1
|
Akinola LS, Buzzi B, Kalck E, Le K, Klein S, Vaughn J, Basir J, Poklis J, Whiteaker P, Shelton KL, Damaj MI. Characterization of a novel oronasal-restricted nicotine vaping self-administration model in mice. Neuropharmacology 2025; 268:110315. [PMID: 39832529 DOI: 10.1016/j.neuropharm.2025.110315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/25/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Nicotine use remains one of the leading causes of preventable deaths in the United States and, while the prevalence of combustible cigarette use has declined over the past few years, the popularity of electronic nicotine delivery systems continues to rise. Vaping is not without risks, and its long-term effects, particularly in vulnerable populations, remain largely unknown. This study introduces a novel, oronasal-restricted, nicotine vapor self-administration mouse model to investigate the impact of nicotine concentration, genotype, sex, and age on self-administration and behavioral response to nicotine. Our studies show that male and female young adult mice respond to nicotine, demonstrating notable sex-related differences in intake, locomotor sensitization, and somatic withdrawal signs. In addition, we characterized intake in adolescent mice, showing sex differences as well. Finally, we showed genotype-related differences when using β2 knock-out mice, emphasizing the role of the β2 nAChR in nicotine reward and nicotine intake. This new model offers a more targeted approach to studying the potential risks of nicotine vaping in a more relevant and face-valid model compared to traditional whole-body nicotine vapor exposure in rodents.
Collapse
Affiliation(s)
- Lois S Akinola
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Belle Buzzi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Erin Kalck
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Kimmie Le
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sarah Klein
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Julian Vaughn
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jamil Basir
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Justin Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Paul Whiteaker
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Keith L Shelton
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
2
|
Kundu A, Sanchez S, Seth S, Feore A, Sutton M, Sachdeva K, Abu-Zarour N, Chaiton M, Schwartz R. Evidence update on e-cigarette dependence: A systematic review and meta-analysis. Addict Behav 2025; 163:108243. [PMID: 39826373 DOI: 10.1016/j.addbeh.2024.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/02/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025]
Abstract
INTRODUCTION We conducted this review to examine the risk of e-cigarette dependence in different populations by updating the review on this topic by the National Academies of Science, Engineering, and Medicine. METHODS Six academic databases were searched for studies published between September 2017 and December 2023. We included peer-reviewed human, animal, cell/in vitro original studies examining associations of e-cigarette use and dependence but excluded qualitative studies. Three types of e-cigarette exposure were examined: acute, short-to-medium term, and long-term. Meta-analysis were conducted when possible. Different risk of bias tools were used for assessing quality of the included human studies. RESULTS We included 107 studies, of which 34 studies were included in the subgroup analysis. Meta-analyses showed that non-smoker current vapers had no statistically significant difference in level or prevalence of dependence compared to non-vaper current smokers and dual users. However, never smoker current vapers had a lower level of dependence (SMD -0.723, p < 0.01) compared to dual users, which was also supported by ANOVA test. Narrative review findings suggest that nicotine vapers had higher level of dependence than non-nicotine vapers and e-cigarette dependence is positively associated with nicotine concentration, frequency, and duration of use. No strong relationship was found between dependence and product types or features. Socio-demographic factor-based subgroup findings were inconclusive. CONCLUSIONS The level and prevalence of e-cigarette dependence is similar to cigarette dependence. There was high variability in the definitions and methods used for defining populations and assessing dependence. Further research and monitoring are crucial.
Collapse
Affiliation(s)
- Anasua Kundu
- University of Toronto Temerty Faculty of Medicine, Canada
| | | | - Siddharth Seth
- University of Toronto Temerty Faculty of Medicine, Canada
| | - Anna Feore
- School of Medicine, University College Cork, Ireland
| | | | - Kyran Sachdeva
- Faculty of Health Sciences, Queen's University, Kingston, Canada
| | | | - Michael Chaiton
- University of Toronto Temerty Faculty of Medicine, Canada; Centre for Addiction and Mental Health, Toronto, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Robert Schwartz
- Centre for Addiction and Mental Health, Toronto, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Jha NA, Ayoub SM, Flesher MM, Morton K, Sikkink M, de Guglielmo G, Khokhar JY, Minassian A, Brody AL, Young JW. Acute nicotine vapor normalizes sensorimotor gating and reduces locomotor activity deficits in HIV-1 transgenic rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599641. [PMID: 38948796 PMCID: PMC11212989 DOI: 10.1101/2024.06.18.599641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Rationale Despite improved life expectancy of people with HIV (PWH), HIV-associated neurocognitive impairment (NCI) persists, alongside deficits in sensorimotor gating and neuroinflammation. PWH exhibit high smoking rates, possibly due to neuroprotective, anti-inflammatory, and cognitive-enhancing effects of nicotine, suggesting potential self-medication. Objectives Here, we tested the effects of acute nicotine vapor exposure on translatable measures of sensorimotor gating and exploratory behavior in the HIV-1 transgenic (HIV-1Tg) rat model of HIV. Methods Male and female HIV-1Tg and F344 control rats (n=57) were exposed to acute nicotine or vehicle vapor. Sensorimotor gating was assessed using prepulse inhibition (PPI) of the acoustic startle response, and exploratory behavior was evaluated using the behavioral pattern monitor (BPM). Results Vehicle-treated HIV-1Tg rats exhibited PPI deficits at low prepulse intensities compared to F344 controls, as seen previously. No PPI deficits were observed in nicotine-treated HIV1-Tg rats, however. HIV-1Tg rats were hypoactive in the BPM relative to controls, whilst nicotine vapor increased activity and exploratory behavior across genotypes. Cotinine analyses confirmed comparable levels of the primary metabolite of nicotine across genotypes. Conclusions Previous findings of PPI deficits in HIV-1Tg rats were replicated and, importantly, attenuated by acute nicotine vapor. Evidence for similar cotinine levels suggest a nicotine-specific effect in HIV-1Tg rats. HIV-1Tg rats had reduced exploratory behavior compared to controls, attenuated by acute nicotine vapor. Therefore, acute nicotine may be beneficial for remediating sensorimotor and locomotor activity deficits in PWH. Future studies should determine the long-term effects of nicotine vapor on similar HIV/NCI-relevant behaviors.
Collapse
Affiliation(s)
- Neal A. Jha
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Samantha M. Ayoub
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - M. Melissa Flesher
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kathleen Morton
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Megan Sikkink
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Giordano de Guglielmo
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jibran Y. Khokhar
- Department of Anatomy and Cell Biology, University of Western Ontario 1151 Richmond Street, London, ON N61 3K7, Canada
| | - Arpi Minassian
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Arthur L. Brody
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
- Research Service, VA San Diego Healthcare System 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Jared W. Young
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
- Research Service, VA San Diego Healthcare System 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| |
Collapse
|
4
|
Frie JA, McCunn P, Eed A, Hassan A, Luciani KR, Chen C, Tyndale RF, Khokhar JY. Factors influencing JUUL e-cigarette nicotine vapour-induced reward, withdrawal, pharmacokinetics and brain connectivity in rats: sex matters. Neuropsychopharmacology 2024; 49:782-795. [PMID: 38057369 PMCID: PMC10948865 DOI: 10.1038/s41386-023-01773-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023]
Abstract
Though vaping likely represents a safer alternative to smoking, it is not without risks, many of which are not well understood, especially for vulnerable populations. Here we evaluate the sex- and age-dependent effects of JUUL nicotine vapour in rats. Following passive nicotine vapour exposures (from 59 mg/ml JUUL nicotine pods), rats were evaluated for reward-like behaviour, locomotion, and precipitated withdrawal. Pharmacokinetics of nicotine and its metabolites in brain and plasma and the long-term impact of nicotine vapour exposure on functional magnetic resonance imaging-based brain connectivity were assessed. Adult female rats acquired conditioned place preference (CPP) at a high dose (600 s of exposure) of nicotine vapour while female adolescents, as well as male adults and adolescents did not. Adult and adolescent male rats displayed nicotine vapour-induced precipitated withdrawal and hyperlocomotion, while both adult and adolescent female rats did not. Adult females showed higher venous and arterial plasma and brain nicotine and nicotine metabolite concentrations compared to adult males and adolescent females. Adolescent females showed higher brain nicotine concentration compared to adolescent males. Both network-based statistics and between-component group connectivity analyses uncovered reduced connectivity in nicotine-exposed rats, with a significant group by sex interaction observed in both analyses. The short- and long-term effects of nicotine vapour are affected by sex and age, with distinct behavioural, pharmacokinetic, and altered network connectivity outcomes dependent on these variables.
Collapse
Affiliation(s)
- Jude A Frie
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Patrick McCunn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Amr Eed
- Department of Medical Biophysics and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Ahmad Hassan
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Karling R Luciani
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chuyun Chen
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Rachel F Tyndale
- Departments of Psychiatry, and Pharmacology & Toxicology, University of Toronto, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jibran Y Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
5
|
Murdaugh LB, Miliano C, Chen I, Faunce CL, Natividad LA, Gregus AM, Buczynski MW. Effect of chronic vapor nicotine exposure on affective and cognitive behavior in male mice. Sci Rep 2024; 14:6646. [PMID: 38503831 PMCID: PMC10951409 DOI: 10.1038/s41598-024-56766-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
Nicotine use is a leading cause of preventable deaths worldwide, and most of those who attempt to quit will relapse. While electronic cigarettes and other electronic nicotine delivery systems (ENDS) were presented as a safer alternative to traditional cigarettes and promoted as devices to help traditional tobacco smokers reduce or quit smoking, they have instead contributed to increasing nicotine use among youths. Despite this, ENDS also represent a useful tool to create novel preclinical animal models of nicotine exposure that more accurately represent human nicotine use. In this study, we validated a chronic, intermittent, ENDS-based passive vapor exposure model in mice, and then measured changes in multiple behaviors related to nicotine abstinence. First, we performed a behavioral dose curve to investigate the effects of different nicotine inter-vape intervals on various measures including body weight, locomotor activity, and pain hypersensitivity. Next, we performed a pharmacokinetic study to measure plasma levels of nicotine and cotinine following chronic exposure for each inter-vape interval. Finally, we utilized a behavior test battery at a single dosing regimen that produces blood levels equivalent to human smokers in order to characterize the effects of chronic nicotine, vehicle, or passive airflow and identified nicotine-induced impairments in cognitive behavior.
Collapse
Affiliation(s)
- Laura B Murdaugh
- School of Neuroscience, Virginia Polytechnic Institute and State University, 970 Washington St SW, Life Sciences I, Blacksburg, VA, 24061, USA
- Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Cristina Miliano
- School of Neuroscience, Virginia Polytechnic Institute and State University, 970 Washington St SW, Life Sciences I, Blacksburg, VA, 24061, USA
| | - Irene Chen
- School of Neuroscience, Virginia Polytechnic Institute and State University, 970 Washington St SW, Life Sciences I, Blacksburg, VA, 24061, USA
| | - Christine L Faunce
- School of Neuroscience, Virginia Polytechnic Institute and State University, 970 Washington St SW, Life Sciences I, Blacksburg, VA, 24061, USA
| | - Luis A Natividad
- College of Pharmacy, Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USA
| | - Ann M Gregus
- School of Neuroscience, Virginia Polytechnic Institute and State University, 970 Washington St SW, Life Sciences I, Blacksburg, VA, 24061, USA.
| | - Matthew W Buczynski
- School of Neuroscience, Virginia Polytechnic Institute and State University, 970 Washington St SW, Life Sciences I, Blacksburg, VA, 24061, USA.
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
6
|
Murdaugh LB, Miliano C, Chen I, Faunce CL, Natividad LA, Gregus AM, Buczynski MW. Effect of chronic vapor nicotine exposure on affective and cognitive behavior in male mice. RESEARCH SQUARE 2024:rs.3.rs-3892315. [PMID: 38352503 PMCID: PMC10862982 DOI: 10.21203/rs.3.rs-3892315/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Nicotine use is a leading cause of preventable deaths worldwide, and most of those who attempt to quit will relapse. While electronic cigarettes and other electronic nicotine delivery systems (ENDS) were presented as a safer alternative to traditional cigarettes and promoted as devices to help traditional tobacco smokers reduce or quit smoking, they have instead contributed to increasing nicotine use among youths. Despite this, ENDS also represent a useful tool to create novel preclinical animal models of nicotine exposure that more accurately represent human nicotine use. In this study, we validated a chronic, intermittent, ENDS-based passive vapor exposure model in mice, and then measured changes in multiple behaviors related to nicotine abstinence. First, we performed a behavioral dose curve to investigate the effects of different nicotine inter-vape intervals on various measures including body weight, locomotor activity, and pain hypersensitivity. Next, we performed a pharmacokinetic study to measure plasma levels of nicotine and cotinine following chronic exposure for each inter-vape interval. Finally, we utilized a behavior test battery at a single dosing regimen that produces blood levels equivalent to human smokers in order to characterize the effects of chronic nicotine, vehicle, or passive airflow and identified nicotine-induced impairments in cognitive behavior.
Collapse
|
7
|
Martínez M, Espinoza VE, Garcia V, Uribe KP, Negishi K, Estevao IL, Carcoba LM, O'Dell LE, Khan AM, Mendez IA. Withdrawal from repeated nicotine vapor exposure increases somatic signs of physical dependence, anxiety-like behavior, and brain reward thresholds in adult male rats. Neuropharmacology 2023; 240:109681. [PMID: 37611823 PMCID: PMC11253717 DOI: 10.1016/j.neuropharm.2023.109681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
Nicotine vapor consumption via electronic nicotine delivery systems has increased over the last decade. While prior work has shed light on the health effects of nicotine vapor inhalation, its unique effects on the brain and behavior have not been thoroughly explored. In this study we assessed markers of withdrawal following 14 days of nicotine vapor exposure. For Experiment 1, 21 adult male rats were exposed to ambient air or 6, 12, or 24 mg/mL nicotine vapor for 14 consecutive days. Following exposure on day 14, rats were injected with the nicotinic receptor antagonist mecamylamine (3.0 mg/mL) and assessed for somatic withdrawal signs and anxiety-like behavior in the elevated plus maze. For Experiment 2, 12 adult male rats were tested for intracranial self-stimulation (ICSS) immediately following exposure to vehicle vapor (50%/50%, vegetable glycerin/propylene glycol) or 24 mg/mL nicotine vapor, for 14 consecutive days. ICSS behavior was assessed for an additional 14 days, following cessation of repeated vapor exposure. Results reveal that rats with repeated nicotine vapor exposure display an increase in behavioral indicators of withdrawal following injection of mecamylamine (precipitated withdrawal). Additionally, increases in ICSS stimulation thresholds, indicative of reduced brain reward sensitivity, persist following cessation of repeated nicotine vapor exposure (spontaneous withdrawal). These data suggest that repeated e-cigarette use leads to nicotine dependence and withdrawal that affects behavior and brain reward function. Further characterization of the health effects of nicotine vapor is necessary to improve treatment strategies for nicotine use disorder and public health policies related to novel nicotine delivery systems.
Collapse
Affiliation(s)
- Michelle Martínez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Veronika E Espinoza
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Valeria Garcia
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Kevin P Uribe
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Kenichiro Negishi
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Igor L Estevao
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Luis M Carcoba
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Laura E O'Dell
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA; Interdisciplinary Group for Neuroscience Investigation, Training and Education (IGNITE), The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Arshad M Khan
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA; Interdisciplinary Group for Neuroscience Investigation, Training and Education (IGNITE), The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Ian A Mendez
- School of Pharmacy, Department of Pharmaceutical Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA; Interdisciplinary Group for Neuroscience Investigation, Training and Education (IGNITE), The University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
8
|
Shao J, Fei Y, Xiao J, Wang L, Zou S, Yang J. The role of miRNA-144-3p/Oprk1/KOR in nicotine dependence and nicotine withdrawal in male rats. Nicotine Tob Res 2023; 25:1856-1864. [PMID: 37455648 PMCID: PMC10664084 DOI: 10.1093/ntr/ntad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION The kappa-opioid receptor (KOR) has been implicated in mediating the behavioral and biochemical effects associated with nicotine reward and withdrawal; however, its underlying mechanisms remain to be further explored. METHODS Adult male Sprague-Dawley rats were used to establish a nicotine dependence and withdrawal model by injecting nicotine (3 mg/kg/day, s.c.) or vehicle for 14 days, followed by the termination of nicotine for 7 days. Body weight gain, pain behaviors, and withdrawal scores were assessed in succession. MicroRNA (miRNA) sequencing was performed, and quantitative real-time PCR was used to detect the expression of candidate miRNAs and Oprk1. Western blotting was performed to examine KOR protein expression of KOR. Luciferase assay was conducted to validate the relationship of certain miRNAs/Oprk1. RESULTS The behavioral results showed that nicotine dependence and withdrawal induced behavioral changes. Biochemical analyses demonstrated that miR-144-3p expression decreased and Oprk1/KOR expression increased in the prefrontal cortex, nucleus accumben, and hippocampus. Further investigation suggested that miR-144-3p exerted an inhibitory effect on Oprk1 expression in PC12 cells. CONCLUSIONS This study revealed that miR-144-3p/Oprk1/KOR might be a potential pathway underlying the adverse effects induced by nicotine dependence and withdrawal, and might provide a novel therapeutic target for smoking cessation. IMPLICATIONS This study demonstrates an impact of nicotine dependence and nicotine withdrawal on behavioral outcomes and the expressions of miR-144-3p/Oprk1/KOR in male rats. These findings have important translational implications given the continued use of nicotine and the difficulty in smoking cessation worldwide, which can be applied to alleviated the adverse effects induced by nicotine dependence and withdrawal, thus assist smokers to quit smoking.
Collapse
Affiliation(s)
- Jiali Shao
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| | - Yanxia Fei
- Department of Anesthesiology, Women’s Hospital, School of Medicine Zhejiang University, Zhejiang, China
| | - Ji Xiao
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| | - Lijuan Wang
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| | - Shuangfa Zou
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| | - Jinfeng Yang
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| |
Collapse
|
9
|
Espinoza VE, Giner P, Liano I, Mendez IA, O'Dell LE. Sex and age differences in approach behavior toward a port that delivers nicotine vapor. J Exp Anal Behav 2022; 117:532-542. [PMID: 35338651 DOI: 10.1002/jeab.756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/14/2023]
Abstract
The goal of our laboratory is to study the mechanisms that promote nicotine use, particularly in vulnerable populations. To more closely mimic human use patterns, the present study employed nicotine vapor methods involving passive exposure for 14 days in adolescent and adult female and male rats. Age and sex differences in approach behavior (nosepokes) were assessed in a port that delivered nicotine plumes on Day 1 and 14 of our exposure regimen. Controls received ambient air in exposure chambers. After the final session, rats received a nicotinic receptor antagonist to precipitate withdrawal. Then, physical signs, anxiety-like behavior, and plasma levels of cotinine (a nicotine metabolite) were assessed. Over time, females displayed a larger increase in approach behavior to the nicotine port than males, an effect that was larger in adolescents. Nosepoke responses in adolescent females were correlated with anxiety-like behavior, but not physical signs of withdrawal. Adolescents gained more weight than adults regardless of treatment, and the weight gain was larger in male adolescents. Female adolescents also displayed the highest levels of cotinine than all other groups. These findings suggest that nicotine vapor produces greater motivational effects in adolescent females as compared to their adult and male counterparts.
Collapse
Affiliation(s)
| | - Priscilla Giner
- Department of Psychology, The University of Texas at El Paso
| | - Isabella Liano
- Department of Psychology, The University of Texas at El Paso
| | - Ian A Mendez
- Department of Pharmaceutical Sciences, The University of Texas at El Paso
| | - Laura E O'Dell
- Department of Psychology, The University of Texas at El Paso
| |
Collapse
|
10
|
Bagdas D, Kebede N, Zepei AM, Harris L, Minanov K, Picciotto MR, Addy NA. Animal Models to Investigate the Impact of Flavors on Nicotine Addiction and Dependence. Curr Neuropharmacol 2022; 20:2175-2201. [PMID: 35611777 PMCID: PMC9886843 DOI: 10.2174/1570159x20666220524120231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/17/2022] [Accepted: 05/22/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Tobacco use in humans is a long-standing public health concern. Flavors are common additives in tobacco and alternative tobacco products, added to mask nicotine's harsh orosensory effects and increase the appeal of these products. Animal models are integral for investigating nicotine use and addiction and are helpful for understanding the effects of flavor additives on the use of nicotine delivery products. OBJECTIVE This review focuses on preclinical models to evaluate the contribution of flavor additives to nicotine addiction. MATERIALS AND METHODS An electronic literature search was conducted by authors up to May 2022. Original articles were selected. RESULTS The behavioral models of rodents described here capture multiple dimensions of human flavored nicotine use behaviors, including advantages and disadvantages. CONCLUSION The consensus of the literature search was that human research on nicotine use behavior has not caught up with fast-changing product innovations, marketing practices, and federal regulations. Animal models are therefore needed to investigate mechanisms underlying nicotine use and addiction. This review provides a comprehensive overvie.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Yale Tobacco Center of Regulatory Science, Yale School of Medicine, New Haven, CT, USA
| | - Nardos Kebede
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Andy Ma Zepei
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Lilley Harris
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Karina Minanov
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Marina R. Picciotto
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Yale Tobacco Center of Regulatory Science, Yale School of Medicine, New Haven, CT, USA
| | - Nii A. Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Yale Tobacco Center of Regulatory Science, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
Hauser SR, Rodd ZA, Deehan GA, Liang T, Rahman S, Bell RL. Effects of adolescent substance use disorders on central cholinergic function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:175-221. [PMID: 34696873 DOI: 10.1016/bs.irn.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adolescence is a transitional period between childhood and adulthood, in which the individual undergoes significant cognitive, behavioral, physical, emotional, and social developmental changes. During this period, adolescents engage in experimentation and risky behaviors such as licit and illicit drug use. Adolescents' high vulnerability to abuse drugs and natural reinforcers leads to greater risk for developing substance use disorders (SUDs) during adulthood. Accumulating evidence indicates that the use and abuse of licit and illicit drugs during adolescence and emerging adulthood can disrupt the cholinergic system and its processes. This review will focus on the effects of peri-adolescent nicotine and/or alcohol use, or exposure, on the cholinergic system during adulthood from preclinical and clinical studies. This review further explores potential cholinergic agents and pharmacological manipulations to counteract peri-adolescent nicotine and/or alcohol abuse.
Collapse
Affiliation(s)
- S R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Z A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - G A Deehan
- Department of Psychology, East Tennessee State University, Johnson City, TN, United States
| | - T Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
12
|
Smith LC, Tieu L, Suhandynata RT, Boomhower B, Hoffman M, Sepulveda Y, Carrette LLG, Momper JD, Fitzgerald RL, Hanham K, Dowling J, Kallupi M, George O. Cannabidiol reduces withdrawal symptoms in nicotine-dependent rats. Psychopharmacology (Berl) 2021; 238:2201-2211. [PMID: 33909102 PMCID: PMC8295227 DOI: 10.1007/s00213-021-05845-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
RATIONALE Cannabidiol (CBD) reduces craving in animal models of alcohol and cocaine use and is known to modulate nicotinic receptor function, suggesting that it may alleviate symptoms of nicotine withdrawal. However, preclinical evaluation of its efficacy is still lacking. OBJECTIVES The goal of this study was to test the preclinical efficacy of a chronic CBD treatment in reducing nicotine dependence using measures of withdrawal symptoms including somatic signs, hyperalgesia, and weight gain during acute and protracted abstinence. METHODS Male and female Wistar rats were made dependent on nicotine using osmotic minipumps (3.15 mg/kg/day) for 2 weeks, after which minipumps were removed to induce spontaneous withdrawal. Three groups received CBD injections at doses of 7.5, 15, and 30 mg/kg/day for 2 weeks, starting 1 week into chronic nicotine infusion. The control groups included rats with nicotine minipumps that received vehicle injections of sesame oil instead of CBD; rats implanted with saline minipumps received sesame oil injections (double vehicle) or the highest dose of CBD 30 mg/kg/day. Throughout the experiment, serum was collected for determination of CBD and nicotine concentrations, mechanical sensitivity threshold and withdrawal scores were measured, and body weight was recorded. RESULTS CBD prevented rats from exhibiting somatic signs of withdrawal and hyperalgesia during acute and protracted abstinence. There was no dose-response observed for CBD, suggesting a ceiling effect at the doses used and the potential for lower effective doses of CBD. The saline minipump group did not show either somatic signs of withdrawal or hyperalgesia during acute and protracted abstinence, and the highest dose of CBD used (30 mg/kg/day) did not alter these results. CONCLUSIONS This preclinical study suggests that using CBD as a strategy to alleviate the withdrawal symptoms upon nicotine cessation may be beneficial.
Collapse
Affiliation(s)
- Lauren C Smith
- Department of Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, 92037, USA
- Department of Psychiatry, University of California, San Diego School of Medicine, San Diego, CA,, 92093, USA
| | - Lani Tieu
- Department of Psychiatry, University of California, San Diego School of Medicine, San Diego, CA,, 92093, USA
| | - Raymond T Suhandynata
- Department of Pathology, University of California, San Diego School of Medicine, San Diego, CA, 92093, USA
| | - Brent Boomhower
- Department of Psychiatry, University of California, San Diego School of Medicine, San Diego, CA,, 92093, USA
| | - Melissa Hoffman
- Department of Pathology, University of California, San Diego School of Medicine, San Diego, CA, 92093, USA
| | - Yadira Sepulveda
- Division of Pharmaceutical Sciences, University of California, San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, 92093, USA
| | - Lieselot L G Carrette
- Department of Psychiatry, University of California, San Diego School of Medicine, San Diego, CA,, 92093, USA
| | - Jeremiah D Momper
- Division of Pharmaceutical Sciences, University of California, San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, 92093, USA
| | - Robert L Fitzgerald
- Department of Pathology, University of California, San Diego School of Medicine, San Diego, CA, 92093, USA
| | - Kate Hanham
- CV Sciences, Inc., 10070 Barnes Canyon Road, San Diego, CA, 92121, USA
| | - Joseph Dowling
- CV Sciences, Inc., 10070 Barnes Canyon Road, San Diego, CA, 92121, USA
| | - Marsida Kallupi
- Department of Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, 92037, USA.
- Department of Psychiatry, University of California, San Diego School of Medicine, San Diego, CA,, 92093, USA.
| | - Olivier George
- Department of Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, 92037, USA.
- Department of Psychiatry, University of California, San Diego School of Medicine, San Diego, CA,, 92093, USA.
| |
Collapse
|
13
|
Smith LC, Kallupi M, Tieu L, Shankar K, Jaquish A, Barr J, Su Y, Velarde N, Sedighim S, Carrette LLG, Klodnicki M, Sun X, de Guglielmo G, George O. Validation of a nicotine vapor self-administration model in rats with relevance to electronic cigarette use. Neuropsychopharmacology 2020; 45:1909-1919. [PMID: 32544927 PMCID: PMC7608444 DOI: 10.1038/s41386-020-0734-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
The debate about electronic cigarettes is dividing healthcare professionals, policymakers, manufacturers, and communities. A key limitation in our understanding of the cause and consequences of vaping is the lack of animal models of nicotine vapor self-administration. Here, we developed a novel model of voluntary electronic cigarette use in rats using operant behavior. We found that rats voluntarily exposed themselves to nicotine vapor to the point of reaching blood nicotine levels that are similar to humans. The level of responding on the active (nicotine) lever was similar to the inactive (air) lever and lower than the active lever that was associated with vehicle (polypropylene glycol/glycerol) vapor, suggesting low positive reinforcing effects and low nicotine vapor discrimination. Lever pressing behavior with nicotine vapor was pharmacologically prevented by the α4β2 nicotinic acetylcholine receptor partial agonist and α7 receptor full agonist varenicline in rats that self-administered nicotine but not vehicle vapor. Moreover, 3 weeks of daily (1 h) nicotine vapor self-administration produced addiction-like behaviors, including somatic signs of withdrawal, allodynia, anxiety-like behavior, and relapse-like behavior after 3 weeks of abstinence. Finally, 3 weeks of daily (1 h) nicotine vapor self-administration produced cardiopulmonary abnormalities and changes in α4, α3, and β2 nicotinic acetylcholine receptor subunit mRNA levels in the nucleus accumbens and medial prefrontal cortex. These findings validate a novel animal model of nicotine vapor self-administration in rodents with relevance to electronic cigarette use in humans and highlight the potential addictive properties and harmful effects of chronic nicotine vapor self-administration.
Collapse
Affiliation(s)
- Lauren C. Smith
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, 10550N. Torrey Pines Road, La Jolla, CA USA ,Department of Psychiatry, School of Medicine, University of California, La Jolla, San Diego, CA USA
| | - Marsida Kallupi
- Department of Neuroscience, The Scripps Research Institute, 10550N. Torrey Pines Road, La Jolla, CA, USA. .,Department of Psychiatry, School of Medicine, University of California, La Jolla, San Diego, CA, USA.
| | - Lani Tieu
- Department of Psychiatry, School of Medicine, University of California, La Jolla, San Diego, CA USA
| | - Kokila Shankar
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, 10550N. Torrey Pines Road, La Jolla, CA USA ,Department of Psychiatry, School of Medicine, University of California, La Jolla, San Diego, CA USA
| | - Abigail Jaquish
- grid.266102.10000 0001 2297 6811Department of Pediatrics, University of California, La Jolla, CA USA
| | - Jamie Barr
- grid.266102.10000 0001 2297 6811Department of Pediatrics, University of California, La Jolla, CA USA
| | - Yujuan Su
- grid.266102.10000 0001 2297 6811Department of Pediatrics, University of California, La Jolla, CA USA
| | - Nathan Velarde
- Department of Psychiatry, School of Medicine, University of California, La Jolla, San Diego, CA USA
| | - Sharona Sedighim
- Department of Psychiatry, School of Medicine, University of California, La Jolla, San Diego, CA USA
| | - Lieselot L. G. Carrette
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, 10550N. Torrey Pines Road, La Jolla, CA USA ,Department of Psychiatry, School of Medicine, University of California, La Jolla, San Diego, CA USA
| | | | - Xin Sun
- grid.266102.10000 0001 2297 6811Department of Pediatrics, University of California, La Jolla, CA USA
| | - Giordano de Guglielmo
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, 10550N. Torrey Pines Road, La Jolla, CA USA ,Department of Psychiatry, School of Medicine, University of California, La Jolla, San Diego, CA USA
| | - Olivier George
- Department of Neuroscience, The Scripps Research Institute, 10550N. Torrey Pines Road, La Jolla, CA, USA. .,Department of Psychiatry, School of Medicine, University of California, La Jolla, San Diego, CA, USA.
| |
Collapse
|
14
|
Smith LC, George O. Advances in smoking cessation pharmacotherapy: Non-nicotinic approaches in animal models. Neuropharmacology 2020; 178:108225. [PMID: 32758566 DOI: 10.1016/j.neuropharm.2020.108225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/22/2022]
Abstract
The landscape of worldwide tobacco use is changing, with a decrease in traditional smoking and an exponential rise in electronic cigarette use. No new nicotine cessation pharmacotherapies have come to market in the last 10 years. The current therapies that have been approved by the United States Food and Drug Administration for nicotine cessation include nicotine replacement therapy, varenicline, a nicotinic acetylcholine receptor partial agonist, and the atypical antidepressant bupropion. Nicotine replacement therapy and varenicline both act on nicotinic acetylcholine receptors. Bupropion inhibits the dopamine transporter, the norepinephrine transporter, and the nicotinic acetylcholine receptors to inhibit smoking behavior. Notwithstanding these treatments, rates of successful nicotine cessation in clinical trials remain low. Recent pharmacological approaches to improve nicotine cessation rates in animal models have turned their focus away from activating nicotinic acetylcholine receptors. The present review focuses on such pharmacological approaches, including nicotine vaccines, anti-nicotine antibodies, nicotine-degrading enzymes, cannabinoids, and metformin. Both immunopharmacological and enzymatic approaches rely on restricting and degrading nicotine within the periphery, thus preventing psychoactive effects of nicotine on the central nervous system. In contrast, pharmacologic inhibition of the enzymes which degrade nicotine could affect smoking behavior. Cannabinoid receptor agonists and antagonists interact with the dopamine reward pathway and show efficacy in reducing nicotine addiction-like behaviors in preclinical studies. Metformin is currently approved by the Food and Drug Administration for the treatment of diabetes. It activates specific intracellular kinases that may protect against the lower metabolism, higher oxidation, and inflammation that are associated with nicotine withdrawal. Further studies are needed to investigate non-nicotinic targets to improve the treatment of tobacco use disorder. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Lauren C Smith
- Department of Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Olivier George
- Department of Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
15
|
Leslie FM. Unique, long-term effects of nicotine on adolescent brain. Pharmacol Biochem Behav 2020; 197:173010. [PMID: 32738256 DOI: 10.1016/j.pbb.2020.173010] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/23/2020] [Accepted: 07/28/2020] [Indexed: 01/20/2023]
Abstract
Adolescence is a time of major plasticity of brain systems that regulate motivated behavior and cognition, and is also the age of peak onset of nicotine use. Although there has been a decline in teen use of cigarettes in recent years, there has been a huge increase in nicotine vaping. It is therefore critically important to understand the impact of nicotine on this critical phase of brain development. Animal studies have shown that nicotine has unique effects on adolescent brain. The goal of this review is therefore to systematically evaluate age- and sex-differences in the effects of nicotine on brain and behavior. Both acute and chronic effects of nicotine on brain biochemistry and behavior, particularly drug reward, aversion, cognition and emotion, are evaluated. Gaps in our current knowledge that need to be addressed are also highlighted. This review compares and integrates human and animals findings. Although there can be no experimental studies in humans to confirm similar behavioral effects of teen nicotine exposure, an emerging observational literature suggests similarities across species. Given the substantial evidence for long-term negative impact of adolescent nicotine exposure on brain and behavior, further longitudinal assessment of health outcomes in teen and young adult e-cigarette users is warranted.
Collapse
Affiliation(s)
- Frances M Leslie
- University of California, Irvine, Department of Pharmaceutical Sciences, 367 Med Surge II, Irvine, CA 92697, United States of America.
| |
Collapse
|
16
|
Chellian R, Behnood-Rod A, Wilson R, Kamble SH, Sharma A, McCurdy CR, Bruijnzeel AW. Adolescent nicotine and tobacco smoke exposure enhances nicotine self-administration in female rats. Neuropharmacology 2020; 176:108243. [PMID: 32702403 DOI: 10.1016/j.neuropharm.2020.108243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 12/30/2022]
Abstract
Most people start experimenting with tobacco products or e-cigarettes in early adolescence and become habitual smokers in late adolescence or adulthood. These studies investigated if exposure to tobacco smoke or nicotine during early and mid-adolescence affects nicotine intake in late adolescence and early adulthood. Male and female rats were exposed to tobacco smoke from low- and high-nicotine SPECTRUM cigarettes or nicotine (0.3 mg/kg, twice a day) from postnatal day (P) 24-42. The self-administration sessions started at P55. The rats self-administered nicotine for 14-15 days under a fixed-ratio 1 schedule, and on the first day, the maximum number of infusions was twenty. Exposure to smoke from high, but not low, nicotine cigarettes during adolescence increased nicotine self-administration in female but not male rats. Adolescent treatment with nicotine facilitated nicotine self-administration. On the first day of nicotine self-administration, nicotine-treated rats reached the maximum number of infusions before the saline-treated control rats. Nicotine intake was also higher in the nicotine-treated female rats than in the saline-treated females. There was no sex difference in nicotine intake in controls when the data from the studies were combined. Smoke exposure led to a dose-dependent increase in plasma nicotine and cotinine levels in adolescent rats. Exposure to smoke from high-nicotine cigarettes and 0.3 mg/kg of nicotine led to plasma nicotine and cotinine levels that are similar to those in tobacco users. These findings indicate that in females, but not males, exposure to nicotine during adolescence may facilitate smoking and e-cigarette use later in life.
Collapse
Affiliation(s)
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Ryann Wilson
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Shyam H Kamble
- Department of Pharmaceutics, University of Florida, Gainesville, FL, USA; Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, University of Florida, Gainesville, FL, USA; Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA
| | - Christopher R McCurdy
- Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA; Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|