1
|
Boruvka M, Base R, Novak J, Brdlik P, Behalek L, Ngaowthong C. Phase Morphology and Mechanical Properties of Super-Tough PLLA/TPE/EMA-GMA Ternary Blends. Polymers (Basel) 2024; 16:192. [PMID: 38256991 PMCID: PMC10819591 DOI: 10.3390/polym16020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The inherent brittleness of poly(lactic acid) (PLA) limits its use in a wider range of applications that require plastic deformation at higher stress levels. To overcome this, a series of poly(l-lactic acid) (PLLA)/biodegradable thermoplastic polyester elastomer (TPE) blends and their ternary blends with an ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) copolymer as a compatibilizer were prepared via melt blending to improve the poor impact strength and low ductility of PLAs. The thermal behavior, crystallinity, and miscibility of the binary and ternary blends were analyzed by differential scanning calorimetry (DSC). Tensile tests revealed a brittle-ductile transition when the binary PLLA/20TPE blend was compatibilized by 8.6 wt. % EMA-GMA, and the elongation at break increased from 10.9% to 227%. The "super tough" behavior of the PLLA/30TPE/12.9EMA-GMA ternary blend with the incomplete break and notched impact strength of 89.2 kJ∙m-2 was observed at an ambient temperature (23 °C). In addition, unnotched PLLA/40TPE samples showed a tremendous improvement in crack initiation resistance at sub-zero test conditions (-40 °C) with an impact strength of 178.1 kJ∙m-2. Morphological observation by scanning electron microscopy (SEM) indicates that EMA-GMA is preferentially located at the PLLA/TPE interphase, where it is partially incorporated into the matrix and partially encapsulates the TPE. The excellent combination of good interfacial adhesion, debonding cavitation, and subsequent matrix shear yielding worked synergistically with the phase transition from sea-island to co-continuous morphology to form an interesting super-toughening mechanism.
Collapse
Affiliation(s)
- Martin Boruvka
- Department of Engineering Technology, Faculty of Mechanical Engineering, Technical University of Liberec, Studenstka 2, 461 17 Liberec, Czech Republic; (R.B.); (J.N.); (P.B.); (L.B.)
| | - Roman Base
- Department of Engineering Technology, Faculty of Mechanical Engineering, Technical University of Liberec, Studenstka 2, 461 17 Liberec, Czech Republic; (R.B.); (J.N.); (P.B.); (L.B.)
| | - Jan Novak
- Department of Engineering Technology, Faculty of Mechanical Engineering, Technical University of Liberec, Studenstka 2, 461 17 Liberec, Czech Republic; (R.B.); (J.N.); (P.B.); (L.B.)
| | - Pavel Brdlik
- Department of Engineering Technology, Faculty of Mechanical Engineering, Technical University of Liberec, Studenstka 2, 461 17 Liberec, Czech Republic; (R.B.); (J.N.); (P.B.); (L.B.)
| | - Lubos Behalek
- Department of Engineering Technology, Faculty of Mechanical Engineering, Technical University of Liberec, Studenstka 2, 461 17 Liberec, Czech Republic; (R.B.); (J.N.); (P.B.); (L.B.)
| | - Chakaphan Ngaowthong
- Department of Agricultural Engineering for Industry, Faculty of Industrial Technology and Management, King Mongkut’s University of Technology North Bangkok Prachinburi Campus, 29 Moo 6, Tumbon Noenhom, Muang 25230, Prachinburi, Thailand;
| |
Collapse
|
2
|
Muhammad Ghozali, Triwulandari E, Restu WK, Meliana Y, Haryono A. Synthesis of Polyethylene Glycol-9,10-dihydroxy Monostearate as Palm Oil-Based Polyol and Its Application on the Preparation of Polylactic acid/Polyurethane Block Copolymer. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x23700621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
3
|
Preparation, crystallization and thermo-oxygen degradation kinetics of poly(lactic acid)/fulvic acid-g-poly(isoprene) grafting polymer composites. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-020-03498-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Oliveira Almeida DE, Albuquerque AKC, Santos Silva ID, Ries A, Wellen RMR. Curing and morphology approaches of polyurethane/poly(ethylene glycol) foam upon poly(lactic acid) addition. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Andreas Ries
- Multidisciplinary Center for Technological Investigations National University of Asunción, San Lorenzo University Campus San Lorenzo Paraguay
| | - Renate Maria Ramos Wellen
- Academic Unit of Materials Engineering Federal University of Campina Grande Campina Grande Brazil
- Materials Engineering Department Federal University of Paraiba João Pessoa Brazil
| |
Collapse
|
5
|
Lekube BM, Burgstaller C. Study of mechanical and rheological properties, morphology, and miscibility in polylactid acid blends with thermoplastic polymers. J Appl Polym Sci 2021. [DOI: 10.1002/app.51662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Abdul Samat A, Abdul Hamid ZA, Jaafar M, Yahaya BH. Mechanical Properties and In Vitro Evaluation of Thermoplastic Polyurethane and Polylactic Acid Blend for Fabrication of 3D Filaments for Tracheal Tissue Engineering. Polymers (Basel) 2021; 13:polym13183087. [PMID: 34577988 PMCID: PMC8472949 DOI: 10.3390/polym13183087] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Surgical reconstruction of extensive tracheal lesions is challenging. It requires a mechanically stable, biocompatible, and nontoxic material that gradually degrades. One of the possible solutions for overcoming the limitations of tracheal transplantation is a three-dimensional (3D) printed tracheal scaffold made of polymers. Polymer blending is one of the methods used to produce material for a trachea scaffold with tailored characteristics. The purpose of this study is to evaluate the mechanical and in vitro properties of a thermoplastic polyurethane (TPU) and polylactic acid (PLA) blend as a potential material for 3D printed tracheal scaffolds. Both materials were melt-blended using a single screw extruder. The morphologies (as well as the mechanical and thermal characteristics) were determined via scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, tensile test, and Differential Scanning calorimetry (DSC). The samples were also evaluated for their water absorption, in vitro biodegradability, and biocompatibility. It is demonstrated that, despite being not miscible, TPU and PLA are biocompatible, and their promising properties are suitable for future applications in tracheal tissue engineering.
Collapse
Affiliation(s)
- Asmak Abdul Samat
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Sains@Bertam, Universiti Sains Malaysia, Kepala Batas 13200, Malaysia;
- Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia; (Z.A.A.H.); (M.J.)
| | - Mariatti Jaafar
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia; (Z.A.A.H.); (M.J.)
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Sains@Bertam, Universiti Sains Malaysia, Kepala Batas 13200, Malaysia;
- Correspondence:
| |
Collapse
|
7
|
Direct evidence for the validity of assessing reaction extent by torque spectrum during reactive processing. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Zhao X, Hu H, Wang X, Yu X, Zhou W, Peng S. Super tough poly(lactic acid) blends: a comprehensive review. RSC Adv 2020; 10:13316-13368. [PMID: 35492128 PMCID: PMC9051451 DOI: 10.1039/d0ra01801e] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/21/2020] [Indexed: 12/18/2022] Open
Abstract
Poly(lactic acid) or poly(lactide) (PLA) is a renewable, bio-based, and biodegradable aliphatic thermoplastic polyester that is considered a promising alternative to petrochemical-derived polymers in a wide range of commodity and engineering applications. However, PLA is inherently brittle, with less than 10% elongation at break and a relatively poor impact strength, which limit its use in some specific areas. Therefore, enhancing the toughness of PLA has been widely explored in academic and industrial fields over the last two decades. This work aims to summarize and organize the current development in super tough PLA fabricated via polymer blending. The miscibility and compatibility of PLA-based blends, and the methods and approaches for compatibilized PLA blends are briefly discussed. Recent advances in PLA modified with various polymers for improving the toughness of PLA are also summarized and elucidated systematically in this review. Various polymers used in toughening PLA are discussed and organized: elastomers, such as petroleum-based traditional polyurethanes (PUs), bio-based elastomers, and biodegradable polyester elastomers; glycidyl ester compatibilizers and their copolymers/elastomers, such as poly(ethylene-co-glycidyl methacrylate) (EGMA), poly(ethylene-n-butylene-acrylate-co-glycidyl methacrylate) (EBA-GMA); rubber; petroleum-based traditional plastics, such as PE and PP; and various biodegradable polymers, such as poly(butylene adipate-co-terephthalate) (PBAT), polycaprolactone (PCL), poly(butylene succinate) (PBS), and natural macromolecules, especially starch. The high tensile toughness and high impact strength of PLA-based blends are briefly outlined, while the super tough PLA-based blends with impact strength exceeding 50 kJ m−2 are elucidated in detail. The toughening strategies and approaches of PLA based super tough blends are summarized and analyzed. The relationship of the properties of PLA-based blends and their morphological parameters, including particle size, interparticle distance, and phase morphologies, are presented. PLA is a renewable, bio-based, and biodegradable aliphatic thermoplastic polyester that is considered a promising alternative to petrochemical-derived polymers in a wide range of commodity and engineering applications.![]()
Collapse
Affiliation(s)
- Xipo Zhao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry
- Collaborative Innovation Center of Green Light-weight Materials and Processing
- Hubei University of Technology
- Wuhan 430068
- China
| | - Huan Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry
- Collaborative Innovation Center of Green Light-weight Materials and Processing
- Hubei University of Technology
- Wuhan 430068
- China
| | - Xin Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry
- Collaborative Innovation Center of Green Light-weight Materials and Processing
- Hubei University of Technology
- Wuhan 430068
- China
| | - Xiaolei Yu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry
- Collaborative Innovation Center of Green Light-weight Materials and Processing
- Hubei University of Technology
- Wuhan 430068
- China
| | - Weiyi Zhou
- Hubei Provincial Key Laboratory of Green Materials for Light Industry
- Collaborative Innovation Center of Green Light-weight Materials and Processing
- Hubei University of Technology
- Wuhan 430068
- China
| | - Shaoxian Peng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry
- Collaborative Innovation Center of Green Light-weight Materials and Processing
- Hubei University of Technology
- Wuhan 430068
- China
| |
Collapse
|
9
|
Bernardes GP, Rosa Luiz N, Santana RMC, Camargo Forte MM. Rheological behavior and morphological and interfacial properties of PLA/TPE blends. J Appl Polym Sci 2019. [DOI: 10.1002/app.47962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Giordano Pierozan Bernardes
- Federal University of Rio Grande do Sul (UFRGS), School of EngineeringLaboratory of Polymeric Materials (LaPol) P.O. Box 15010, 91501‐970 Porto Alegre Rio Grande do Sul Brazil
| | - Nathália Rosa Luiz
- Federal University of Rio Grande do Sul (UFRGS), School of EngineeringLaboratory of Polymeric Materials (LaPol) P.O. Box 15010, 91501‐970 Porto Alegre Rio Grande do Sul Brazil
| | - Ruth Marlene Campomanes Santana
- Federal University of Rio Grande do Sul (UFRGS), School of EngineeringLaboratory of Polymeric Materials (LaPol) P.O. Box 15010, 91501‐970 Porto Alegre Rio Grande do Sul Brazil
| | - Maria Madalena Camargo Forte
- Federal University of Rio Grande do Sul (UFRGS), School of EngineeringLaboratory of Polymeric Materials (LaPol) P.O. Box 15010, 91501‐970 Porto Alegre Rio Grande do Sul Brazil
| |
Collapse
|
10
|
Burgoa A, Hernandez R, Vilas JL. Toward superior applications of thermoplastic elastomer blends: double Tgincrease and improved ductility. POLYM INT 2019. [DOI: 10.1002/pi.5803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Aizeti Burgoa
- Polymer Department, Leartiker S. Coop Markina‐Xemein Spain
| | | | - Jose L Vilas
- Macromolecular Chemistry Research Group (labquimac), Department of Physical Chemistry, Faculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU) Leioa Spain
- BCMaterials, Basque Center for Materials, Applications and NanostructuresUPV/EHU Science Park Leioa Spain
| |
Collapse
|
11
|
Pregi E, Kun D, Vu V, Pukánszky B. Structure evolution in poly(ethylene-co-vinyl alcohol)/lignin blends: Effect of interactions and composition. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Phetphaisit CW, Wapanyakul W, Phinyocheep P. Effect of modified rubber powder on the morphology and thermal and mechanical properties of blown poly(lactic acid)-hydroxyl epoxidized natural rubber films for flexible film packaging. J Appl Polym Sci 2019. [DOI: 10.1002/app.47503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chor Wayakron Phetphaisit
- Department of Chemistry, Faculty of Science; Naresuan University; Phitsanulok 65000 Thailand
- Center of Excellence in Biomaterials; Naresuan University; Phitsanulok 65000 Thailand
| | - Wittawat Wapanyakul
- Department of Chemistry, Faculty of Science; Naresuan University; Phitsanulok 65000 Thailand
- Center of Excellence in Biomaterials; Naresuan University; Phitsanulok 65000 Thailand
| | - Pranee Phinyocheep
- Department of Chemistry, Faculty of Science; Mahidol University; 10400 Thailand
| |
Collapse
|
13
|
Poly (lactic acid) blends: Processing, properties and applications. Int J Biol Macromol 2018; 125:307-360. [PMID: 30528997 DOI: 10.1016/j.ijbiomac.2018.12.002] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 11/21/2022]
Abstract
Poly (lactic acid) or polylactide (PLA) is a commercial biobased, biodegradable, biocompatible, compostable and non-toxic polymer that has competitive material and processing costs and desirable mechanical properties. Thereby, it can be considered favorably for biomedical applications and as the most promising substitute for petroleum-based polymers in a wide range of commodity and engineering applications. However, PLA has some significant shortcomings such as low melt strength, slow crystallization rate, poor processability, high brittleness, low toughness, and low service temperature, which limit its applications. To overcome these limitations, blending PLA with other polymers is an inexpensive approach that could also tailor the final properties of PLA-based products. During the last two decades, researchers investigated the synthesis, processing, properties, and development of various PLA-based blend systems including miscible blends of poly l-lactide (PLLA) and poly d-lactide (PDLA), which generate stereocomplex crystals, binary immiscible/miscible blends of PLA with other thermoplastics, multifunctional ternary blends using a third polymer or fillers such as nanoparticles, as well as PLA-based blend foam systems. This article reviews all these investigations and compares the syntheses/processing-morphology-properties interrelationships in PLA-based blends developed so far for various applications.
Collapse
|
14
|
Bedő D, Imre B, Domján A, Schön P, Vancso GJ, Pukánszky B. Coupling of poly(lactic acid) with a polyurethane elastomer by reactive processing. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Degradability of cross-linked polyurethanes based on synthetic polyhydroxybutyrate and modified with polylactide. CHEMICAL PAPERS 2017; 71:2243-2251. [PMID: 29104353 PMCID: PMC5655605 DOI: 10.1007/s11696-017-0218-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/02/2017] [Indexed: 02/02/2023]
Abstract
In many areas of application of conventional non-degradable cross-linked polyurethanes (PUR), there is a need for their degradation under the influence of specific environmental factors. It is practiced by incorporation of sensitive to degradation compounds (usually of natural origin) into the polyurethane structure, or by mixing them with polyurethanes. Cross-linked polyurethanes (with 10 and 30%wt amount of synthetic poly([R,S]-3-hydroxybutyrate) (R,S-PHB) in soft segments) and their physical blends with poly([d,l]-lactide) (PDLLA) were investigated and then degraded under hydrolytic (phosphate buffer solution) and oxidative (CoCl2/H2O2) conditions. The rate of degradation was monitored by changes of samples mass, morphology of surface and their thermal properties. Despite the small weight losses of samples, the changes of thermal properties of polymers and topography of their surface indicated that they were susceptible to gradual degradation under oxidative and hydrolytic conditions. Blends of PDLLA and polyurethane with 30 wt% of R,S-PHB in soft segments and PUR/PDLLA blends absorbed more
water and degraded faster than polyurethane with low amount of R,S-PHB.
Collapse
|
16
|
The influence of the length of the degradable segment on the functional properties and hydrolytic stability of multi-component polyurethane elastomeric films. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Lv S, Gu J, Tan H, Zhang Y. The morphology, rheological, and mechanical properties of wood flour/starch/poly(lactic acid) blends. J Appl Polym Sci 2017. [DOI: 10.1002/app.44743] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shanshan Lv
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering; Northeast Forestry University; Harbin 150040 People's Republic of China
| | - Jiyou Gu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering; Northeast Forestry University; Harbin 150040 People's Republic of China
| | - Haiyan Tan
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering; Northeast Forestry University; Harbin 150040 People's Republic of China
| | - Yanhua Zhang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering; Northeast Forestry University; Harbin 150040 People's Republic of China
| |
Collapse
|
18
|
Valerio O, Misra M, Mohanty AK. Sustainable biobased blends of poly(lactic acid) (PLA) and poly(glycerol succinate-co-maleate) (PGSMA) with balanced performance prepared by dynamic vulcanization. RSC Adv 2017. [DOI: 10.1039/c7ra06612k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A sustainable and industrially viable method for toughening poly(lactic acid) by dynamic vulcanization using glycerol and succinic acid based polyesters.
Collapse
Affiliation(s)
- Oscar Valerio
- School of Engineering
- University of Guelph
- Guelph
- Canada
- Bioproducts Discovery and Development Centre
| | - Manjusri Misra
- School of Engineering
- University of Guelph
- Guelph
- Canada
- Bioproducts Discovery and Development Centre
| | - Amar K. Mohanty
- School of Engineering
- University of Guelph
- Guelph
- Canada
- Bioproducts Discovery and Development Centre
| |
Collapse
|
19
|
Zhang J, Wang S, Qiao Y, Li Q. Effect of morphology designing on the structure and properties of PLA/PEG/ABS blends. Colloid Polym Sci 2016. [DOI: 10.1007/s00396-016-3940-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Gojzewski H, Imre B, Check C, Chartoff R, Vancso J. Mechanical mapping and morphology across the length scales unveil structure-property relationships in polycaprolactone based polyurethanes. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/polb.24140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Hubert Gojzewski
- Materials Science and Technology of Polymers, Faculty of Science and Technology; University of Twente; Enschede 7522 NB The Netherlands
| | - Balazs Imre
- School of Chemical, Biological and Environmental Engineering; Oregon State University; Corvallis Oregon 97331
| | - Casey Check
- Center for Advanced Materials Characterization in Oregon (CAMCOR); University of Oregon; Eugene Oregon 97405
| | - Richard Chartoff
- School of Chemical, Biological and Environmental Engineering; Oregon State University; Corvallis Oregon 97331
| | - Julius Vancso
- Materials Science and Technology of Polymers, Faculty of Science and Technology; University of Twente; Enschede 7522 NB The Netherlands
| |
Collapse
|
21
|
Wang S, Pang S, Pan L, Xu N, Huang H, Li T. Compatibilization of poly(lactic acid)/ethylene-propylene-diene rubber blends by using organic montmorillonite as a compatibilizer. J Appl Polym Sci 2016. [DOI: 10.1002/app.44192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Sisi Wang
- College of Materials and Chemical Engineering; Hainan University; Hainan Haikou 570228 People's Republic of China
| | - Sujuan Pang
- College of Materials and Chemical Engineering; Hainan University; Hainan Haikou 570228 People's Republic of China
| | - Lisha Pan
- College of Materials and Chemical Engineering; Hainan University; Hainan Haikou 570228 People's Republic of China
| | - Nai Xu
- College of Materials and Chemical Engineering; Hainan University; Hainan Haikou 570228 People's Republic of China
| | - Hanxiong Huang
- Lab for Micro Molding and Polymer Rheology, Department of Industrial Equipment and Control Engineering; South China University of Technology; Guangzhou 510640 People's Republic of China
| | - Tan Li
- Shiner Industrial Co, Ltd, Hainan; Haikou 570125 People's Republic of China
| |
Collapse
|
22
|
Effect of Peroxide and Organoclay on Thermal and Mechanical Properties of PLA in PLA/NBR Melted Blend. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.egypro.2016.05.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Špírková M, Serkis M, Poręba R, Machová L, Hodan J, Kredatusová J, Kubies D, Zhigunov A. Experimental study of the simulated process of degradation of polycarbonate- and d,l-lactide-based polyurethane elastomers under conditions mimicking the physiological environment. Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2016.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Zhang X, Koranteng E, Wu Z, Wu Q. Structure and properties of polylactide toughened by polyurethane prepolymer. J Appl Polym Sci 2016. [DOI: 10.1002/app.42983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xu Zhang
- Green Polymer Laboratory College of Chemistry; Central China Normal University; Wuhan China 430079
| | - Ernest Koranteng
- Green Polymer Laboratory College of Chemistry; Central China Normal University; Wuhan China 430079
| | - Zhengshun Wu
- Green Polymer Laboratory College of Chemistry; Central China Normal University; Wuhan China 430079
| | - Qiangxian Wu
- Green Polymer Laboratory College of Chemistry; Central China Normal University; Wuhan China 430079
| |
Collapse
|
25
|
Davoodi S, Oliaei E, Davachi SM, Hejazi I, Seyfi J, Heidari BS, Ebrahimi H. Preparation and characterization of interface-modified PLA/starch/PCL ternary blends using PLLA/triclosan antibacterial nanoparticles for medical applications. RSC Adv 2016. [DOI: 10.1039/c6ra07667j] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, the antibacterial, interface-modified ternary blends based on polylactic acid/starch/polycaprolactone were prepared for medical applications.
Collapse
Affiliation(s)
- Saeed Davoodi
- School of Chemical Engineering
- College of Engineering
- University of Tehran
- Tehran
- Iran
| | - Erfan Oliaei
- School of Chemical Engineering
- College of Engineering
- University of Tehran
- Tehran
- Iran
| | | | - Iman Hejazi
- Department of Polymer Engineering & Color Technology
- Amirkabir University of Technology
- Tehran
- Iran
| | - Javad Seyfi
- Department of Chemical Engineering
- Shahrood Branch
- Islamic Azad University
- Shahrood
- Iran
| | | | - Hossein Ebrahimi
- Department of Polymer Engineering & Color Technology
- Amirkabir University of Technology
- Tehran
- Iran
| |
Collapse
|
26
|
Megevand B, Pruvost S, Lins LC, Livi S, Gérard JF, Duchet-Rumeau J. Probing nanomechanical properties with AFM to understand the structure and behavior of polymer blends compatibilized with ionic liquids. RSC Adv 2016. [DOI: 10.1039/c6ra18492h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The PeakForce QNM AFM mode was used to investigate the nanoscale mechanical properties of poly(butylene-adipate-co-terephthalate)/poly(lactic acid) (PBAT/PLA) blends successfully compatibilized with phosphonium-based ionic liquids (ILs).
Collapse
Affiliation(s)
- Benjamin Megevand
- Université de Lyon
- INSA Lyon
- UMR CNRS 5223
- IMP Ingénierie des Matériaux Polymères
- F-69621 Villeurbanne
| | - Sébastien Pruvost
- Université de Lyon
- INSA Lyon
- UMR CNRS 5223
- IMP Ingénierie des Matériaux Polymères
- F-69621 Villeurbanne
| | - Luanda C. Lins
- Université de Lyon
- INSA Lyon
- UMR CNRS 5223
- IMP Ingénierie des Matériaux Polymères
- F-69621 Villeurbanne
| | - Sébastien Livi
- Université de Lyon
- INSA Lyon
- UMR CNRS 5223
- IMP Ingénierie des Matériaux Polymères
- F-69621 Villeurbanne
| | - Jean-François Gérard
- Université de Lyon
- INSA Lyon
- UMR CNRS 5223
- IMP Ingénierie des Matériaux Polymères
- F-69621 Villeurbanne
| | - Jannick Duchet-Rumeau
- Université de Lyon
- INSA Lyon
- UMR CNRS 5223
- IMP Ingénierie des Matériaux Polymères
- F-69621 Villeurbanne
| |
Collapse
|
27
|
Oliaei E, Kaffashi B, Davoodi S. Investigation of structure and mechanical properties of toughened poly(l-lactide)/thermoplastic poly(ester urethane) blends. J Appl Polym Sci 2015. [DOI: 10.1002/app.43104] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Erfan Oliaei
- School of Chemical Engineering, College of Engineering; University of Tehran; P.O. Box 11365-4563 Tehran Iran. Tel: + 98 21 66967789, Fax: + 98 21 66957784
| | - Babak Kaffashi
- School of Chemical Engineering, College of Engineering; University of Tehran; P.O. Box 11365-4563 Tehran Iran. Tel: + 98 21 66967789, Fax: + 98 21 66957784
| | - Saeed Davoodi
- School of Chemical Engineering, College of Engineering; University of Tehran; P.O. Box 11365-4563 Tehran Iran. Tel: + 98 21 66967789, Fax: + 98 21 66957784
| |
Collapse
|
28
|
Likittanaprasong N, Seadan M, Suttiruengwong S. Impact property enhancement of poly (lactic acid) with different flexible copolymers. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/1757-899x/87/1/012069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Compression molding and melt-spinning of the blends of poly(lactic acid) and poly(butylene succinate-co-adipate). J Appl Polym Sci 2014. [DOI: 10.1002/app.41856] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Špírková M, Machová L, Kobera L, Brus J, Poręba R, Serkis M, Zhigunov A. Multiscale approach to the morphology, structure, and segmental dynamics of complex degradable aliphatic polyurethanes. J Appl Polym Sci 2014. [DOI: 10.1002/app.41590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Milena Špírková
- Institute of Macromolecular Chemistry AS CR; v.v.i., Heyrovského nám. 2, 162 06 Praha 6 Czech Republic
| | - Luďka Machová
- Institute of Macromolecular Chemistry AS CR; v.v.i., Heyrovského nám. 2, 162 06 Praha 6 Czech Republic
| | - Libor Kobera
- Institute of Macromolecular Chemistry AS CR; v.v.i., Heyrovského nám. 2, 162 06 Praha 6 Czech Republic
| | - Jiří Brus
- Institute of Macromolecular Chemistry AS CR; v.v.i., Heyrovského nám. 2, 162 06 Praha 6 Czech Republic
| | - Rafał Poręba
- Institute of Macromolecular Chemistry AS CR; v.v.i., Heyrovského nám. 2, 162 06 Praha 6 Czech Republic
| | - Magdalena Serkis
- Institute of Macromolecular Chemistry AS CR; v.v.i., Heyrovského nám. 2, 162 06 Praha 6 Czech Republic
| | - Alexander Zhigunov
- Institute of Macromolecular Chemistry AS CR; v.v.i., Heyrovského nám. 2, 162 06 Praha 6 Czech Republic
| |
Collapse
|
31
|
Zuo DY, Zhang L, Yi CH, Zuo HT. Effects of compatibility of poly(l
-lactic-acid) and thermoplastic polyurethane on mechanical property of blend fiber. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dan-Ying Zuo
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies; Wuhan Textile University; Hubei 430073 China
| | - Lei Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies; Wuhan Textile University; Hubei 430073 China
| | - Chang-Hai Yi
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies; Wuhan Textile University; Hubei 430073 China
| | - Han-Tao Zuo
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies; Wuhan Textile University; Hubei 430073 China
| |
Collapse
|
32
|
Panaitescu DM, Frone AN, Nicolae C. Micro- and nano-mechanical characterization of polyamide 11 and its composites containing cellulose nanofibers. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.09.031] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|