1
|
Wang Y, Zhou Z, Chen J, Li S, Zheng H, Lu J, Wang S, Zhang J, Lin K, Wang K, Wang Y. Self-Healing Silver Nanowires and Reduced Graphene Oxide/Polyurethane Composite Film Based on the Diels–Alder Reaction under Infrared Radiation. MEMBRANES 2022; 12:membranes12040405. [PMID: 35448375 PMCID: PMC9030009 DOI: 10.3390/membranes12040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023]
Abstract
The hybrid composite of silver nanowires (AgNWs) and reduced graphene oxide (RGO) was synthesized in situ by an improved polyol–thermal method. The AgNWs-RGO with mass contents of 5–37 wt% was added into the thermo-reversible Diels–Alder reaction polyurethane (DA-PU) matrix with the AgNWs as the main conductor and the RGO as the auxiliary conductor to prepare self-healing composite conductive films. Further, the electrical conductivity, thermal conductivity, mechanical properties, infrared thermal response, and self-healing property of the composite film under infrared light irradiation were studied. The experimental results demonstrate that the AgNWs-RGO endows the composite film with good electrical and thermal conductivity and infrared thermal response ability, while the mechanical properties of the composite film decrease as the AgNWs-RGO mass content increases. The self-healing efficiency of the composite film is higher than that of the pure DA-PU under infrared light irradiation due to the good infrared photothermal response ability of the AgNWs-RGO. When the mass content of AgNWs-RGO in the composite film was 25 wt%, the AgNWs-RGO showed good dispersion in composite films, and the resistivity, thermal conductivity, and tensile strength of the composite film were 0.544 Ω·m, 0.3039 W·m−1·K−1, and 9.05 MPa, respectively. The infrared photothermal conversion temperature of the composite film is 158.5 °C (3450 lux for 1 min), and the infrared photothermal self-healing efficiency is 118% (3450 lux for 600 s). The AgNWs-RGO also improves the multiple self-healing ability of the composite film. The use of a high mass content of AgNWs-RGO in the composite film is beneficial in obtaining high multiple self-healing efficiencies. The first and the fifth infrared thermal self-healing efficiencies of the composite film with AgNWs-RGO of 35 wt% are 105% and 86%, respectively, and the resistivity of the composite film changes little and still maintains good conductivity.
Collapse
|
2
|
Sun J, Zhao E, Liang J, Li H, Zhao S, Wang G, Gu X, Tang BZ. Diradical-Featured Organic Small-Molecule Photothermal Material with High-Spin State in Dimers for Ultra-Broadband Solar Energy Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108048. [PMID: 34882850 DOI: 10.1002/adma.202108048] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Organic materials with radical characteristics are gaining increasing attention, due to their potential implications in highly efficient utilization of solar energy. Manipulating intermolecular interactions is crucial for tuning radical properties, as well as regulating their absorption bands, and thus improving the photothermal conversion efficiency. Herein, a diradical-featured organic small-molecule croconium derivative, CR-DPA-T, is reported for highly efficient utilization of solar energy. Upon aggregation, CR-DPA-T exists in dimer form, stabilized by the strong intermolecular π-π interactions, and exhibits a rarely reported high-spin state. Benefiting from the synergic effects of radical characteristics and strong intermolecular π-π interactions, CR-DPA-T powder absorbs broadly from 300 to 2000 nm. In-depth investigations with transient absorption analysis reveal that the strong intermolecular π-π interactions can promote nonradiative relaxation by accelerating internal conversion and facilitating intermolecular charge transfer (ICT) between dimeric molecules to open up faster internal conversion pathways. Remarkably, CR-DPA-T powder demonstrates a high photothermal efficiency of 79.5% under 808 nm laser irradiation. By employing CR-DPA-T as a solar harvester, a CR-DPA-T-loaded flexible self-healing poly(dimethylsiloxane) (H-PDMS) film, named as H-PDMS/CR-DPA-T self-healing film, is fabricated and employed for solar-thermal applications. These findings provide a feasible guideline for developing highly efficient diradical-featured organic photothermal materials.
Collapse
Affiliation(s)
- Jiangman Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Engui Zhao
- School of Science, Harbin Institute of Technology, Shenzhen, HIT Campus of University Town, Shenzhen, 518055, China
| | - Jie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuhong Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China
| |
Collapse
|
3
|
Das M, Aswathy T, Pal S, Naskar K. Effect of ionic liquid modified graphene oxide on mechanical and self-healing application of an ionic elastomer. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Gao H, Xu J, Liu S, Song Z, Zhou M, Liu S, Li F, Li F, Wang X, Wang Z, Zhang Q. Stretchable, self-healable integrated conductor based on mechanical reinforced graphene/polyurethane composites. J Colloid Interface Sci 2021; 597:393-400. [PMID: 33892422 DOI: 10.1016/j.jcis.2021.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/17/2023]
Abstract
Stretchable conductors are susceptible to wear through repeated deformation over time. Stretchable conductors with self-healing properties can increase longevity and reduce safety hazards. However, most current self-healing conductors can only repair either the conductive layer or the insulating layer. Meantime, high mechanical robustness and self-healing efficiency are exclusive especially at ambient conditions. Realizing a stretchable conductor with integral self-healing and ultra-high mechanical strength is challenging, because this requires good interfacial compatibility and adaptability of the conductive and insulating layers. We adapt a biphasic dynamic network strategy to add toughness to self-healing materials. The DOU (dimethylglyoxime-urethane polyurethane) dynamic bonds and hydrogen bonds in the soft phase enable high self-healing efficiency, while the graphene as a hard phase supports the material's superior mechanical properties. We have prepared an overall self-healing stretchable conductor through the soft phase as a self-encapsulating insulating layer. This all-solid (Tg = -49.5 °C) graphene/dimethylglyoxime-urethane polyurethane (Gr/DOU-PU) composites characteristic of both high mechanical strength (~6 MPa, ~1000%, ~48 MJ m-3), self-healing conductivity (~90%, 10 min, 25 °C) and conductivity (R□=47.8 Ω □-1, d = 0.4 mm). The conductor has excellent stability for flexible electronics and for building stress sensors.
Collapse
Affiliation(s)
- Han Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Jianan Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Shen Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Zhongqian Song
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Min Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Shiwei Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Fei Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Fenghua Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xiaodan Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Qixian Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China; School of Materials Science and Engineering, Shanghai University, Shanghai 200436, PR China.
| |
Collapse
|
5
|
Ha YM, Kim YN, Jung YC. Rapid and Local Self-Healing Ability of Polyurethane Nanocomposites Using Photothermal Polydopamine-Coated Graphene Oxide Triggered by Near-Infrared Laser. Polymers (Basel) 2021; 13:1274. [PMID: 33919935 PMCID: PMC8070893 DOI: 10.3390/polym13081274] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 11/23/2022] Open
Abstract
In this study, we report the self-healing ability of polyurethane (PU) nanocomposites based on the photothermal effect of polydopamine-coated graphene oxide (PDA-rGO). Polydopamine (PDA) was coated on the graphene oxide (GO) surface, while simultaneously reducing GO by the oxidation of dopamine hydrochloride in an alkaline aqueous solution. The PDA-rGO was characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, thermogravimetric analysis, and scanning electron microscopy-energy-dispersive X-ray analysis. PDA-rGO/PU nanocomposites with nanofiller contents of 0.1, 0.5 and 1 wt% were prepared by ex situ mixing method. The photothermal effect of the PDA-rGO in the PU matrix was investigated at 0.1 W/cm2 using an 808 nm near-infrared (NIR) laser. The photothermal properties of the PDA-rGO/PU nanocomposites were superior to those of the GO/PU nanocomposites, owing to an increase in the local surface plasmon resonance effect by coating with PDA. Subsequently, the self-healing efficiency was confirmed by recovering the tensile stress of the damaged nanocomposites using the thermal energy generated by the NIR laser.
Collapse
Affiliation(s)
| | | | - Yong Chae Jung
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-Do 55324, Korea; (Y.-M.H.); (Y.N.K.)
| |
Collapse
|
6
|
Ding S, Zhang J, Zhou L, Luo Y. Promoting healing progress in polymer composites based on
Diels‐Alder
reaction by constructing silver bridges. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Shanjun Ding
- School of Materials Science and Engineering Beijing Institute of Technology Beijing China
- School of Mechatronical Engineering Beijing Institute of Technology Beijing China
| | - Jun Zhang
- School of Materials Science and Engineering Beijing Institute of Technology Beijing China
| | - Lin Zhou
- School of Mechatronical Engineering Beijing Institute of Technology Beijing China
| | - Yunjun Luo
- School of Materials Science and Engineering Beijing Institute of Technology Beijing China
| |
Collapse
|
7
|
Abstract
Flexible conductive films were prepared via a convenient blending method with thermoplastic polyurethane (TPU) as matrix and nanocrystalline cellulose (NCC) modified chemically reduced graphene oxide (RGO/NCC) as the conductive fillers. The relationships between the electrical and thermal properties as well as the tensile strength and electrothermal response performance of the composite film and the mass content of reduced graphene oxide (RGO) and the initial TPU concentration were systematically investigated. The experimental results show that the resistivity of the composite film with the mass content of RGO/NCC of 7 wt% and an initial TPU concentration of 20 wt% is the minimum of 8.1 Ω·mm. However, the thermal conductivity of composite film with mass content of RGO/NCC of 5 wt% and the initial TPU concentration of 30 wt% reaches a maximum of 0.3464 W·m−1·K−1, which is an increase of 56% compared with pure TPU. The tensile strength of the composite films with mass contents of RGO of 3 wt% prepared with the initial TPU concentrations of 20 wt% reaches the maximum of 43.2 MPa, which increases by a factor of 1.5 (the tensile strength of the pure TPU is 28.9 MPa). The composite conductive film has a fast electrothermal response. Furthermore, superhydrophobic composite conductive films were prepared by immersing the composite conductive film into fluorinated decyl polyhedral oligomeric silsesquioxane (F-POSS) ethanol solution. The water contact angle of the superhydrophobic composite conductive film reaches 158.19° and the resistivity of the superhydrophobic composite film slightly increases and still has good conductivity.
Collapse
|
8
|
Wang K, Zhou Z, Zhang J, Tang J, Wu P, Wang Y, Zhao Y, Leng Y. Electrical and Thermal and Self-Healing Properties of Graphene-Thermopolyurethane Flexible Conductive Films. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E753. [PMID: 32326612 PMCID: PMC7221931 DOI: 10.3390/nano10040753] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/09/2020] [Indexed: 12/30/2022]
Abstract
We fabricated graphene-thermopolyurethane (G-TPU) flexible conductive film by a blending method and systematically investigated the electrical, thermal and self-healing properties of the G-TPU flexible conductive film by infrared light and electricity. The experimental results demonstrate that the G-TPU composite films have good conductivity and thermal conductivity in the appropriate mass content of graphene in the composite film. The composite films have the good electro-thermal and infrared light thermal response performances and electro-thermal response performance is closely related to the mass content of graphene in the composite film, but the infrared light thermal response performance is not. The scratch on the composite film can be completely healed, using electricity or infrared light. The healing efficiency of the composite film healed using infrared light is higher than that of using the electricity, while the healing time of the composite film is shorter. Regardless of the self-healing method, the temperature of the self-healing is a very important factor. The self-healing conductive composite film still exhibits a good conductivity.
Collapse
Affiliation(s)
- Ke Wang
- Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, Guangdong, China; (K.W.); (Z.Z.); (J.Z.); (J.T.); (P.W.)
| | - Zhimin Zhou
- Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, Guangdong, China; (K.W.); (Z.Z.); (J.Z.); (J.T.); (P.W.)
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jiahao Zhang
- Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, Guangdong, China; (K.W.); (Z.Z.); (J.Z.); (J.T.); (P.W.)
| | - Jinyuan Tang
- Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, Guangdong, China; (K.W.); (Z.Z.); (J.Z.); (J.T.); (P.W.)
| | - Peiyu Wu
- Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, Guangdong, China; (K.W.); (Z.Z.); (J.Z.); (J.T.); (P.W.)
| | - Yuehui Wang
- Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, Guangdong, China; (K.W.); (Z.Z.); (J.Z.); (J.T.); (P.W.)
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuzhen Zhao
- Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;
| | - Yong Leng
- Zhongshan Breathtex Speciality Material Co., Ltd., Zhongshan 528441, Guangdong, China;
| |
Collapse
|
9
|
Willocq B, Odent J, Dubois P, Raquez JM. Advances in intrinsic self-healing polyurethanes and related composites. RSC Adv 2020; 10:13766-13782. [PMID: 35492994 PMCID: PMC9051554 DOI: 10.1039/d0ra01394c] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/20/2020] [Indexed: 11/25/2022] Open
Abstract
Fascinating and challenging, the development of repairable materials with long-lasting, sustainable and high-performance properties is a key-parameter to provide new advanced materials. To date, the concept of self-healing includes capsule-based healing systems, vascular healing systems, and intrinsic healing systems. Polyurethanes have emerged as a promising class of polymeric materials in this context due to their ease of synthesis and their outstanding properties. This review thereby focuses on the current research and developments in intrinsic self-healing polyurethanes and related composites. The chronological development of such advanced materials as well as the different strategies employed to confer living-like healing properties are discussed. Particular attention will be paid on chemical reactions utilized for self-healing purposes. Potential applications, challenges and future prospects in self-healing polyurethane fields are also provided.
Collapse
Affiliation(s)
- Bertrand Willocq
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS) Place du Parc 20 7000 Mons Belgium
| | - Jérémy Odent
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS) Place du Parc 20 7000 Mons Belgium
| | - Philippe Dubois
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS) Place du Parc 20 7000 Mons Belgium
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS) Place du Parc 20 7000 Mons Belgium
| |
Collapse
|
10
|
Lee WJ, Cha SH. Improvement of Mechanical and Self-Healing Properties for Polymethacrylate Derivatives Containing Maleimide Modified Graphene Oxide. Polymers (Basel) 2020; 12:E603. [PMID: 32155854 PMCID: PMC7182887 DOI: 10.3390/polym12030603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 01/19/2023] Open
Abstract
In this paper, a self-healable nanocomposite based on the Diels-Alder reaction is developed. A graphene-based nanofiller is introduced to improve the self-healing efficiency, as well as the mechanical properties of the nanocomposite. Graphene oxide (GO) is modified with maleimide functional groups, and the maleimide-modified GO (mGO) enhanced the compatibility of the polymer matrix and nanofiller. The tensile strength of the nanocomposite containing 0.030 wt% mGO is improved by 172%, compared to that of a polymer film incorporating both furan-functionalized polymer and bismaleimide without any nanofiller. Moreover, maleimide groups of the surface on mGO participate in the Diels-Alder reaction, which improves the self-healing efficiency. The mechanical and self-healing properties are significantly improved by using a small amount of mGO.
Collapse
Affiliation(s)
| | - Sang-Ho Cha
- Department of Chemical Engineering Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon, Gyeonggi 16227, Korea;
| |
Collapse
|
11
|
Lin C, Sheng D, Liu X, Xu S, Ji F, Dong L, Zhou Y, Yang Y. Effect of different sizes of graphene on Diels-Alder self-healing polyurethane. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121822] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Khajeh Dangolani S, Sharifat S, Panahi F, Khalafi-Nezhad A. Immobilized palladium nanoparticles on a cyclodextrin-polyurethane nanosponge (Pd-CD-PU-NS): An efficient catalyst for cyanation reaction in aqueous media. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Improvement of Mechanical Properties and Self-Healing Efficiency by Ex-Situ Incorporation of TiO 2 Nanoparticles to a Waterborne Poly(Urethane-Urea). Polymers (Basel) 2019; 11:polym11071209. [PMID: 31331041 PMCID: PMC6680434 DOI: 10.3390/polym11071209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/28/2023] Open
Abstract
This research work was focused on the incorporation of TiO2 nanoparticles into synthesized solvent-free waterborne poly(urethane-urea) (WPUU) based on hydrophilic poly(ethylene oxide) (PU0) in order to improve both the mechanical properties and self-healing effectiveness of a polymer matrix. The incorporation of TiO2 nanoparticles resulted in a successful enhancement of the mechanical properties of nanocomposite films when compared to PU0. Simultaneously, the obtained nanocomposite films did not only maintain the self-healing ability of the PU0 film, measured by means of mechanical properties after successive cutting/recovery cycles, but they also showed a higher self-healing efficiency than the PU0 film. Moreover, the well-dispersed TiO2 nanoparticles, visualized by atomic force microscopy (AFM), kept their conductive properties when embedded in the PU0 matrix, as was confirmed by electrostatic force microscopy (EFM). This research work described a simple and industrially appealing way to control the dispersion of commercially available TiO2 nanoparticles in waterborne poly(urethane-urea) for the designing of inorganic/organic hybrid nanocomposites with enhanced mechanical properties and self-healing efficiency, in which TiO2 nanoparticles preserved their conductive properties within the polymer matrix.
Collapse
|
14
|
Menon AV, Madras G, Bose S. The journey of self-healing and shape memory polyurethanes from bench to translational research. Polym Chem 2019. [DOI: 10.1039/c9py00854c] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this critical review, we have enlisted a comprehensive summary of different approaches that have been used over the past decade to synthesize self-healing polyurethanes including “close then heal” and “shape memory assisted self-healing” concept.
Collapse
Affiliation(s)
- Aishwarya V. Menon
- Center for Nano Science and Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| | - Giridhar Madras
- Department of Chemical Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| | - Suryasarathi Bose
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| |
Collapse
|
15
|
Near-infrared light triggered shape memory and self-healable polyurethane/functionalized graphene oxide composites containing diselenide bonds. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.10.059] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Hernández Santana M, den Brabander M, García S, van der Zwaag S. Routes to Make Natural Rubber Heal: A Review. POLYM REV 2018. [DOI: 10.1080/15583724.2018.1454947] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Marianella Hernández Santana
- Novel Aerospace Materials Group, Aerospace Structures and Materials Department, Delft University of Technology, Delft, the Netherlands
- Polymer Composite Group, Polymeric Nanomaterials and Biomaterials Department, Institute of Polymer Science and Technology (ICTP-CSIC), Madrid, Spain
| | - Michael den Brabander
- Novel Aerospace Materials Group, Aerospace Structures and Materials Department, Delft University of Technology, Delft, the Netherlands
| | - Santiago García
- Novel Aerospace Materials Group, Aerospace Structures and Materials Department, Delft University of Technology, Delft, the Netherlands
| | - Sybrand van der Zwaag
- Novel Aerospace Materials Group, Aerospace Structures and Materials Department, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
17
|
Lin C, Sheng D, Liu X, Xu S, Ji F, Dong L, Zhou Y, Yang Y. NIR induced self-healing electrical conductivity polyurethane/graphene nanocomposites based on Diels−Alder reaction. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.02.036] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Du W, Jin Y, Pan J, Fan W, Lai S, Sun X. Thermal induced shape-memory and self-healing of segmented polyurethane containing diselenide bonds. J Appl Polym Sci 2018. [DOI: 10.1002/app.46326] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Weining Du
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education; Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
| | - Yong Jin
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education; Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
| | - Jiezhou Pan
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education; Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
| | - Wuhou Fan
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education; Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
| | - Shuangquan Lai
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education; Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
| | - Xiaopeng Sun
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education; Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
| |
Collapse
|
19
|
Du Y, Li D, Liu L, Gai G. Recent Achievements of Self-Healing Graphene/Polymer Composites. Polymers (Basel) 2018; 10:E114. [PMID: 30966150 PMCID: PMC6415098 DOI: 10.3390/polym10020114] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
Self-healing materials have attracted much attention because that they possess the ability to increase the lifetime of materials and reduce the total cost of systems during the process of long-term use; incorporation of functional material enlarges their applications. Graphene, as a promising additive, has received great attention due to its large specific surface area, ultrahigh conductivity, strong antioxidant characteristics, thermal stability, high thermal conductivity, and good mechanical properties. In this brief review, graphene-containing polymer composites with self-healing properties are summarized including their preparations, self-healing conditions, properties, and applications. In addition, future perspectives of graphene/polymer composites are briefly discussed.
Collapse
Affiliation(s)
- Yongxu Du
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Dong Li
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Libin Liu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Guangjie Gai
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
20
|
Strankowski M, Korzeniewski P, Strankowska J, A S A, Thomas S. Morphology, Mechanical and Thermal Properties of Thermoplastic Polyurethane Containing Reduced Graphene Oxide and Graphene Nanoplatelets. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E82. [PMID: 29316638 PMCID: PMC5793580 DOI: 10.3390/ma11010082] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/20/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
Polyurethane/graphene nanocomposites were synthesized using commercial thermoplastic polyurethane (TPU, Apilon 52DE55), and two types of graphene derivatives: graphene nanoplatelets (GNP) and reduced graphene oxide (RGO). Fourier Transformation Infrared Spectroscopy Fourier Transformation Infrared Spectroscopy (FTIR) spectroscopy, TEM, and SEM microscopy and XRD techniques were used to chemically and structurally characterize GNP and RGO nanofillers. The properties of the new TPU nanocomposite materials were studied using thermal analysis techniques (Dynamical Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TG)) to describe the influence of graphene nanofillers on polyurethane matrix. Our investigation describes the comparison of two types of graphene derivatives, commercial one (GNP) and synthesized (RGO) on thermoplastic polyurethanes. These nanofillers provides opportunities to achieve compatibility with the TPU matrix. The property enhancements are attributed commonly to high aspect ratio of graphene nanoplatelets and filler-polymer interactions at the interface. The obtained nanocomposites exhibit higher thermal and mechanical properties due to the good dispersion of both nanofillers into TPU matrix. It was found that the addition of 2 wt % of the nanofiller could lead to a significant reinforcement effect on the TPU matrix. Also, with high content of nanofiller (GNP and RGO), the Payne effect was observed.
Collapse
Affiliation(s)
- Michał Strankowski
- Gdansk University of Technology, Chemical Faculty, Polymer Technology Department, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Piotr Korzeniewski
- Gdansk University of Technology, Chemical Faculty, Polymer Technology Department, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Justyna Strankowska
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdansk, Wita Stwosza 57, 80-308 Gdansk, Poland.
| | - Anu A S
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| |
Collapse
|
21
|
Yu C, Gong W, Zhang J, Lv W, Tian W, Fan X, Yao Y. Hot pressing-induced alignment of hexagonal boron nitride in SEBS elastomer for superior thermally conductive composites. RSC Adv 2018; 8:25835-25845. [PMID: 35539796 PMCID: PMC9082571 DOI: 10.1039/c8ra04700f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/05/2018] [Indexed: 11/21/2022] Open
Abstract
Orientational hBN/SEBS composite films embued with superior thermal conductivity and improved dimensional stability were prepared by hot-pressing treatment.
Collapse
Affiliation(s)
- Cuiping Yu
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
| | - Wenbin Gong
- Division of Advanced Nanomaterials
- Key Laboratory of Nanodevices and Applications
- Joint Key Laboratory of Functional Nanomaterials and Devices
- CAS Center for Excellence in Nanoscience
- Suzhou Institute of Nano-tech and Nano-bionics
| | - Jun Zhang
- Division of Advanced Nanomaterials
- Key Laboratory of Nanodevices and Applications
- Joint Key Laboratory of Functional Nanomaterials and Devices
- CAS Center for Excellence in Nanoscience
- Suzhou Institute of Nano-tech and Nano-bionics
| | - Weibang Lv
- Division of Advanced Nanomaterials
- Key Laboratory of Nanodevices and Applications
- Joint Key Laboratory of Functional Nanomaterials and Devices
- CAS Center for Excellence in Nanoscience
- Suzhou Institute of Nano-tech and Nano-bionics
| | - Wei Tian
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
| | - Xiaodong Fan
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
| | - Yagang Yao
- Division of Advanced Nanomaterials
- Key Laboratory of Nanodevices and Applications
- Joint Key Laboratory of Functional Nanomaterials and Devices
- CAS Center for Excellence in Nanoscience
- Suzhou Institute of Nano-tech and Nano-bionics
| |
Collapse
|
22
|
Lin C, Sheng D, Liu X, Xu S, Ji F, Dong L, Zhou Y, Yang Y. A self-healable nanocomposite based on dual-crosslinked Graphene Oxide/Polyurethane. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.09.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Affiliation(s)
- Preetom Sarkar
- Rubber Technology Centre, Indian Institute of Technology KharagpurKharagpur 721302 West Bengal India
| | - Anil K. Bhowmick
- Rubber Technology Centre, Indian Institute of Technology KharagpurKharagpur 721302 West Bengal India
| |
Collapse
|
24
|
Otorgust G, Dodiuk H, Kenig S, Tenne R. Important insights into polyurethane nanocomposite-adhesives; a comparative study between INT-WS 2 and CNT. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.02.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
|
26
|
Preparation and physical properties of functionalized graphene/waterborne polyurethane UV-curing composites by click chemistry. POLYM INT 2016. [DOI: 10.1002/pi.5070] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Gogoi S, Karak N. Biobased waterborne hyperbranched polyurethane/NiFe2O4@rGO nanocomposite with multi-stimuli responsive shape memory attributes. RSC Adv 2016. [DOI: 10.1039/c6ra16848e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A biobased waterborne hyperbranched polyurethane nanocomposite was in situ fabricated with nickel ferrite/reduced graphene oxide nanohybrid (NiFe2O4@rGO) as stimuli responsive shape memory material.
Collapse
Affiliation(s)
- Satyabrat Gogoi
- Advanced Polymer & Nanomaterial Laboratory
- Center for Polymer Science & Technology
- Department of Chemical Sciences
- Tezpur University
- India
| | - Niranjan Karak
- Advanced Polymer & Nanomaterial Laboratory
- Center for Polymer Science & Technology
- Department of Chemical Sciences
- Tezpur University
- India
| |
Collapse
|
28
|
Sáenz-Pérez M, Lizundia E, Laza JM, García-Barrasa J, Vilas JL, León LM. Methylene diphenyl diisocyanate (MDI) and toluene diisocyanate (TDI) based polyurethanes: thermal, shape-memory and mechanical behavior. RSC Adv 2016. [DOI: 10.1039/c6ra13492k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
MDI and TDI based polyurethanes with tunable mechanical and shape memory performance.
Collapse
Affiliation(s)
- Míriam Sáenz-Pérez
- Macromolecular Chemistry Research Group
- Dept. of Physical Chemistry
- Faculty of Science and Technology
- University of the Basque Country (UPV/EHU)
- Leioa 48940
| | - Erlantz Lizundia
- Macromolecular Chemistry Research Group
- Dept. of Physical Chemistry
- Faculty of Science and Technology
- University of the Basque Country (UPV/EHU)
- Leioa 48940
| | - José Manuel Laza
- Macromolecular Chemistry Research Group
- Dept. of Physical Chemistry
- Faculty of Science and Technology
- University of the Basque Country (UPV/EHU)
- Leioa 48940
| | | | - José Luis Vilas
- Macromolecular Chemistry Research Group
- Dept. of Physical Chemistry
- Faculty of Science and Technology
- University of the Basque Country (UPV/EHU)
- Leioa 48940
| | - Luis Manuel León
- Macromolecular Chemistry Research Group
- Dept. of Physical Chemistry
- Faculty of Science and Technology
- University of the Basque Country (UPV/EHU)
- Leioa 48940
| |
Collapse
|
29
|
|
30
|
|
31
|
Kashif M, Chang YW. Supramolecular hydrogen-bonded polyolefin elastomer/modified graphene nanocomposites with near infrared responsive shape memory and healing properties. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
|
33
|
Kim YJ, Huh PH, Kim BK. Synthesis of self-healing polyurethane urea-based supramolecular materials. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/polb.23653] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Young Joo Kim
- Department of Polymer Science and Engineering; Pusan National University; Busan 609-735 Korea
| | - Pil Ho Huh
- Department of Polymer Science and Engineering; Pusan National University; Busan 609-735 Korea
| | - Byung Kyu Kim
- Department of Polymer Science and Engineering; Pusan National University; Busan 609-735 Korea
| |
Collapse
|