP pathway and enhance downstream lipogenesis, whereas curcumin (CUR), a major active compound of Curcuma longa, contains hypolipidemic properties. Therefore, in the present study, we examined the protective effects of CUR against CLO-induced lipid disturbance and analyzed the expression of key components in hepatic lipid metabolism. Our data showed that 4-week treatment of CLO (15 mg/kg/day) markedly elevated serum lipid levels and resulted in hepatic lipid accumulation, whereas co-treatment of CUR (80 mg/kg/day) alleviated the CLO-induced dyslipidemia. We further demonstrated that CUR appears to be a novel AMP-activated protein kinase (AMPK) agonist, which enhanced AMPK phosphorylation and mitigated CLO-induced SREBP overexpression. Additionally, CUR also modulated the downstream SREBP-targeted genes involved in fatty acid synthesis and cholesterol metabolism, including fatty acid synthase (FAS) and HMG-CoA reductase (HMGCR). In summary, our study suggests that the suppressed AMPK activity and thereby enhanced SREBP-dependent lipid synthesis could be associated with the antipsychotic-stimulated dyslipidemia, whereas CUR may maintain lipid homeostasis by directly binding to AMPK, indicating that adjunctive use of CUR could be a promising preventive strategy for the drug-induced lipogenesis.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining, China
| | - Changmeng Cui
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining, China
| | - Pengfei Xu
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Ruili Dang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Hualin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, Central South University, Changsha, China
| | - Mengqi Yang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Qingyan Feng
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Xin Yan
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pei Jiang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| |
Collapse
|
20
|
Chen CC, Hsu LW, Huang KT, Goto S, Chen CL, Nakano T. Overexpression of Insig-2 inhibits atypical antipsychotic-induced adipogenic differentiation and lipid biosynthesis in adipose-derived stem cells. Sci Rep 2017; 7:10901. [PMID: 28883496 PMCID: PMC5589828 DOI: 10.1038/s41598-017-11323-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/22/2017] [Indexed: 01/10/2023] Open
Abstract
Atypical antipsychotics (AAPs) are considered to possess superior efficacy for treating both the positive and negative symptoms of schizophrenia; however, AAP use often causes excessive weight gain and metabolic abnormalities. Recently, several reports have demonstrated that AAPs activate sterol regulatory element-binding protein (SREBP). SREBP, SREBP cleavage-activating protein (SCAP) and insulin-induced gene (Insig) regulate downstream cholesterol and fatty acid biosynthesis. In this study, we explored the effects of clozapine, olanzapine and risperidone on SREBP signaling and downstream lipid biosynthesis genes in the early events of adipogenic differentiation in adipose-derived stem cells (ASCs). After the induction of adipogenic differentiation for 2 days, all AAPs, notably clozapine treatment for 3 and 7 days, enhanced the expression of SREBP-1 and its downstream lipid biosynthesis genes without dexamethasone and insulin supplementation. Simultaneously, protein level of SREBP-1 was significantly enhanced via inhibition of Insig-2 expression. By contrast, SREBP-1 activation was suppressed when Insig-2 expression was upregulated by transfection with Insig-2 plasmid DNA. In summary, our results indicate that AAP treatment, notably clozapine treatment, induces early-stage lipid biosynthesis in ASCs. Such abnormal lipogenesis can be reversed when Insig-2 expression was increased, suggesting that Insig/SCAP/SREBP signaling may be a therapeutic target for AAP-induced weight gain and metabolic abnormalities.
Collapse
Affiliation(s)
- Chien-Chih Chen
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Li-Wen Hsu
- Liver Transplantation Center and Department of Surgery, Division of Transplant Immunology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Kuang-Tzu Huang
- Liver Transplantation Center and Department of Surgery, Division of Transplant Immunology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Shigeru Goto
- Liver Transplantation Center and Department of Surgery, Division of Transplant Immunology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Chao-Long Chen
- Liver Transplantation Center and Department of Surgery, Division of Transplant Immunology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Toshiaki Nakano
- Liver Transplantation Center and Department of Surgery, Division of Transplant Immunology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan. .,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan.
| |
Collapse
|
21
|
Time-dependent changes and potential mechanisms of glucose-lipid metabolic disorders associated with chronic clozapine or olanzapine treatment in rats. Sci Rep 2017; 7:2762. [PMID: 28584269 PMCID: PMC5459828 DOI: 10.1038/s41598-017-02884-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/19/2017] [Indexed: 11/16/2022] Open
Abstract
Chronic treatment with second-generation antipsychotic drugs (SGAs) has been associated with an increased risk of metabolic syndrome. To evaluate the longitudinal changes in glucose-lipid homeostasis after SGA use, we studied the time-dependent effects of olanzapine (OLZ) (3 mg/kg, b.i.d.) or clozapine (CLZ) (20 mg/kg, b.i.d.) treatment on metabolic profiles for 9 weeks in rats. Although only OLZ significantly increased body weight in rats, both OLZ and CLZ elevated blood lipid levels. Chronic OLZ treatment induced significant weight gain leading to a higher fasting insulin level and impaired glucose tolerance, whereas CLZ lowered fasting insulin levels and impaired glucose tolerance independent of weight gain. Treatment with both drugs deranged AKT/GSK phosphorylation and up-regulated muscarinic M3 receptors in the rats’ livers. Consistent with an elevation in lipid levels, both OLZ and CLZ significantly increased the protein levels of nuclear sterol regulatory element-binding proteins (SREBPs) in the liver, which was associated with improvement in hepatic histamine H1R. However, enhanced carbohydrate response element binding protein (ChREBP) signalling was observed in only CLZ-treated rats. These results suggest that SGA-induced glucose-lipid metabolic disturbances could be independent of weight gain, possibly through activation of SREBP/ChREBP in the liver.
Collapse
|
22
|
Akinlade KS, Olaniyan OA, Lasebikan VO, Rahamon SK. Vitamin D Levels in Different Severity Groups of Schizophrenia. Front Psychiatry 2017; 8:105. [PMID: 28659835 PMCID: PMC5468446 DOI: 10.3389/fpsyt.2017.00105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/30/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Vitamin D deficiency (VDD) continues to be associated with schizophrenia, but there is the dearth of information on the relationship between the severity of schizophrenia and plasma levels of vitamin D. This study, therefore, determined the plasma levels of vitamin D in different severity groups of schizophrenia. MATERIALS AND METHODS Plasma level of vitamin D was determined in 60 patients with schizophrenia and 30 apparently healthy individuals who served as controls. Patients with schizophrenia were classified into mildly ill, moderately ill, markedly ill, and severely ill groups using the Positive and Negative Syndrome Scale (PANSS). RESULTS The mean level of vitamin D was significantly lower in patients with schizophrenia compared with the controls. Similarly, there was a significant association between VDD and schizophrenia. The mean plasma levels of vitamin D were not significantly different when the mildly, moderately, markedly, and severely ill groups were compared with one another and there was no significant correlation between vitamin D level and PANSS scores. Furthermore, patients on atypical antipsychotics had an insignificantly lower level of vitamin D compared with the patients on typical antipsychotics. CONCLUSION It could be concluded from this study that patients with schizophrenia have low plasma vitamin D level which does not appear to be associated with the severity of schizophrenia and type of antipsychotics. Therefore, regular screening for vitamin D status of patients with schizophrenia is suggested in order to allow for the institution of appropriate clinical intervention when necessary.
Collapse
Affiliation(s)
- Kehinde Sola Akinlade
- Metabolic Research Unit, Department of Chemical Pathology, University College Hospital and University of Ibadan, Ibadan, Nigeria
| | | | | | | |
Collapse
|
23
|
Li Y, Su R, Xu S, Huang Q, Xu H. Artesunate prevents rats from the clozapine-induced hepatic steatosis and elevation in plasma triglycerides. Neuropsychiatr Dis Treat 2017; 13:2477-2487. [PMID: 29026311 PMCID: PMC5627760 DOI: 10.2147/ndt.s145069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Clozapine is an atypical antipsychotic with therapeutic efficacy in treatment-resistant schizophrenia patients and low incidence of extrapyramidal side effects. However, the use of clozapine has been limited by its adverse effects on metabolism. Artesunate is a semisynthetic derivative of artemisinin and was shown to decrease the plasma cholesterol and triglyceride in rabbits and rats in recent studies. The aim of this study was to examine possible effects of artesunate on the clozapine-induced metabolic alterations in rats given saline, clozapine, artesunate, or clozapine plus artesunate for 6 weeks. The clozapine group showed significantly high plasma levels of triglyceride, hepatic steatosis, and fibrosis along with high levels of C-reactive protein, alanine aminotransferase, and aspartate aminotransferase compared to the saline group. But the treatment had no effect on weight gain and caused no hyperglycemia, hyperinsulinemia, and behavioral changes in the rats. More significantly, these clozapine-induced changes were not seen in rats coadministered with clozapine plus artesunate. These results added evidence supporting psychiatrists to try add-on treatment of artesunate in schizophrenia patients to ameliorate clozapine-induced adverse metabolic effects.
Collapse
Affiliation(s)
- Yanmei Li
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
- Department of Anatomy, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
| | - Ruibing Su
- Department of Forensics and Pathology, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
| | - Shuqin Xu
- Department of Anatomy, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
| | - Qingjun Huang
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
| | - Haiyun Xu
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
- Department of Anatomy, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
- Correspondence: Haiyun Xu, The Mental Health Center, Shantou University Medical College, 515041 Shantou, Guangdong Province, People’s Republic of China, Email
| |
Collapse
|
24
|
Nagashima T, Shirakawa H, Nakagawa T, Kaneko S. Prevention of antipsychotic-induced hyperglycaemia by vitamin D: a data mining prediction followed by experimental exploration of the molecular mechanism. Sci Rep 2016; 6:26375. [PMID: 27199286 PMCID: PMC4873813 DOI: 10.1038/srep26375] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/29/2016] [Indexed: 01/24/2023] Open
Abstract
Atypical antipsychotics are associated with an increased risk of hyperglycaemia, thus limiting their clinical use. This study focused on finding the molecular mechanism underlying antipsychotic-induced hyperglycaemia. First, we searched for drug combinations in the FDA Adverse Event Reporting System (FAERS) database wherein a coexisting drug reduced the hyperglycaemia risk of atypical antipsychotics, and found that a combination with vitamin D analogues significantly decreased the occurrence of quetiapine-induced adverse events relating diabetes mellitus in FAERS. Experimental validation using mice revealed that quetiapine acutely caused insulin resistance, which was mitigated by dietary supplementation with cholecalciferol. Further database analysis of the relevant signalling pathway and gene expression predicted quetiapine-induced downregulation of Pik3r1, a critical gene acting downstream of insulin receptor. Focusing on the phosphatidylinositol 3-kinase (PI3K) signalling pathway, we found that the reduced expression of Pik3r1 mRNA was reversed by cholecalciferol supplementation in skeletal muscle, and that insulin-stimulated glucose uptake into C2C12 myotube was inhibited in the presence of quetiapine, which was reversed by concomitant calcitriol in a PI3K-dependent manner. Taken together, these results suggest that vitamin D coadministration prevents antipsychotic-induced hyperglycaemia and insulin resistance by upregulation of PI3K function.
Collapse
Affiliation(s)
- Takuya Nagashima
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
25
|
Li S, He Y, Lin S, Hao L, Ye Y, Lv L, Sun Z, Fan H, Shi Z, Li J, Feng R, Na L, Wang Y, Li Y, Sun C. Increase of circulating cholesterol in vitamin D deficiency is linked to reduced vitamin D receptor activity via the Insig-2/SREBP-2 pathway. Mol Nutr Food Res 2016; 60:798-809. [DOI: 10.1002/mnfr.201500425] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 12/04/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Songtao Li
- Department of Nutrition and Food Hygiene, Public Health College; Harbin Medical University; Harbin China
| | - Yujie He
- Department of Nutrition and Food Hygiene, Public Health College; Harbin Medical University; Harbin China
| | - Song Lin
- Department of Nutrition and Food Hygiene, Public Health College; Harbin Medical University; Harbin China
| | - Liuyi Hao
- Department of Nutrition and Food Hygiene, Public Health College; Harbin Medical University; Harbin China
| | - Yaxin Ye
- Department of Nutrition and Food Hygiene, Public Health College; Harbin Medical University; Harbin China
| | - Lin Lv
- Department of Nutrition and Food Hygiene, Public Health College; Harbin Medical University; Harbin China
| | - Zongxiang Sun
- Department of Nutrition and Food Hygiene, Public Health College; Harbin Medical University; Harbin China
| | - Huiru Fan
- Department of Nutrition and Food Hygiene, Public Health College; Harbin Medical University; Harbin China
| | - Zhiping Shi
- Department of Nutrition and Food Hygiene, Public Health College; Harbin Medical University; Harbin China
| | - Jie Li
- Department of Nutrition and Food Hygiene, Public Health College; Harbin Medical University; Harbin China
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, Public Health College; Harbin Medical University; Harbin China
| | - Lixin Na
- Department of Nutrition and Food Hygiene, Public Health College; Harbin Medical University; Harbin China
| | - Yanwen Wang
- Institute for Nutrisciences and Health; National Research Council Canada; Charlottetown PE Canada
| | - Ying Li
- Department of Nutrition and Food Hygiene, Public Health College; Harbin Medical University; Harbin China
- Research Institute of Food, Nutrition and Health, Sino-Russian Medical Research Center; Harbin Medical University; Harbin China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, Public Health College; Harbin Medical University; Harbin China
- Research Institute of Food, Nutrition and Health, Sino-Russian Medical Research Center; Harbin Medical University; Harbin China
| |
Collapse
|
26
|
Mandell E, Seedorf GJ, Ryan S, Gien J, Cramer SD, Abman SH. Antenatal endotoxin disrupts lung vitamin D receptor and 25-hydroxyvitamin D 1α-hydroxylase expression in the developing rat. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1018-26. [PMID: 26342089 DOI: 10.1152/ajplung.00253.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/28/2015] [Indexed: 12/27/2022] Open
Abstract
Vitamin D [vit D; 1,25-(OH)2D] treatment improves survival and lung alveolar and vascular growth in an experimental model of bronchopulmonary dysplasia (BPD) after antenatal exposure to endotoxin (ETX). However, little is known about lung-specific 1,25-(OH)2D3 regulation during development, especially regarding maturational changes in lung-specific expression of the vitamin D receptor (VDR), 1α-hydroxylase (1α-OHase), and CYP24A1 during late gestation and the effects of antenatal ETX exposure on 1,25-(OH)2D3 metabolism in the lung. We hypothesized that vit D regulatory proteins undergo maturation regulation in the late fetal and early neonatal lung and that prenatal exposure to ETX impairs lung growth partly through abnormal endogenous vit D metabolism. Normal fetal rat lungs were harvested between embryonic day 15 and postnatal day 14. Lung homogenates were assayed for VDR, 1α-OHase, and CYP24A1 protein contents by Western blot analysis. Fetal rats were injected on embryonic day 20 with intra-amniotic ETX, ETX + 1,25-(OH)2D3, or saline and delivered 2 days later. Pulmonary artery endothelial cells (PAECs) from fetal sheep were assessed for VDR, 1α-OHase, and CYP24A1 expression after treatment with 25-(OH)D3, 1,25-(OH)2D3, ETX, ETX + 25-(OH)D3, or ETX + 1,25-(OH)2D3. We found that lung VDR, 1α-OHase, and CYP2741 protein expression dramatically increase immediately before birth (P < 0.01 vs. early fetal values). Antenatal ETX increases CYP24A1 expression (P < 0.05) and decreases VDR and 1α-OHase expression at birth (P < 0.001), but these changes are prevented with concurrent vit D treatment (P < 0.001). ETX-induced reduction of fetal PAEC growth and tube formation and lung 1α-OHase expression are prevented by vit D treatment (P < 0.001). We conclude that lung VDR, 1α-OHase, and CYP24A1 protein content markedly increase before birth and that antenatal ETX disrupts lung vit D metabolism through downregulation of VDR and increased vit D catabolic enzyme expression, including changes in developing endothelium. We speculate that endogenous vitamin D metabolism modulates normal fetal lung development and that prenatal disruption of vit D signaling may contribute to impaired postnatal lung growth at least partly through altered angiogenic signaling.
Collapse
Affiliation(s)
- Erica Mandell
- Pediatric Heart Lung Center, University of Colorado Denver School of Medicine, Aurora, Colorado; Section of Neonatology, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado;
| | - Gregory J Seedorf
- Pediatric Heart Lung Center, University of Colorado Denver School of Medicine, Aurora, Colorado; Section of Pulmonary Medicine, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado; and
| | - Sharon Ryan
- Pediatric Heart Lung Center, University of Colorado Denver School of Medicine, Aurora, Colorado; Section of Neonatology, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Jason Gien
- Pediatric Heart Lung Center, University of Colorado Denver School of Medicine, Aurora, Colorado; Section of Neonatology, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Scott D Cramer
- Department of Parmacology, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Steven H Abman
- Pediatric Heart Lung Center, University of Colorado Denver School of Medicine, Aurora, Colorado; Section of Pulmonary Medicine, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado; and
| |
Collapse
|