1
|
Schalbroeck R, van Hooijdonk CFM, Bos DPA, Booij J, Selten JP. Chronic social stressors and striatal dopamine functioning in humans: A systematic review of SPECT and PET studies. Mol Psychiatry 2024:10.1038/s41380-024-02581-x. [PMID: 38760501 DOI: 10.1038/s41380-024-02581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024]
Abstract
The dopamine hypothesis of schizophrenia posits that elevated striatal dopamine functioning underlies the development of psychotic symptoms. Chronic exposure to social stressors increases psychosis risk, possibly by upregulating striatal dopamine functioning. Here we systematically review single photon emission computed tomography (SPECT) and positron emission tomography (PET) studies that examined the relationship between chronic social stress exposure and in vivo striatal dopamine functioning in humans. We searched the scientific databases PubMed and PsycINFO from inception to August 2023. The quality of the included studies was evaluated with the ten-item Observational Study Quality Evaluation (PROSPERO: CRD42022308883). Twenty-eight studies were included, which measured different aspects of striatal dopamine functioning including dopamine synthesis capacity (DSC), vesicular monoamine transporter type 2 binding, dopamine release following a pharmacological or behavioral challenge, D2/3 receptor binding, and dopamine transporter binding. We observed preliminary evidence of an association between childhood trauma and increased striatal DSC and dopamine release. However, exposure to low socioeconomic status, stressful life events, or other social stressors was not consistently associated with altered striatal dopamine functioning. The quality of available studies was generally low. In conclusion, there is insufficient evidence that chronic social stressors upregulate striatal dopamine functioning in humans. We propose avenues for future research, in particular to improve the measurement of chronic social stressors and the methodological quality of study designs.
Collapse
Affiliation(s)
- Rik Schalbroeck
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands.
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Carmen F M van Hooijdonk
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Daniëlle P A Bos
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jean-Paul Selten
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
- Rivierduinen Institute for Mental Healthcare, Leiden, The Netherlands
| |
Collapse
|
2
|
van Hooijdonk CFM, Tse DHY, Roosenschoon J, Ceccarini J, Booij J, van Amelsvoort TAMJ, Vingerhoets C. The Relationships between Dopaminergic, Glutamatergic, and Cognitive Functioning in 22q11.2 Deletion Syndrome: A Cross-Sectional, Multimodal 1H-MRS and 18F-Fallypride PET Study. Genes (Basel) 2022; 13:1672. [PMID: 36140839 PMCID: PMC9498700 DOI: 10.3390/genes13091672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Individuals with 22q11.2 deletion syndrome (22q11DS) are at increased risk of developing psychosis and cognitive impairments, which may be related to dopaminergic and glutamatergic abnormalities. Therefore, in this exploratory study, we examined the association between dopaminergic and glutamatergic functioning in 22q11DS. Additionally, the associations between glutamatergic functioning and brain volumes in 22q11DS and healthy controls (HC), as well as those between dopaminergic and cognitive functioning in 22q11DS, were also examined. METHODS In this cross-sectional, multimodal imaging study, glutamate, glutamine, and their combined concentration (Glx) were assessed in the anterior cingulate cortex (ACC) and striatum in 17 22q11DS patients and 20 HC using 7T proton magnetic resonance spectroscopy. Ten 22q11DS patients also underwent 18F-fallypride positron emission tomography to measure dopamine D2/3 receptor (D2/3R) availability in the ACC and striatum. Cognitive performance was assessed with the Cambridge Neuropsychological Test Automated Battery. RESULTS No significant associations were found between ACC or striatal (1) glutamate, glutamine, or Glx concentrations and (2) D2/3R availability. In HC but not in 22q11DS patients, we found a significant relationship between ACC volume and ACC glutamate, glutamine, and Glx concentration. In addition, some aspects of cognitive functioning were significantly associated with D2/3R availability in 22q11DS. However, none of the associations remained significant after Bonferroni correction. CONCLUSIONS Although our results did not reach statistical significance, our findings suggest an association between glutamatergic functioning and brain volume in HC but not in 22q11DS. Additionally, D2/3R availability seems to be related to cognitive functioning in 22q11DS. Studies in larger samples are needed to further elucidate our findings.
Collapse
Affiliation(s)
- Carmen F. M. van Hooijdonk
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, 6226 NB Maastricht, The Netherlands
- Rivierduinen, Institute for Mental Health Care, 2333 ZZ Leiden, The Netherlands
| | - Desmond H. Y. Tse
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Julia Roosenschoon
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, 6226 NB Maastricht, The Netherlands
| | - Jenny Ceccarini
- Department of Nuclear Medicine and Molecular Imaging, Division of Imaging and Pathology, KU Leuven, B-3000 Leuven, Belgium
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Therese A. M. J. van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, 6226 NB Maastricht, The Netherlands
| | - Claudia Vingerhoets
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, 6226 NB Maastricht, The Netherlands
| |
Collapse
|
3
|
Margariti MM, Vlachos II. The concept of psychotic arousal and its relevance to abnormal subjective experiences in schizophrenia. A hypothesis for the formation of primary delusions. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Ceccarini J, Koole M, Van Laere K. Cannabinoid receptor availability modulates the magnitude of dopamine release in vivo in the human reward system: A preliminary multitracer positron emission tomography study. Addict Biol 2022; 27:e13167. [PMID: 35470551 DOI: 10.1111/adb.13167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 12/01/2022]
Abstract
The established role of dopamine (DA) in the mediation of reward and positive reinforcement, reward processing is strongly influenced by the type 1 cannabinoid receptors (CB1 Rs). Although considerable preclinical evidence has demonstrated several functional CB1 R-DA interactions, the relation between human CB1 R availability, DA release capacity and drug-reinforcing effects has been never investigated so far. Here, we perform a multitracer [18 F]MK-9470 and [18 F]fallypride positron emission tomography (PET) study in 10 healthy male subjects using a placebo-controlled and single-blinded amphetamine (AMPH) (30 mg) administration paradigm to (1) investigate possible functional interactions between CB1 R expression levels and DA release capacity in a normo-DAergic state, relating in vivo AMPH-induced DA release to CB1 R availability, and (2) to test the hypothesis that the influence of striatal DAergic signalling on the positive reinforcing effects of AMPH may be regulated by prefrontal CB1 R levels. Compared with placebo, AMPH significantly reduced [18 F]fallypride binding potential (hence increase DA release; ΔBPND ranging from -6.1% to -9.6%) in both striatal (p < 0.005, corrected for multiple comparisons) and limbic extrastriatal regions (p ≤ 0.04, uncorrected). Subjects who reported a greater dopaminergic response in the putamen also showed higher CB1 R availability in the medial and dorsolateral prefrontal cortex (r = 0.72; p = 0.02), which are regions involved in salience attribution, motivation and decision making. On the other hand, the magnitude of DA release was greater in those subjects with lower CB1 R availability in the anterior cingulate cortex (ACC) (r = -0.66; p = 0.03). Also, the correlation between the DA release in the nucleus accumbens with the subjective AMPH effect liking was mediated through the CB1 R availability in the ACC (c' = -0.76; p = 0.01). Our small preliminary study reports for the first time that the human prefrontal CB1 R availability is a determinant of DA release within both the ventral and dorsal reward corticostriatal circuit, contributing to a number of studies supporting the existence of an interaction between CB1 R and DA receptors at the molecular and behavioural level. These preliminary findings warrant further investigation in pathological conditions characterized by hypo/hyper excitability to DA release such as addiction and schizophrenia.
Collapse
Affiliation(s)
- Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology KU Leuven Leuven Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology KU Leuven Leuven Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology KU Leuven Leuven Belgium
- Nuclear Medicine University Hospitals Leuven Leuven Belgium
| |
Collapse
|
5
|
van Hooijdonk CF, Drukker M, van de Giessen E, Booij J, Selten JP, van Amelsvoort TA. Dopaminergic alterations in populations at increased risk for psychosis: a systematic review of imaging findings. Prog Neurobiol 2022; 213:102265. [DOI: 10.1016/j.pneurobio.2022.102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
6
|
Kenton JA, Young JW. Preclinical Evaluation of Attention and Impulsivity Relevant to Determining ADHD Mechanisms and Treatments. Curr Top Behav Neurosci 2022; 57:291-320. [PMID: 35606639 DOI: 10.1007/7854_2022_340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
People with Attention-Deficit Hyperactivity Disorder (ADHD) exhibit inattention, hyperactivity, and/or impulsivity. Symptoms of ADHD emerge in childhood and can continue throughout adulthood. Clinical assessments to diagnose ADHD can include administration of continuous performance tests (CPTs). CPTs provide an objective measure of inattention, requiring individuals to respond to targets (attention), and inhibit response to non-targets (impulsivity). When investigating the mechanisms of, and novel treatments for, ADHD it is important to measure such behavioral domains (attention and impulsivity). Some well-established preclinical tasks purport to assess attention in rodents but, unlike CPTs, do not require non-target inhibition, limiting their ADHD-relevance.Recently developed tasks recreate CPTs for rodents. The 5-Choice CPT (5C-CPT) contains non-target stimuli, enabling use of signal detection theory to evaluate performance, consistent with CPTs. The 5C-CPT has been adapted for use in humans, enabling direct cross-species comparisons of performance. A newer task, the rodent CPT (rCPT), is a touchscreen-based analog of CPTs, utilizing symbols instead of a simple stimulus array. Currently, the rCPT may be more akin to a go/no-go task, equally presenting targets/non-targets, although numerous variants exist - a strength. The 5C-CPT and rCPT emulate human CPTs and provide the most up-to-date information on ADHD-relevant studies for understanding attention/impulsivity.
Collapse
Affiliation(s)
- Johnny A Kenton
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
7
|
McCutcheon RA, Merritt K, Howes OD. Dopamine and glutamate in individuals at high risk for psychosis: a meta-analysis of in vivo imaging findings and their variability compared to controls. World Psychiatry 2021; 20:405-416. [PMID: 34505389 PMCID: PMC8429330 DOI: 10.1002/wps.20893] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dopaminergic and glutamatergic dysfunction is believed to play a central role in the pathophysiology of schizophrenia. However, it is unclear if abnormalities predate the onset of schizophrenia in individuals at high clinical or genetic risk for the disorder. We systematically reviewed and meta-analyzed studies that have used neuroimaging to investigate dopamine and glutamate function in individuals at increased clinical or genetic risk for psychosis. EMBASE, PsycINFO and Medline were searched form January 1, 1960 to November 26, 2020. Inclusion criteria were molecular imaging measures of striatal presynaptic dopaminergic function, striatal dopamine receptor availability, or glutamate function. Separate meta-analyses were conducted for genetic high-risk and clinical high-risk individuals. We calculated standardized mean differences between high-risk individuals and controls, and investigated whether the variability of these measures differed between the two groups. Forty-eight eligible studies were identified, including 1,288 high-risk individuals and 1,187 controls. Genetic high-risk individuals showed evidence of increased thalamic glutamate + glutamine (Glx) concentrations (Hedges' g=0.36, 95% CI: 0.12-0.61, p=0.003). There were no significant differences between high-risk individuals and controls in striatal presynaptic dopaminergic function, striatal D2/D3 receptor availability, prefrontal cortex glutamate or Glx, hippocampal glutamate or Glx, or basal ganglia Glx. In the meta-analysis of variability, genetic high-risk individuals showed reduced variability of striatal D2/D3 receptor availability compared to controls (log coefficient of variation ratio, CVR=-0.24, 95% CI: -0.46 to -0.02, p=0.03). Meta-regressions of publication year against effect size demonstrated that the magnitude of differences between clinical high-risk individuals and controls in presynaptic dopaminergic function has decreased over time (estimate=-0.06, 95% CI: -0.11 to -0.007, p=0.025). Thus, other than thalamic glutamate concentrations, no neurochemical measures were significantly different between individuals at risk for psychosis and controls. There was also no evidence of increased variability of dopamine or glutamate measures in high-risk individuals compared to controls. Significant heterogeneity, however, exists between studies, which does not allow to rule out the existence of clinically meaningful differences.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Kate Merritt
- Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
8
|
van Duin EDA, Ceccarini J, Booij J, Kasanova Z, Vingerhoets C, van Huijstee J, Heinzel A, Mohammadkhani-Shali S, Winz O, Mottaghy F, Myin-Germeys I, van Amelsvoort T. Lower [ 18F]fallypride binding to dopamine D 2/3 receptors in frontal brain areas in adults with 22q11.2 deletion syndrome: a positron emission tomography study. Psychol Med 2020; 50:799-807. [PMID: 30935427 PMCID: PMC7168654 DOI: 10.1017/s003329171900062x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 08/06/2018] [Accepted: 03/05/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND The 22q11.2 deletion syndrome (22q11DS) is caused by a deletion on chromosome 22 locus q11.2. This copy number variant results in haplo-insufficiency of the catechol-O-methyltransferase (COMT) gene, and is associated with a significant increase in the risk for developing cognitive impairments and psychosis. The COMT gene encodes an enzyme that primarily modulates clearance of dopamine (DA) from the synaptic cleft, especially in the prefrontal cortical areas. Consequently, extracellular DA levels may be increased in prefrontal brain areas in 22q11DS, which may underlie the well-documented susceptibility for cognitive impairments and psychosis in affected individuals. This study aims to examine DA D2/3 receptor binding in frontal brain regions in adults with 22q11DS, as a proxy of frontal DA levels. METHODS The study was performed in 14 non-psychotic, relatively high functioning adults with 22q11DS and 16 age- and gender-matched healthy controls (HCs), who underwent DA D2/3 receptor [18F]fallypride PET imaging. Frontal binding potential (BPND) was used as the main outcome measure. RESULTS BPND was significantly lower in adults with 22q11DS compared with HCs in the prefrontal cortex and the anterior cingulate gyrus. After Bonferroni correction significance remained for the anterior cingulate gyrus. There were no between-group differences in BPND in the orbitofrontal cortex and anterior cingulate cortex. CONCLUSIONS This study is the first to demonstrate lower frontal D2/3 receptor binding in adults with 22q11DS. It suggests that a 22q11.2 deletion affects frontal dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Esther D. A. van Duin
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Jenny Ceccarini
- Department of Nuclear Medicine and Molecular Imaging, Division of Imaging and Pathology, University Hospital Leuven, KU Leuven, Belgium
| | - Jan Booij
- Academic Medical Center, Amsterdam, The Netherlands
| | - Zuzana Kasanova
- Department of Neuroscience, Center for Contextual Psychiatry, KU Leuven – Leuven University, Leuven, Belgium
| | - Claudia Vingerhoets
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
- Academic Medical Center, Amsterdam, The Netherlands
| | - Jytte van Huijstee
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Alexander Heinzel
- Department of Nuclear Medicine, University Hospital RWTH, Aachen University, Aachen, Germany
| | | | - Oliver Winz
- Department of Nuclear Medicine, University Hospital RWTH, Aachen University, Aachen, Germany
| | - Felix Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH, Aachen University, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherland
| | - Inez Myin-Germeys
- Department of Neuroscience, Center for Contextual Psychiatry, KU Leuven – Leuven University, Leuven, Belgium
| | - Thérèse van Amelsvoort
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
9
|
McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry 2020; 19:15-33. [PMID: 31922684 PMCID: PMC6953551 DOI: 10.1002/wps.20693] [Citation(s) in RCA: 301] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glutamate and dopamine systems play distinct roles in terms of neuronal signalling, yet both have been proposed to contribute significantly to the pathophysiology of schizophrenia. In this paper we assess research that has implicated both systems in the aetiology of this disorder. We examine evidence from post-mortem, preclinical, pharmacological and in vivo neuroimaging studies. Pharmacological and preclinical studies implicate both systems, and in vivo imaging of the dopamine system has consistently identified elevated striatal dopamine synthesis and release capacity in schizophrenia. Imaging of the glutamate system and other aspects of research on the dopamine system have produced less consistent findings, potentially due to methodological limitations and the heterogeneity of the disorder. Converging evidence indicates that genetic and environmental risk factors for schizophrenia underlie disruption of glutamatergic and dopaminergic function. However, while genetic influences may directly underlie glutamatergic dysfunction, few genetic risk variants directly implicate the dopamine system, indicating that aberrant dopamine signalling is likely to be predominantly due to other factors. We discuss the neural circuits through which the two systems interact, and how their disruption may cause psychotic symptoms. We also discuss mechanisms through which existing treatments operate, and how recent research has highlighted opportunities for the development of novel pharmacological therapies. Finally, we consider outstanding questions for the field, including what remains unknown regarding the nature of glutamate and dopamine function in schizophrenia, and what needs to be achieved to make progress in developing new treatments.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| | - John H Krystal
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| |
Collapse
|
10
|
Zinkstok JR, Boot E, Bassett AS, Hiroi N, Butcher NJ, Vingerhoets C, Vorstman JAS, van Amelsvoort TAMJ. Neurobiological perspective of 22q11.2 deletion syndrome. Lancet Psychiatry 2019; 6:951-960. [PMID: 31395526 PMCID: PMC7008533 DOI: 10.1016/s2215-0366(19)30076-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/20/2022]
Abstract
22q11.2 deletion syndrome is characterised by a well defined microdeletion that is associated with a high risk of neuropsychiatric disorders, including intellectual disability, schizophrenia, attention-deficit hyperactivity disorder, autism spectrum disorder, anxiety disorders, seizures and epilepsy, and early-onset Parkinson's disease. Preclinical and clinical data reveal substantial variability of the neuropsychiatric phenotype despite the shared underlying deletion in this genetic model. Factors that might explain this variability include genetic background effects, additional rare pathogenic variants, and potential regulatory functions of some genes in the 22q11.2 deletion region. These factors might also be relevant to the pathophysiology of these neuropsychiatric disorders in the general population. We review studies that might provide insight into pathophysiological mechanisms underlying the expression of neuropsychiatric disorders in 22q11.2 deletion syndrome, and potential implications for these common disorders in the general (non-deleted) population. The recurrent hemizygous 22q11.2 deletion, associated with 22q11.2 deletion syndrome, has attracted attention as a genetic model for common neuropsychiatric disorders because of its association with substantially increased risk of such disorders.1 Studying such a model has many advantages. First, 22q11.2 deletion has been genetically well characterised.2 Second, most genes present in the region typically deleted at the 22q11.2 locus are expressed in the brain.3-5 Third, genetic diagnosis might be made early in life, long before recognisable neuropsychiatric disorders have emerged. Thus, this genetic condition offers a unique opportunity for early intervention, and monitoring individuals with 22q11.2 deletion syndrome throughout life could provide important information on factors contributing to disease risk and protection. Despite the commonly deleted region being shared by about 90% of individuals with 22q11.2 deletion syndrome, neuropsychiatric outcomes are highly variable between individuals and across the lifespan. A clear link remains to be established between genotype and phenotype.3,5 In this Review, we summarise preclinical and clinical studies investigating biological mechanisms in 22q11.2 deletion syndrome, with a focus on those that might provide insight into mechanisms underlying neuropsychiatric disorders in 22q11.2 deletion syndrome and in the general population.
Collapse
Affiliation(s)
- Janneke R Zinkstok
- Department of Psychiatry and Brain Center, University Medical Center, Utrecht, Netherlands.
| | - Erik Boot
- 's Heeren Loo Zorggroep, Amersfoort, Netherlands; The Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, University Health Network, Toronto, ON, Canada; Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, Netherlands; Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Anne S Bassett
- The Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, University Health Network, Toronto, ON, Canada; Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Toronto, ON, Canada; Division of Cardiology & Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Noboru Hiroi
- Department of Pharmacology, Department of Cellular and Integrative Physiology, Department of Cell Systems and Anatomy, and Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nancy J Butcher
- Child Health Evaluative Sciences, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Claudia Vingerhoets
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, Netherlands; Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Jacob A S Vorstman
- Sick Children Research Institute, Genetics & Genome Biology Program, Toronto, ON, Canada
| | | |
Collapse
|