1
|
Gunjača I, Babić Leko M, Pleić N, Jurić A, Brdar D, Torlak V, Vuletić M, Punda A, Polašek O, Hayward C, Zemunik T. Impact of dietary, lifestyle and sociodemographic factors on calcitonin levels in a healthy population. Bone 2024; 187:117214. [PMID: 39068960 DOI: 10.1016/j.bone.2024.117214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Calcitonin (CT), a hormone secreted by thyroid parafollicular C cells, plays a role in calcium homeostasis and bone health. Understanding the relationship between CT levels and dietary, sociodemographic, and lifestyle factors is essential for public health and hormonal balance studies. This study encompassed 3323 healthy participants from the Croatian biobank. We utilized principal component analysis (PCA) to reduce food items into dietary patterns. Regression analysis was used to investigate the relationship between CT levels and data collected through questionnaires, accounting for age and sex. CT levels exhibited sex-specific differences, with higher values observed in males. Positive associations were found between CT levels and age, body mass index (BMI), as well as weekly consumption of white and red wine mixed with water. While height and sternal notch-finger length initially correlated positively with CT levels, this relationship reversed upon adjusting for age and sex. Regarding sport activities, CT levels were significantly increased in non-participants compared to occasional sport participants (p = 0.043). Dietary factors yielded intriguing findings, with frequent consumption of butter, animal fat and veal associated with lower CT levels, while higher CT levels were associated with the frequent consumption of white fish, blue fish, pasta, and rice. However, no significant correlation was found between CT levels and bone mineral density (BMD), weight, or body surface area (BSA). This study highlights the complex interplay of dietary, lifestyle, and sociodemographic factors influencing CT levels. These findings suggest that a broad range of factors should be considered in hormonal balance studies, underlining their potential implications for public health.
Collapse
Affiliation(s)
- Ivana Gunjača
- Department of Biology and Human Genetics, University of Split, School of Medicine, Šoltanska 2a, 21 000 Split, Croatia.
| | - Mirjana Babić Leko
- Department of Biology and Human Genetics, University of Split, School of Medicine, Šoltanska 2a, 21 000 Split, Croatia.
| | - Nikolina Pleić
- Department of Biology and Human Genetics, University of Split, School of Medicine, Šoltanska 2a, 21 000 Split, Croatia.
| | - Ante Jurić
- Department of Biology and Human Genetics, University of Split, School of Medicine, Šoltanska 2a, 21 000 Split, Croatia.
| | - Dubravka Brdar
- Department of Nuclear Medicine, University Hospital Split, Spinčićeva 1, 21 000 Split, Croatia.
| | - Vesela Torlak
- Department of Nuclear Medicine, University Hospital Split, Spinčićeva 1, 21 000 Split, Croatia.
| | - Marko Vuletić
- Department of Nuclear Medicine, University Hospital Split, Spinčićeva 1, 21 000 Split, Croatia.
| | - Ante Punda
- Department of Nuclear Medicine, University Hospital Split, Spinčićeva 1, 21 000 Split, Croatia.
| | - Ozren Polašek
- Department of Public Health, University of Split, School of Medicine Split, Šoltanska 2a, 21 000 Split, Croatia.
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK.
| | - Tatijana Zemunik
- Department of Biology and Human Genetics, University of Split, School of Medicine, Šoltanska 2a, 21 000 Split, Croatia.
| |
Collapse
|
2
|
Pinto KP, Fidalgo TKDS, de Lima CO, Lopes RT, Freitas-Fernandes LB, Valente AP, Sassone LM, Silva EJNL. Chronic alcohol and nicotine consumption as catalyst for systemic inflammatory storm and bone destruction in apical periodontitis. Int Endod J 2024; 57:178-194. [PMID: 37966374 DOI: 10.1111/iej.13994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/04/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
AIM To assess the periapical alveolar bone pattern and the serum levels of proinflammatory cytokines, biochemical markers and metabolites in rats subjected to chronic alcohol and nicotine consumption and induced apical periodontitis. METHODOLOGY Twenty-eight male Wistar rats were divided into four groups: Control, Alcohol, Nicotine and Alcohol+Nicotine. The alcohol groups were exposed to self-administration of a 25% alcohol solution, while the other groups were given only filtered water. The nicotine groups received daily intraperitoneal injections of a nicotine solution (0.19 μL of nicotine/mL), whereas the other groups received saline solution. Periapical lesions were induced by exposing the pulps of the left mandibular first molars for 28 days. After euthanasia, the mandibles were removed and the percentage bone volume, bone mineral density, trabecular thickness, trabecular separation and trabecular number of the periapical bone were measured using micro-computed tomography images. Serum samples were collected for analysis of proinflammatory cytokines (IL-1β, IL-4, IL-6 and TNF-α), biochemical and metabolomic analysis. Statistical analysis was performed with a significance level of 5%. Nonparametric data were analysed using the Kruskal-Wallis test followed by Dunn's test, while one-way anova followed by Tukey's test was performed for parametric data. RESULTS The groups exposed to alcohol or nicotine consumption exhibited an altered bone pattern indicating lower bone density and higher levels of IL-1β, IL-6 and TNF-α compared to the Control group (p < .05). Significant differences were observed among the groups in the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase, cholesterol, triglycerides, urea, creatinine, albumin, uric acid, bilirubin and calcium. Metabolomic analysis revealed significant differences in glycine, phosphocholine, lysine, lactate, valine, pyruvate and lipids (CH2 CH2 CO), n(CH2 ) and n(CH3 ). Most of these parameters were even more altered in the simultaneous consumption of both substances compared to single consumption. CONCLUSION Alcohol and nicotine chronic consumption altered several metabolic markers, impaired liver and kidney function, increased the production of systemic proinflammatory mediators and harmed the periapical bone microarchitecture in the presence of apical periodontitis. The simultaneous consumption of alcohol and nicotine intensified these detrimental effects.
Collapse
Affiliation(s)
- Karem Paula Pinto
- Department of Integrated Clinical Procedures, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Tatiana Kelly da Silva Fidalgo
- Department of Community and Preventive Dentistry, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | | | - Ricardo Tadeu Lopes
- Nuclear Engineering Program, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Liana Bastos Freitas-Fernandes
- National Center for Nuclear Magnetic Resonance, Medical Biochemistry, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Ana Paula Valente
- National Center for Nuclear Magnetic Resonance, Medical Biochemistry, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Luciana Moura Sassone
- Department of Integrated Clinical Procedures, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Emmanuel João Nogueira Leal Silva
- Department of Integrated Clinical Procedures, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
- Departament of Endodontics, Grande Rio University (UNIGRANRIO), Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Ademar K, Loftén A, Nilsson M, Domi A, Adermark L, Söderpalm B, Ericson M. Acamprosate reduces ethanol intake in the rat by a combined action of different drug components. Sci Rep 2023; 13:17863. [PMID: 37857829 PMCID: PMC10587117 DOI: 10.1038/s41598-023-45167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/17/2023] [Indexed: 10/21/2023] Open
Abstract
Alcohol misuse accounts for a sizeable proportion of the global burden of disease, and Campral® (acamprosate; calcium-bis-(N-acetylhomotaurinate)) is widely used as relapse prevention therapy. The mechanism underlying its effect has in some studies been attributed to the calcium moiety and not to the N-acetylhomotaurine part of the compound. We recently suggested that the dopamine elevating effect of acamprosate is mediated both by N-acetylhomotaurine and calcium in a glycine receptor dependent manner. Here we aimed to explore, by means of in vivo microdialysis, if our previous study using local administration was functionally relevant and if systemic administration of the sodium salt of N-acetylhomotaurine (sodium acamprosate; 200 mg/kg, i.p.) enhanced the effects of calcium chloride (CaCl2; 73.5 mg/kg, i.p.) on nucleus accumbens (nAc) dopamine and/or taurine levels in male Wistar rats. In addition, we investigated the impact of regular acamprosate and the combination of CaCl2 and N-acetylhomotaurine on the alcohol deprivation effect (ADE). Finally, we assessed if N-acetylhomotaurine potentiates the ethanol-intake reducing effect of CaCl2 in a two-bottle choice voluntary ethanol consumption model followed by an ADE paradigm. Systemic administration of regular acamprosate, sodium acamprosate and CaCl2 all trended to increase nAc dopamine whereas the combination of CaCl2 and sodium acamprosate produced a significant increase. Sodium acamprosate elevated extracellular taurine levels without additional effects of CaCl2. Ethanol intake was significantly reduced by systemic administration of CaCl2 without additional effects of the combination of CaCl2 and sodium acamprosate. Both acamprosate and CaCl2 combined with sodium acamprosate blocked the ADE following acute treatment. The data presented suggest that CaCl2 and N-acetylhomotaurine act in concert on a neurochemical level, but calcium appears to have the predominant effect on ethanol intake.
Collapse
Affiliation(s)
- Karin Ademar
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden.
| | - Anna Loftén
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mathilda Nilsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
| | - Ana Domi
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden
| |
Collapse
|
4
|
Banjac Baljak V, Mihajlovic G, Zivlak-Radulovic N, Nezic L, Miskovic M, Banjac V. Association between Vitamin D and Cognitive Deficiency in Alcohol Dependence. Healthcare (Basel) 2022; 10:healthcare10091772. [PMID: 36141384 PMCID: PMC9498855 DOI: 10.3390/healthcare10091772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
There are still not enough findings to elucidate how exactly alcohol use impairs cognitive abilities. Some studies have shown that there is a link between alcohol intake and vitamin D levels, but these findings are inconsistent so further research is needed. The aim of this study was to investigate the association between serum vitamin D levels and cognitive impairment in alcohol-dependent individuals. A case-control study was carried out including a total of N = 132 respondents with a medical history of alcoholism, and healthy volunteers. The Montreal Cognitive Assessment (MoCa) and Addenbrooke’s Cognitive Examination-Revised (ACE-R) screening tools were used for cognitive status assessment and serum vitamin D levels analysis (blood samples of respondents). Significant difference (p = 0.022), was found in vitamin D levels in the alcohol-dependent group with cognitive deficiency 13.7 ± 9.4 (ng/mL), alcohol-dependent group without cognitive deficiency 19.5 ± 11.2 (ng/mL) and healthy controls 19.9 ± 11.1 (ng/mL), respectively. Furthermore, vitamin D levels were significantly different across all groups based on MoCa (p = 0.016) and ACE-R (p = 0.004) scores. All three groups exhibited vitamin D deficiency. A significant correlation was found between vitamin D deficiency and cognitive impairment, but it yielded no significant difference in alcohol-dependent individuals.
Collapse
Affiliation(s)
- Visnja Banjac Baljak
- Clinic of Psychiatry, University Clinical Center of the Republic of Srpska, 78 000 Banjaluka, Bosnia and Herzegovina
- Correspondence: ; Tel.: +387-65-462-496
| | - Goran Mihajlovic
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, 34 000 Kragujevac, Serbia
| | - Nera Zivlak-Radulovic
- Clinic of Psychiatry, University Clinical Center of the Republic of Srpska, 78 000 Banjaluka, Bosnia and Herzegovina
| | - Lana Nezic
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, 78 000 Banja Luka, Bosnia and Herzegovina
| | - Mirjana Miskovic
- Clinic of Psychiatry, University Clinical Center of the Republic of Srpska, 78 000 Banjaluka, Bosnia and Herzegovina
| | - Vesna Banjac
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, 78 000 Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
5
|
Melugin PR, Wu F, Munoz C, Phensy A, Pradhan G, Luo Y, Nofal A, Manepalli R, Kroener S. The effects of acamprosate on prefrontal cortical function are mimicked by CaCl2 and they are influenced by the history of alcohol exposure. Neuropharmacology 2022; 212:109062. [PMID: 35430241 PMCID: PMC10804777 DOI: 10.1016/j.neuropharm.2022.109062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Abstract
Alcohol use disorder is associated with functional changes in the medial prefrontal cortex (mPFC), which include altered glutamatergic transmission and deficits in executive functions that contribute to relapse. Acamprosate (calcium-bis N-acetylhomotaurinate) reduces alcohol craving and relapse, effects that are thought to be mediated by acamprosate's ability to ameliorate alcohol-induced dysregulation of glutamatergic signaling. Treatment with acamprosate and its active moiety calcium (CaCl2) both improve deficits in cognitive flexibility in postdependent mice following chronic intermittent ethanol (CIE) exposure. Here, we show that mice that self-administered alcohol under goal-directed conditions (i.e., operant responding on a fixed-ratio schedule) also display similar deficits in cognitive flexibility and altered glutamatergic signaling in the mPFC, both of which were improved with acamprosate or CaCl2. However, under conditions shown to bias behavior towards habitual responding (operant self-administration after CIE exposure, or on a variable interval schedule), alcohol-induced changes to glutamatergic transmission were unaffected by either acamprosate or CaCl2 treatment. Together, these findings suggest that the variable effects of acamprosate on synaptic signaling may reflect a shift in mPFC networks related to the loss of behavioral control in habitual alcohol-seeking.
Collapse
Affiliation(s)
- Patrick R Melugin
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, TX, USA
| | - Fei Wu
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, TX, USA; Institute of Neurobiology, Jining Medical University, Jining, China
| | - Crystal Munoz
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, TX, USA
| | - Aarron Phensy
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, TX, USA
| | - Grishma Pradhan
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, TX, USA
| | - Yi Luo
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, TX, USA
| | - Abraham Nofal
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, TX, USA
| | - Rohan Manepalli
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, TX, USA
| | - Sven Kroener
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, TX, USA.
| |
Collapse
|
6
|
Asada T, Iwata M, Matsuzaki S, Hamakawa H, Sengan S, Noguchi T, Daimon K, Matsumura N, Shibasaki M, Tsujimoto T, Ooi K, Fukuyama H. Hypercalcemia and hyperphosphatemia associated with 25-OH vitamin D deficiency in an alcoholic patient with normal renal function. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY CASE REPORTS 2022. [DOI: 10.1016/j.jecr.2022.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
7
|
Bach P, Schuster R, Koopmann A, Vollstaedt-Klein S, Spanagel R, Kiefer F. Plasma calcium concentration during detoxification predicts neural cue-reactivity and craving during early abstinence in alcohol-dependent patients. Eur Arch Psychiatry Clin Neurosci 2022; 272:341-348. [PMID: 33630132 PMCID: PMC8866328 DOI: 10.1007/s00406-021-01240-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/12/2021] [Indexed: 11/26/2022]
Abstract
Recent studies on the pathophysiology of alcohol dependence suggest a link between peripheral calcium concentrations and alcohol craving. Here, we investigated the association between plasma calcium concentration, cue-induced brain activation, and alcohol craving. Plasma calcium concentrations were measured at the onset of inpatient detoxification in a sample of N = 115 alcohol-dependent patients. Alcohol cue-reactivity was assessed during early abstinence (mean 11.1 days) using a functional magnetic resonance imaging (fMRI) alcohol cue-reactivity task. Multiple regression analyses and bivariate correlations between plasma calcium concentrations, clinical craving measures and neural alcohol cue-reactivity (CR) were tested. Results show a significant negative correlation between plasma calcium concentrations and compulsive alcohol craving. Higher calcium levels predicted higher alcohol cue-induced brain response in a cluster of frontal brain areas, including the dorsolateral prefrontal cortex (dlPFC), the anterior prefrontal cortex (alPFC), and the inferior (IFG) and middle frontal gyri (MFG). In addition, functional brain activation in those areas correlated negatively with craving for alcohol during fMRI. Higher peripheral calcium concentrations during withdrawal predicted increased alcohol cue-induced brain activation in frontal brain areas, which are associated with craving inhibition and cognitive control functions. This might indicate that higher plasma calcium concentrations at onset of detoxification could modulate craving inhibition during early abstinence.Trial registration number: DRKS00003388; date of registration: 14.12.2011.
Collapse
Affiliation(s)
- Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Heidelberg University, Central Institute of Mental Health, Square J5, 68159, Mannheim, Germany
- Feuerlein Center on Translational Addiction Medicine, Heidelberg University, Heidelberg, Germany
| | - Rilana Schuster
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Heidelberg University, Central Institute of Mental Health, Square J5, 68159, Mannheim, Germany.
- Feuerlein Center on Translational Addiction Medicine, Heidelberg University, Heidelberg, Germany.
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstraße 200 a, 69118, Heidelberg, Germany.
| | - Anne Koopmann
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Heidelberg University, Central Institute of Mental Health, Square J5, 68159, Mannheim, Germany
- Feuerlein Center on Translational Addiction Medicine, Heidelberg University, Heidelberg, Germany
| | - Sabine Vollstaedt-Klein
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Heidelberg University, Central Institute of Mental Health, Square J5, 68159, Mannheim, Germany
- Feuerlein Center on Translational Addiction Medicine, Heidelberg University, Heidelberg, Germany
| | - Rainer Spanagel
- Medical Faculty Mannheim, Heidelberg University, Institute of Psychopharmacology, Central Institute of Mental Health, Heidelberg, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Heidelberg University, Central Institute of Mental Health, Square J5, 68159, Mannheim, Germany
- Feuerlein Center on Translational Addiction Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
8
|
Environmental Factors That Affect Parathyroid Hormone and Calcitonin Levels. Int J Mol Sci 2021; 23:ijms23010044. [PMID: 35008468 PMCID: PMC8744774 DOI: 10.3390/ijms23010044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/23/2022] Open
Abstract
Calciotropic hormones, parathyroid hormone (PTH) and calcitonin are involved in the regulation of bone mineral metabolism and maintenance of calcium and phosphate homeostasis in the body. Therefore, an understanding of environmental and genetic factors influencing PTH and calcitonin levels is crucial. Genetic factors are estimated to account for 60% of variations in PTH levels, while the genetic background of interindividual calcitonin variations has not yet been studied. In this review, we analyzed the literature discussing the influence of environmental factors (lifestyle factors and pollutants) on PTH and calcitonin levels. Among lifestyle factors, smoking, body mass index (BMI), diet, alcohol, and exercise were analyzed; among pollutants, heavy metals and chemicals were analyzed. Lifestyle factors that showed the clearest association with PTH levels were smoking, BMI, exercise, and micronutrients taken from the diet (vitamin D and calcium). Smoking, vitamin D, and calcium intake led to a decrease in PTH levels, while higher BMI and exercise led to an increase in PTH levels. In terms of pollutants, exposure to cadmium led to a decrease in PTH levels, while exposure to lead increased PTH levels. Several studies have investigated the effect of chemicals on PTH levels in humans. Compared to PTH studies, a smaller number of studies analyzed the influence of environmental factors on calcitonin levels, which gives great variability in results. Only a few studies have analyzed the influence of pollutants on calcitonin levels in humans. The lifestyle factor with the clearest relationship with calcitonin was smoking (smokers had increased calcitonin levels). Given the importance of PTH and calcitonin in maintaining calcium and phosphate homeostasis and bone mineral metabolism, additional studies on the influence of environmental factors that could affect PTH and calcitonin levels are crucial.
Collapse
|
9
|
Dey A, Khanra S, Kshitiz KK. Serum calcium, parathormone, calcitonin, vitamin D and their relationships with craving during early abstinence in alcohol use disorder: A hospital based prospective study. Asian J Psychiatr 2021; 66:102898. [PMID: 34740124 DOI: 10.1016/j.ajp.2021.102898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Aheli Dey
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi 834006, India.
| | - Sourav Khanra
- Centre for Addiction Psychiatry, Central Institute of Psychiatry, Ranchi 834006, India.
| | - K K Kshitiz
- Department of Biochemistry, Central Institute of Psychiatry, Ranchi 834006, India.
| |
Collapse
|
10
|
Schuster R, Winkler M, Koopmann A, Bach P, Hoffmann S, Reinhard I, Spanagel R, Bumb JM, Sommer WH, Kiefer F. Calcium Carbonate Attenuates Withdrawal and Reduces Craving: A Randomized Controlled Trial in Alcohol-Dependent Patients. Eur Addict Res 2021; 27:332-340. [PMID: 33567423 DOI: 10.1159/000512763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 11/02/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Preclinical studies have shown that calcium seems to be the active component of the anti-craving drug acamprosate (Ca2+ bis-acetyl-homotaurinate). Clinical effects in humans have also indicated an association between increased calcium plasma concentration due to acamprosate treatment and better outcome relating to time to relapse and cumulative abstinence. In contrast, low calcium concentration in alcohol-dependent patients was related with craving for alcohol. The main goal of the trial was to investigate whether an oral calcium administration is able to affect craving, withdrawal, and relapse risk in alcohol-dependent patients. METHODS We conducted a single-blind, randomized, monocentric, controlled clinical two-arm trial in alcohol-dependent patients (Clinical Trials Registration: DRKS00011293). A total of 55 alcohol-dependent subjects received calcium carbonate (800 mg + 5 μg vitamin D) versus sodium bicarbonate (1,000 mg) daily during the 14 days of inpatient alcohol-withdrawal treatment. RESULTS Based on an intention-to-treat protocol, withdrawal intensity (assessed with CIWA-Ar) in the calcium carbonate group attenuated faster than in the sodium bicarbonate subgroup. Alcohol craving (assessed with OCDS) in the calcium carbonate subgroup was also significantly reduced versus the sodium bicarbonate subgroup. CONCLUSION Our data support earlier findings and show that treatment with calcium carbonate during alcohol withdrawal reduces symptoms of alcohol withdrawal as well as alcohol craving in a controlled clinical pilot study. Mode of actions will need to be determined to allow the further development of pharmacological interventions beyond Ca2+ bis-acetyl-homotaurinate.
Collapse
Affiliation(s)
- Rilana Schuster
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany, .,Feuerlein Center on Translational Addiction Medicine, Heidelberg University, Heidelberg, Germany, .,Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany,
| | - Matthias Winkler
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Anne Koopmann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,Feuerlein Center on Translational Addiction Medicine, Heidelberg University, Heidelberg, Germany
| | - Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,Feuerlein Center on Translational Addiction Medicine, Heidelberg University, Heidelberg, Germany
| | - Sabine Hoffmann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,Feuerlein Center on Translational Addiction Medicine, Heidelberg University, Heidelberg, Germany
| | - Iris Reinhard
- Biostatistik, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim/Universität Heidelberg, Heidelberg, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - J Malte Bumb
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,Feuerlein Center on Translational Addiction Medicine, Heidelberg University, Heidelberg, Germany
| | - Wolfgang H Sommer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,Feuerlein Center on Translational Addiction Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
11
|
Magnesium, Calcium, Potassium, Sodium, Phosphorus, Selenium, Zinc, and Chromium Levels in Alcohol Use Disorder: A Review. J Clin Med 2020; 9:jcm9061901. [PMID: 32570709 PMCID: PMC7357092 DOI: 10.3390/jcm9061901] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Macronutrients and trace elements are important components of living tissues that have different metabolic properties and functions. Trace elements participate in the regulation of immunity through humoral and cellular mechanisms, nerve conduction, muscle spasms, membrane potential regulation as well as mitochondrial activity and enzymatic reactions. Excessive alcohol consumption disrupts the concentrations of crucial trace elements, also increasing the risk of enhanced oxidative stress and alcohol-related liver diseases. In this review, we present the status of selected macroelements and trace elements in the serum and plasma of people chronically consuming alcohol. Such knowledge helps to understand the mechanisms of chronic alcohol-use disorder and to progress and prevent withdrawal effects, also improving treatment strategies.
Collapse
|
12
|
Hood LE, Leyrer-Jackson JM, Olive MF. Pharmacotherapeutic management of co-morbid alcohol and opioid use. Expert Opin Pharmacother 2020; 21:823-839. [PMID: 32103695 PMCID: PMC7239727 DOI: 10.1080/14656566.2020.1732349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022]
Abstract
Opioid use disorder (OUD) and alcohol use disorder (AUD) are two highly prevalent substance-related disorders worldwide. Co-use of the substances is also quite prevalent, yet there are no pharmacological treatment approaches specifically designed to treat co-morbid OUD and AUD. Here, the authors critically summarize OUD, AUD and opioid/alcohol co-use and their current pharmacotherapies for treatment. They also review the mechanisms of action of opioids and alcohol within the brain reward circuitry and discuss potential combined mechanisms of action and resulting neuroadaptations. Pharmacotherapies that aim to treat AUD or OUD that may be beneficial in the treatment of co-use are also highlighted. Preclinical models assessing alcohol and opioid co-use remain sparse. Lasting neuroadaptations in brain reward circuits caused by co-use of alcohol and opioids remains largely understudied. In order to fully understand the neurobiological underpinnings of alcohol and opioid co-use and develop efficacious pharmacotherapies, the preclinical field must expand its current experimental paradigms of 'single drug' use to encompass polysubstance use. Such studies will provide insights on the neural alterations induced by opioid and alcohol co-use, and may help develop novel pharmacotherapies for individuals with co-occurring alcohol and opioid use disorders.
Collapse
Affiliation(s)
- Lauren E. Hood
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | | | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
13
|
Shimizu C, Mitani Y, Tsuchiya Y, Nabeshima T. Effects of Oral Calcium Dosage and Timing on Ethanol-Induced Sensitization of Locomotion in DBA/2 Mice. Biol Pharm Bull 2018; 41:1049-1061. [PMID: 29769465 DOI: 10.1248/bpb.b18-00093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ethanol (EtOH) dosage, frequency, and paired associative learning affect the risk of alcoholism. Recently, Spanagel et al. reported that acamprosate calcium (Acam Ca) prescribed for alcoholism exerts an anti-relapse effect via Ca. Ca is contained in foods, sometimes consumed with alcohol. Therefore, we investigated the association among oral Ca ingestion, EtOH-induced locomotor sensitization, and plasma Ca levels on how to consume Ca for moderate drinking. We used DBA/2 CrSlc mice, and CaCl2 as water-soluble Ca salts. For pre-administration, elemental Ca (50, 75, 100, or 150 mg/kg, per os (p.o.)) or water for control was administered 1 h before EtOH (2 g/kg, 20 v/v (%) EtOH in saline) administration intraperitoneal (i.p.) for locomotor sensitization or for plasma Ca level changes. For post-administration, elemental Ca (100 mg/kg) was administered 1 h after EtOH. Moreover, we employed bepridil and the dopamine D1 antagonist, SCH-23390 to further examine the mechanism of EtOH-induced sensitization. The locomotor sensitization segmentalized for 300 s had two peaks (0-90 s and 180-300 s). Pre-administration of Ca (50, 75, and 100 mg/kg) significantly reduced the 0-90-s peak, selectively blocked by SCH-23390, but "non-dose dependently" as Ca 150 mg/kg did not have this effect. Bepridil blocked the suppressive effect of pre-administration of Ca (100 mg/kg). The effective pre-doses of Ca (50-100 mg/kg) maintained plasma Ca basal levels against EtOH-induced decrease of Ca. On the contrary, post-administration of Ca inversely led to significant promotion of sensitization of both locomotor peaks. Oral Ca intake had diverse effects on EtOH-induced sensitization depending on Ca dosage and timing.
Collapse
Affiliation(s)
- Chikako Shimizu
- Frontier Laboratories for Value Creation, SAPPORO HOLDINGS LTD
| | - Yutaka Mitani
- Frontier Laboratories for Value Creation, SAPPORO HOLDINGS LTD
| | | | - Toshitaka Nabeshima
- Fujita Health University.,Aino University.,NPO Japanese Drug Organization of Appropriate Use and Research
| |
Collapse
|
14
|
Pradhan G, Melugin PR, Wu F, Fang HM, Weber R, Kroener S. Calcium chloride mimics the effects of acamprosate on cognitive deficits in chronic alcohol-exposed mice. Psychopharmacology (Berl) 2018; 235:2027-2040. [PMID: 29679288 PMCID: PMC10766324 DOI: 10.1007/s00213-018-4900-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/09/2018] [Indexed: 12/22/2022]
Abstract
RATIONALE Acamprosate (calcium-bis N-acetylhomotaurinate) is the leading medication approved for the maintenance of abstinence, shown to reduce craving and relapse in animal models and human alcoholics. Acamprosate can improve executive functions that are impaired by chronic intermittent ethanol (CIE) exposure. Recent work has suggested that acamprosate's effects on relapse prevention are due to its calcium component, which raises the question whether its pro-cognitive effects are similarly mediated by calcium. OBJECTIVES This study examined the effects of acamprosate on alcohol-induced behavioral deficits and compared them with the effects of the sodium salt version of N-acetylhomotaurinate or calcium chloride, respectively. METHODS We exposed mice to alcohol via three cycles of CIE and measured changes in alcohol consumption in a limited-access paradigm. We then compared the effects of acamprosate and calcium chloride (applied subchronically for 3 days during withdrawal) in a battery of cognitive tasks that have been shown to be affected by chronic alcohol exposure. RESULTS CIE-treated animals showed deficits in attentional set-shifting and deficits in novel object recognition. Alcohol-treated animals showed no impairments in social novelty detection and interaction, or delayed spontaneous alternation. Both acamprosate and calcium chloride ameliorated alcohol-induced cognitive deficits to comparable extents. In contrast, the sodium salt version of N-acetylhomotaurinate did not reverse the cognitive deficits. CONCLUSIONS These results add evidence to the notion that acamprosate produces its anti-relapse effects through its calcium moiety. Our results also suggest that improved regulation of drug intake by acamprosate after withdrawal might at least in part be related to improved cognitive function.
Collapse
Affiliation(s)
- Grishma Pradhan
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd, BSB14, Richardson, TX, 75080, USA
| | - Patrick R Melugin
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd, BSB14, Richardson, TX, 75080, USA
| | - Fei Wu
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd, BSB14, Richardson, TX, 75080, USA
- Institute of Neurobiology, Jining Medical University, Jining, China
| | - Hannah M Fang
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd, BSB14, Richardson, TX, 75080, USA
| | - Rachel Weber
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd, BSB14, Richardson, TX, 75080, USA
| | - Sven Kroener
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd, BSB14, Richardson, TX, 75080, USA.
| |
Collapse
|
15
|
Hoffman PL, Saba LM, Vanderlinden LA, Tabakoff B. Voluntary exposure to a toxin: the genetic influence on ethanol consumption. Mamm Genome 2017; 29:128-140. [PMID: 29196862 DOI: 10.1007/s00335-017-9726-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023]
Abstract
Ethyl alcohol is a toxin that, when consumed at high levels, produces organ damage and death. One way to prevent or ameliorate this damage in humans is to reduce the exposure of organs to alcohol by reducing alcohol ingestion. Both the propensity to consume large volumes of alcohol and the susceptibility of human organs to alcohol-induced damage exhibit a strong genetic influence. We have developed an integrative genetic/genomic approach to identify transcriptional networks that predispose complex traits, including propensity for alcohol consumption and propensity for alcohol-induced organ damage. In our approach, the phenotype is assessed in a panel of recombinant inbred (RI) rat strains, and quantitative trait locus (QTL) analysis is performed. Transcriptome data from tissues/organs of naïve RI rat strains are used to identify transcriptional networks using Weighted Gene Coexpression Network Analysis (WGCNA). Correlation of the first principal component of transcriptional coexpression modules with the phenotype across the rat strains, and overlap of QTLs for the phenotype and the QTLs for the coexpression modules (module eigengene QTL) provide the criteria for identification of the functionally related groups of genes that contribute to the phenotype (candidate modules). While we previously identified a brain transcriptional module whose QTL overlapped with a QTL for levels of alcohol consumption in HXB/BXH RI rat strains and 12 selected rat lines, this module did not account for all of the genetic variation in alcohol consumption. Our search for QTL overlap and correlation of coexpression modules with phenotype can, however, be applied to any organ in which the transcriptome has been measured, and this represents a holistic approach in the search for genetic contributors to complex traits. Previous work has implicated liver/brain interactions, particularly involving inflammatory/immune processes, as influencing alcohol consumption levels. We have now analyzed the liver transcriptome of the HXB/BXH RI rat panel in relation to the behavioral trait of alcohol consumption. We used RNA-Seq and microarray data to construct liver transcriptional networks, and identified a liver candidate transcriptional coexpression module that explained 24% of the genetic variance in voluntary alcohol consumption. The transcripts in this module focus attention on liver secretory products that influence inflammatory and immune signaling pathways. We propose that these liver secretory products can interact with brain mechanisms that affect alcohol consumption, and targeting these pathways provides a potential approach to reducing high levels of alcohol intake and also protecting the integrity of the liver and other organs.
Collapse
Affiliation(s)
- Paula L Hoffman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Laura M Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA
| | - Lauren A Vanderlinden
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, 80045, USA
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA. .,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., Campus Box: C238, Aurora, CO, 80045, USA.
| |
Collapse
|
16
|
Soyka M, Müller CA. Pharmacotherapy of alcoholism – an update on approved and off-label medications. Expert Opin Pharmacother 2017; 18:1187-1199. [DOI: 10.1080/14656566.2017.1349098] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michael Soyka
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
- Medical Park Chiemseeblick Fachklinik für Psychosomatik, Bernau, Germany
| | - Christian A. Müller
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| |
Collapse
|