1
|
PHB Processability and Property Improvement with Linear-Chain Polyester Oligomers Used as Plasticizers. Polymers (Basel) 2022; 14:polym14194197. [PMID: 36236144 PMCID: PMC9573169 DOI: 10.3390/polym14194197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
In 2021, global petroleum-based plastic production reached over 400 million metric tons (Mt), and the accumulation of these non-biodegradable plastics in the environment is a worldwide concern. Polyhydroxybutyrate (PHB) offers many advantages over traditional petroleum-based plastics, being biobased, completely biodegradable, and non-toxic. However, its production and use are still challenging due to its low deformation capacity and narrow processing window. In this work, two linear-chain polyester oligomers were used as plasticizers to improve the processability and properties of PHB. Thermal analyses, XRD, and polarized optical microscopy were performed to evaluate the plasticizing effect on the PHB and the reflection on the mechanical behavior. Both oligomers acted as PHB plasticizers, with a reduction in Tg and Tm as a function of the plasticizer concentration, which can make it easier to handle the material in thermal processing and reduce the probability of thermal degradation. Plasticizer 2 proved to be the most promising between the two with an optimized condition of 20%, in which there was a decrease in elastic modulus of up to 72% and an increase in the maximum elongation of 467%.
Collapse
|
2
|
Zhao X, Guo L, Xu T, Wang H, Zheng R, Jiang Z. Preparation of biacidic tin-based ionic liquid catalysts and their application in catalyzing coupling reaction between ethylene carbonate and dimethyl succinate to synthesize poly(ethylene succinate). NEW J CHEM 2022. [DOI: 10.1039/d2nj03225b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new low-carbon and environmentally friendly process method for the catalytic synthesis of biodegradable polyester by utilizing ionic liquid catalysts.
Collapse
Affiliation(s)
- Xiudan Zhao
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, People's Republic of China
| | - Liying Guo
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, People's Republic of China
| | - Tiejun Xu
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, People's Republic of China
| | - Haiyue Wang
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, People's Republic of China
| | - Rongrong Zheng
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, People's Republic of China
| | - Zezhong Jiang
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, People's Republic of China
| |
Collapse
|
3
|
Abdelghafour MM, Orbán Á, Deák Á, Lamch Ł, Frank É, Nagy R, Ádám A, Sipos P, Farkas E, Bari F, Janovák L. The Effect of Molecular Weight on the Solubility Properties of Biocompatible Poly(ethylene succinate) Polyester. Polymers (Basel) 2021; 13:2725. [PMID: 34451264 PMCID: PMC8398594 DOI: 10.3390/polym13162725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
Poly(ethylene succinate) (PES) is one of the most promising biodegradable and biocompatible polyesters and is widely used in different biomedical applications. However, little information is available on its solubility and precipitation properties, despite that these solution behavior properties affect its applicability. In order to systematically study these effects, biodegradable and biocompatible poly(ethylene succinate) (PES) was synthesized using ethylene glycol and succinic acid monomers with an equimolar ratio. Despite the optimized reaction temperature (T = 185 °C) of the direct condensation polymerization, relatively low molecular mass values were achieved without using a catalyst, and the Mn was adjustable with the reaction time (40-100 min) in the range of ~850 and ~1300 Da. The obtained crude products were purified by precipitation from THF ("good" solvent) with excess of methanol ("bad" solvent). The solvents for PES oligomers purification were chosen according to the calculated values of solubility parameters by different approaches (Fedors, Hoy and Hoftyzer-van Krevelen). The theta-solvent composition of the PES solution was 0.3 v/v% water and 0.7 v/v% DMSO in this binary mixture. These measurements were also allowed to determine important parameters such as the coefficients A (=0.67) and B (=3.69 × 104) from the Schulz equation, or the Kη (=8.22 × 10-2) and α (=0.52) constants from the Kuhn-Mark-Houwink equation. Hopefully, the prepared PES with different molecular weights is a promising candidate for biomedical applications and the reported data and constants are useful for other researchers who work with this promising polyester.
Collapse
Affiliation(s)
- Mohamed M. Abdelghafour
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (M.M.A.); (Á.O.); (Á.D.)
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ágoston Orbán
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (M.M.A.); (Á.O.); (Á.D.)
| | - Ágota Deák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (M.M.A.); (Á.O.); (Á.D.)
| | - Łukasz Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Éva Frank
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary;
| | - Roland Nagy
- Department of MOL Department of Hydrocarbon and Coal Processing, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, H-8200 Veszprém, Hungary;
| | - Adél Ádám
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (A.Á.); (P.S.)
| | - Pál Sipos
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (A.Á.); (P.S.)
| | - Eszter Farkas
- HCEMM-USZ Cerebral Blood Flow and Metabolism Research Group, University of Szeged, Dugonics Square 13, H-6720 Szeged, Hungary;
- Department of Cell Biology and Molecular Medicine, Faculty of Science and Informatics & Faculty of Medicine, University of Szeged, Somogyi Str. 4, H-6720 Szeged, Hungary
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, Korányi Fasor 9, H-6720 Szeged, Hungary;
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, Korányi Fasor 9, H-6720 Szeged, Hungary;
| | - László Janovák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (M.M.A.); (Á.O.); (Á.D.)
| |
Collapse
|
4
|
Ghodke SB, Parkar JN, Deshpande AR, Dandekar PP, Jain RD. Structure–Activity Relationship of Polyester-Based Cationic Polyrotaxane Vector-Mediated In Vitro siRNA Delivery: Effect on Gene Silencing Efficiency. ACS APPLIED BIO MATERIALS 2020; 3:7500-7514. [DOI: 10.1021/acsabm.0c00717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sharwari B. Ghodke
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Junaid N. Parkar
- Department of Polymer & Surface Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Aparna R. Deshpande
- Department of Physics and Center for Energy Science, h cross, Indian Institute of Science Education Research, Pune 411008, India
| | - Prajakta P. Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Ratnesh D. Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| |
Collapse
|
5
|
Sisti L, Totaro G, Celli A, Marek AA, Verney V, Leroux F. Chain extender effect of 3-(4-hydroxyphenyl)propionic acid/layered double hydroxide in biopolyesters containing the succinate moiety. NEW J CHEM 2020. [DOI: 10.1039/c9nj06322f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
3-(4-Hydroxyphenyl)propionic acid intercalated in Mg2Al/layered double hydroxide has been used as a filler in biopolyesters containing the succinate moiety, with the aim of inducing a chain extender effect.
Collapse
Affiliation(s)
- Laura Sisti
- Dipartimento di Ingegneria Civile, Chimica
- Ambientale e dei Materiali
- Università di Bologna
- 40131 Bologna
- Italy
| | - Grazia Totaro
- Dipartimento di Ingegneria Civile, Chimica
- Ambientale e dei Materiali
- Università di Bologna
- 40131 Bologna
- Italy
| | - Annamaria Celli
- Dipartimento di Ingegneria Civile, Chimica
- Ambientale e dei Materiali
- Università di Bologna
- 40131 Bologna
- Italy
| | - Adam A. Marek
- Department of Organic Chemical Technology and Petrochemistry
- Silesian University of Technology
- 44-100 Gliwice
- Poland
| | - Vincent Verney
- Institut de Chimie de Clermont Ferrand (ICCF) – UMR
- CNRS
- SIGMA Clermont
- 63177 AUBIERE (Cedex)
- France
| | - Fabrice Leroux
- Institut de Chimie de Clermont Ferrand (ICCF) – UMR
- CNRS
- SIGMA Clermont
- 63177 AUBIERE (Cedex)
- France
| |
Collapse
|
6
|
Di Marino D, Jestel T, Marks C, Viell J, Blindert M, Kriescher SMA, Spiess AC, Wessling M. Carboxylic Acids Production via Electrochemical Depolymerization of Lignin. ChemElectroChem 2019. [DOI: 10.1002/celc.201801676] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Tim Jestel
- AVT.EPT Forckenbeckstr. 51 52074 Aachen Germany
| | | | - Jörn Viell
- AVT.SVT Forckenbeckstr. 51 52074 Aachen Germany
| | | | | | - Antje C. Spiess
- AVT.EPT Forckenbeckstr. 51 52074 Aachen Germany
- ibvt - Institute of Biochemical Engineering Rebenring 56 38106 Braunschweig Germany
| | - Matthias Wessling
- AVT.CVT Forckenbeckstr. 51 52074 Aachen Germany
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52074 Aachen Germany
| |
Collapse
|
7
|
Debuissy T, Pollet E, Avérous L. Biotic and Abiotic Synthesis of Renewable Aliphatic Polyesters from Short Building Blocks Obtained from Biotechnology. CHEMSUSCHEM 2018; 11:3836-3870. [PMID: 30203918 DOI: 10.1002/cssc.201801700] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Biobased polymers have seen their attractiveness increase in recent decades thanks to the significant development of biorefineries to allow access to a wide variety of biobased building blocks. Polyesters are one of the best examples of the development of biobased polymers because most of them now have their monomers produced from renewable resources and are biodegradable. Currently, these polyesters are mainly produced by using traditional chemical catalysts and harsh conditions, but recently greener pathways with nontoxic enzymes as biocatalysts and mild conditions have shown great potential. Bacterial polyesters, such as poly(hydroxyalkanoate)s (PHA), are the best example of the biotic production of high molar mass polymers. PHAs display a wide variety of macromolecular architectures, which allow a large range of applications. The present contribution aims to provide an overview of recent progress in studies on biobased polyesters, especially those made from short building blocks, synthesized through step-growth polymerization. In addition, some important technical aspects of their syntheses through biotic or abiotic pathways have been detailed.
Collapse
Affiliation(s)
- Thibaud Debuissy
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
8
|
Shen J, Caydamli Y, Gurarslan A, Li S, Tonelli AE. The glass transition temperatures of amorphous linear aliphatic polyesters. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.07.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Hsieh WC, Chen GC, Sung CC, Kasuya KI, Tachibana Y, Chen CH, Chen M, Ling TR, Chang CP. Thermolability, enzymatic degradation and aminolysis of solution-grown single crystals of novel poly(ethylene succinate-co-5mol% trimethylene succinate)s. JOURNAL OF POLYMER RESEARCH 2015. [DOI: 10.1007/s10965-015-0857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Wei Z, Zhou C, Yu Y, Li Y. Biobased copolyesters from renewable resources: synthesis and crystallization behavior of poly(decamethylene sebacate-co-isosorbide sebacate). RSC Adv 2015. [DOI: 10.1039/c5ra04761g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of biobased copolyesters poly(decamethylene sebacate-co-isosorbide sebacate) are synthesized and their crystallization behavior is explored.
Collapse
Affiliation(s)
- Zhiyong Wei
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Cheng Zhou
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Yang Yu
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Yang Li
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| |
Collapse
|
11
|
Zhou C, Wei Z, Yu Y, Wang Y, Li Y. Biobased copolyesters from renewable resources: synthesis and crystallization kinetics of poly(propylene sebacate-co-isosorbide sebacate). RSC Adv 2015. [DOI: 10.1039/c5ra13177d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The thermal properties and crystallization kinetics of a novel bio-based poly(propylene sebacate-co-isosorbide sebacate) copolyesters are explored.
Collapse
Affiliation(s)
- Cheng Zhou
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Yang Yu
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Yanshai Wang
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Yang Li
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| |
Collapse
|
12
|
Yue H, Zhao Y, Ma X, Gong J. Ethylene glycol: properties, synthesis, and applications. Chem Soc Rev 2012; 41:4218-44. [DOI: 10.1039/c2cs15359a] [Citation(s) in RCA: 629] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Abdolmaleki A, Mallakpour S, Borandeh S, Sabzalian MR. Fabrication of biodegradable poly(ester-amide)s based on tyrosine natural amino acid. Amino Acids 2011; 42:1997-2007. [DOI: 10.1007/s00726-011-0931-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
|
14
|
Tan L, Chen Y, Zhou W, Nie H, Li F, He X. Novel poly(butylene succinate-co-lactic acid) copolyesters: Synthesis, crystallization, and enzymatic degradation. Polym Degrad Stab 2010. [DOI: 10.1016/j.polymdegradstab.2010.04.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Tsai CJ, Chen M, Lu HY, Chang WC, Chen CH. Crystal growth rates and master curves of poly(ethylene succinate) and its copolyesters using a nonisothermal method. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/polb.21980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Chen CH, Peng JS, Chen M, Lu HY, Tsai CJ, Yang CS. Synthesis and characterization of poly(butylene succinate) and its copolyesters containing minor amounts of propylene succinate. Colloid Polym Sci 2010. [DOI: 10.1007/s00396-010-2187-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Lu HY, Chen M, Chen CH, Lu JS, Hoang KC, Tseng M. Biodegradable poly(ethylene succinate) blends and copolymers containing minor amounts of poly(butylene succinate). J Appl Polym Sci 2010. [DOI: 10.1002/app.31932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Mallakpour S, Mirkarimi F. Step-growth polymerization of 5-[(9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)-3-methylbutanoyl-amino]isophthalic acid with aromatic diols. J Appl Polym Sci 2010. [DOI: 10.1002/app.32227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Lu HY, Lu SF, Chen M, Chen CH, Tsai CJ. Characterization, crystallization kinetics, and melting behavior of poly(ethylene succinate) copolyester containing 7 mol % butylene succinate. J Appl Polym Sci 2009. [DOI: 10.1002/app.29975] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Chen CH, Lu HY, Chen M, Peng JS, Tsai CJ, Yang CS. Synthesis and characterization of poly(ethylene succinate) and its copolyesters containing minor amounts of butylene succinate. J Appl Polym Sci 2009. [DOI: 10.1002/app.29035] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Lu HY, Lu SF, Chen M, Yang CS, Chen CH, Tsai CJ. Characterization, crystallization kinetics, and melting behavior of poly(ethylene succinate) copolyester containing 10 mol % butylene succinate. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/polb.21581] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|