1
|
Tamo AK. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. J Mater Chem B 2024; 12:7692-7759. [PMID: 38805188 DOI: 10.1039/d4tb00397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tissue engineering has emerged as a remarkable field aiming to restore or replace damaged tissues through the use of biomimetic constructs. Among the diverse materials investigated for this purpose, nanocellulose-based hydrogels have garnered attention due to their intriguing biocompatibility, tunable mechanical properties, and sustainability. Over the past few years, numerous research works have been published focusing on the successful use of nanocellulose-based hydrogels as artificial extracellular matrices for regenerating various types of tissues. The review emphasizes the importance of tissue engineering, highlighting hydrogels as biomimetic scaffolds, and specifically focuses on the role of nanocellulose in composites that mimic the structures, properties, and functions of the native extracellular matrix for regenerating damaged tissues. It also summarizes the types of nanocellulose, as well as their structural, mechanical, and biological properties, and their contributions to enhancing the properties and characteristics of functional hydrogels for tissue engineering of skin, bone, cartilage, heart, nerves and blood vessels. Additionally, recent advancements in the application of nanocellulose-based hydrogels for tissue engineering have been evaluated and documented. The review also addresses the challenges encountered in their fabrication while exploring the potential future prospects of these hydrogel matrices for biomedical applications.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France
| |
Collapse
|
2
|
Wang J, Zhang J, Wang S, Liu W, Jing W, Yu H. Isolation and Extraction of Monomers from Insoluble Dietary Fiber. Foods 2023; 12:2473. [PMID: 37444211 DOI: 10.3390/foods12132473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Insoluble dietary fiber is a macromolecular polysaccharide aggregate composed of pectin, glycoproteins, lignin, cellulose, and hemicellulose. All agricultural by-products contain significant levels of insoluble dietary fiber. With the recognition of the increasing scarcity of non-renewable energy sources, the conversion of single components of dietary fiber into renewable energy sources and their use has become an ongoing concern. The isolation and extraction of single fractions from insoluble dietary fiber is one of the most important recent research directions. The continuous development of technologies for the separation and extraction of single components is aimed at expanding the use of cellulose, hemicellulose, and lignin for food, industrial, cosmetic, biomedical, and other applications. Here, to expand the use of single components to meet the new needs of future development, separation and extraction methods for single components are summarized, in addition to the prospects of new raw materials in the future.
Collapse
Affiliation(s)
- Junyao Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Soybean Industry Technology System Processing Laboratory, Changchun 130118, China
| | - Jiarui Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Soybean Industry Technology System Processing Laboratory, Changchun 130118, China
| | - Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Soybean Industry Technology System Processing Laboratory, Changchun 130118, China
| | - Wenhao Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Soybean Industry Technology System Processing Laboratory, Changchun 130118, China
| | - Wendan Jing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Soybean Industry Technology System Processing Laboratory, Changchun 130118, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Soybean Industry Technology System Processing Laboratory, Changchun 130118, China
| |
Collapse
|
3
|
Bangar SP, Harussani M, Ilyas R, Ashogbon AO, Singh A, Trif M, Jafari SM. Surface modifications of cellulose nanocrystals: Processes, properties, and applications. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Rai R, Dhar P. Biomedical engineering aspects of nanocellulose: a review. NANOTECHNOLOGY 2022; 33:362001. [PMID: 35576914 DOI: 10.1088/1361-6528/ac6fef] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Cellulose is one of the most abundant renewable biopolymer in nature and is present as major constituent in both plant cell walls as well as synthesized by some microorganisms as extracellular products. In both the systems, cellulose self-assembles into a hierarchical ordered architecture to form micro to nano-fibrillated structures, on basis of which it is classified into various forms. Nanocellulose (NCs) exist as rod-shaped highly crystalline cellulose nanocrystals to high aspect ratio cellulose nanofibers, micro-fibrillated cellulose and bacterial cellulose (BC), depending upon the origin, structural and morphological properties. Moreover, NCs have been processed into diversified products ranging from composite films, coatings, hydrogels, aerogels, xerogels, organogels, rheological modifiers, optically active birefringent colored films using traditional-to-advanced manufacturing techniques. With such versatility in structure-property, NCs have profound application in areas of healthcare, packaging, cosmetics, energy, food, electronics, bioremediation, and biomedicine with promising commercial potential. Herein this review, we highlight the recent advancements in synthesis, fabrication, processing of NCs, with strategic chemical modification routes to tailor its properties for targeted biomedical applications. We also study the basic mechanism and models for biosynthesis of cellulose in both plant and microbial systems and understand the structural insights of NC polymorphism. The kinetics study for both enzymatic/chemical modifications of NCs and microbial growth behavior of BC under various reactor configurations are studied. The challenges associated with the commercial aspects as well as industrial scale production of pristine and functionalized NCs to meet the growing demands of market are discussed and prospective strategies to mitigate them are described. Finally, post chemical modification evaluation of biological and inherent properties of NC are important to determine their efficacy for development of various products and technologies directed for biomedical applications.
Collapse
Affiliation(s)
- Rohit Rai
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India
| | - Prodyut Dhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India
| |
Collapse
|
5
|
Preparation of composites based in poly(3-hexylthiophene) and freeze-dried cellulose nanocrystals by a simple method, and their characterization. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03612-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Chen S, Zhang ZL, Song F, Wang XL, Wang YZ. Rapid Synthesis of Polymer-Grafted Cellulose Nanofiber Nanocomposite via Surface-Initiated Cu(0)-Mediated Reversible Deactivation Radical Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sikai Chen
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ze-Lian Zhang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fei Song
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiu-Li Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Abstract
Double-encapsulated microcapsules (DEMs) were prepared and effectively adsorbed onto the cotton fabric surfaces during impregnation without crosslinking agents to obtain functional cotton fabrics. Specifically, Fourier transform infrared spectrometer (FTIR) and confocal laser scanning microscope (CLSM) showed two different molecules (lavender essence and dye indigo) were encapsulated into the microcapsules simultaneously, with loading capacity of 10% and 9.73%, respectively. The spherical shape of DEMs was confirmed by transmission electron microscopy (TEM), confocal laser scanning microscope (CLSM) and average particle sizes were about 617 nm, as measured by dynamic light scattering (DLS). According to the results of IR and X-ray photoelectron spectroscopy (XPS) experiments, DEMs was combined with cotton fabrics by hydrogen bond. The superior thermal stability of microcapsules and functional cotton fabrics was also demonstrated. The adsorption behavior and mechanism of microparticles onto cotton fabrics were further examined by chemical property characterization in combination with adsorption kinetic model. The kinetic adsorption process included three stages: fast adsorption, slow adsorption rate, and adsorption equilibrium. Finally, the good color fastness of the functional cotton fabrics was demonstrated by the tests of rubbing and accelerated laundering. Herein, this study will be beneficial to the development of functional cotton fabrics-based materials.
Collapse
|
8
|
Recent Advances in the Synthesis of Nanocellulose Functionalized–Hybrid Membranes and Application in Water Quality Improvement. Processes (Basel) 2021. [DOI: 10.3390/pr9040611] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The increasing discharge of voluminous non or partially treated wastewaters characterized by complex contaminants poses significant ecological and health risks. Particularly, this practice impacts negatively on socio-economic, technological, industrial, and agricultural development. Therefore, effective control of water pollution is imperative. Over the past decade, membrane filtration has been established as an effective and commercially attractive technology for the separation and purification of water. The performance of membrane-based technologies relies on the intrinsic properties of the membrane barrier itself. As a result, the development of innovative techniques for the preparation of highly efficient membranes has received remarkable attention. Moreover, growing concerns related to cost-effective and greener technologies have induced the need for eco-friendly, renewable, biodegradable, and sustainable source materials for membrane fabrication. Recently, advances in nanotechnology have led to the development of new high-tech nanomaterials from natural polymers (e.g., cellulose) for the preparation of environmentally benign nanocomposite membranes. The synthesis of nanocomposite membranes using nanocelluloses (NCs) has become a prominent research field. This is attributed to the exceptional characteristics of these nanomaterials (NMs) namely; excellent and tuneable surface chemistry, high mechanical strength, low-cost, biodegradability, biocompatibility, and renewability. For this purpose, the current paper opens with a comprehensive yet concise description of the various types of NCs and their most broadly utilized production techniques. This is closely followed by a critical review of how NC substrates and their surface-modified versions affect the performance of the fabricated NC-based membranes in various filtration processes. Finally, the most recent processing technologies for the preparation of functionalized NCs-based composite membranes are discussed in detail and their hybrid characteristics relevant to membrane filtration processes are highlighted.
Collapse
|
9
|
Oberlintner A, Likozar B, Novak U. Hydrophobic functionalization reactions of structured cellulose nanomaterials: Mechanisms, kinetics and in silico multi-scale models. Carbohydr Polym 2021; 259:117742. [PMID: 33674002 DOI: 10.1016/j.carbpol.2021.117742] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
Nanoscale-interfaced cellulose nanomaterials are extracted from polysaccharides, which are widely available in nature, biocompatible and biodegradable. Moreover, the latter have a potential to be recycled, upcycled, and formulate therefore a great theoretical predisposition to be used in a number of applications. Nanocrystals, nano-fibrils and nanofibers possess reactive functional groups that enable hydrophobic surface modifications. Analysed literature data, concerning mechanisms, pathways and kinetics, was screened, compared and assessed with regard to the demand of a catalyst, different measurement conditions and added molecule reactions. There is presently only a scarce technique description for carbonOH bond functionalization, considering the elementary chemical steps, sequences and intermediates of these (non)catalytic transformations. The overview of the prevailing basic research together with in silico modelling approach methodology gives us a deeper physical understanding of processes. Finally, to further highlight the applicability of such raw materials, the review of the development in several multidisciplinary fields was presented.
Collapse
Affiliation(s)
- Ana Oberlintner
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia.
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, SI-1000, Ljubljana, Slovenia.
| | - Uroš Novak
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
10
|
Engström J, Reid MS, Brotherton EE, Malmström E, Armes SP, Hatton FL. Investigating the adsorption of anisotropic diblock copolymer worms onto planar silica and nanocellulose surfaces using a quartz crystal microbalance. Polym Chem 2021. [DOI: 10.1039/d1py00644d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report physical adsorption of highly anisotropic copolymer worms with either anionic or cationic charge onto planar silica, cellulose nanocrystal or cellulose nanofibril surfaces using a quartz crystal microbalance with dissipation monitoring.
Collapse
Affiliation(s)
- Joakim Engström
- Division of Coating Technology and Wallenberg Wood Science Center, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Michael S. Reid
- Division of Fibre Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Emma E. Brotherton
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Eva Malmström
- Division of Coating Technology and Wallenberg Wood Science Center, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Steven P. Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Fiona L. Hatton
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| |
Collapse
|
11
|
Xiao Z, Jia J, Niu Y, Zhu G, Kou X. The adsorption mechanism of poly‐methyl methacrylate microparticles onto paper cellulose fiber surfaces without crosslinking agents. J Appl Polym Sci 2020. [DOI: 10.1002/app.49269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma TechnologyShanghai Institute of Technology Shanghai China
| | - Jinhui Jia
- School of Perfume and Aroma TechnologyShanghai Institute of Technology Shanghai China
| | - Yunwei Niu
- School of Perfume and Aroma TechnologyShanghai Institute of Technology Shanghai China
| | - Guangyong Zhu
- School of Perfume and Aroma TechnologyShanghai Institute of Technology Shanghai China
| | - Xingran Kou
- School of Perfume and Aroma TechnologyShanghai Institute of Technology Shanghai China
| |
Collapse
|
12
|
Thomas P, Duolikun T, Rumjit NP, Moosavi S, Lai CW, Bin Johan MR, Fen LB. Comprehensive review on nanocellulose: Recent developments, challenges and future prospects. J Mech Behav Biomed Mater 2020; 110:103884. [DOI: 10.1016/j.jmbbm.2020.103884] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/23/2020] [Accepted: 05/25/2020] [Indexed: 01/26/2023]
|
13
|
Kamel R, El-Wakil NA, Dufresne A, Elkasabgy NA. Nanocellulose: From an agricultural waste to a valuable pharmaceutical ingredient. Int J Biol Macromol 2020; 163:1579-1590. [PMID: 32755697 DOI: 10.1016/j.ijbiomac.2020.07.242] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 01/02/2023]
Abstract
Cellulose was and still is the most abundant biopolymer generated from all plant fibers including agricultural wastes. Using this waste as a starting material in the production of new products is a field of great interest. The demand for renewable and available resources in combination with advanced technologies is a necessity to develop new generations of advanced nanomaterials. This review aims to present integrated details on the extraction techniques and structure of nanofibrillated cellulose as well as cellulose nanocrystals derived from agricultural wastes besides the different treatment methods used to be suitable for several pharmaceutical applications. Different pharmaceutical applications are described, including controlled, sustained or rapid drug delivery, stabilizing agent, and its use as safe and sustained environment for cell culture allowing its use in tissue engineering field.
Collapse
Affiliation(s)
- Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Cairo 12622, Egypt
| | - Nahla A El-Wakil
- Cellulose and Paper Department, National Research Centre, Cairo 12622, Egypt
| | - Alain Dufresne
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt..
| |
Collapse
|
14
|
Griveau L, Delorme J, Engström J, Dugas PY, Carlmark A, Malmström E, D’Agosto F, Lansalot M. Synergetic Effect of Water-Soluble PEG-Based Macromonomers and Cellulose Nanocrystals for the Stabilization of PMMA Latexes by Surfactant-Free Emulsion Polymerization. Biomacromolecules 2020; 21:4479-4491. [DOI: 10.1021/acs.biomac.0c00439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lucie Griveau
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - James Delorme
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Joakim Engström
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Wallenberg Wood Science Centre, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Pierre-Yves Dugas
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Anna Carlmark
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Wallenberg Wood Science Centre, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Eva Malmström
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Wallenberg Wood Science Centre, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Franck D’Agosto
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Muriel Lansalot
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| |
Collapse
|
15
|
Adeyi AA, Jamil SNAM, Abdullah LC, Choong TSY, Lau KL, Abdullah M. Adsorptive Removal of Methylene Blue from Aquatic Environments Using Thiourea-Modified Poly(Acrylonitrile- co-Acrylic Acid). MATERIALS 2019; 12:ma12111734. [PMID: 31141981 PMCID: PMC6600694 DOI: 10.3390/ma12111734] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 12/07/2022]
Abstract
The paper evaluates the adsorptive potential of thiourea-modified poly(acrylonitrile-co-acrylic acid), (TA-poly(AN-co-AA)) for the uptake of cationic methylene blue (MB) from aquatic environments via a batch system. TA-poly(AN-co-AA) polymer was synthesized through redox polymerization and modified with thiourea (TA) where thioamide groups were introduced to the surface. Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), CHNS and Zetasizer were used to characterize the physico-chemical and morphological properties of prepared TA-poly(AN-co-AA). Afterwards, it was confirmed that incorporation of thioamide groups was successful. The adsorption kinetics and equilibrium adsorption data were best described, respectively, by a pseudo-second-order model and Freundlich model. Thermodynamic analysis showed the exothermic and spontaneous nature of MB uptake by TA-poly(AN-co-AA). The developed TA-poly(AN-co-AA) polymer demonstrated efficient separation of MB dye from the aqueous solution and maintained maximum adsorption capacity after five regeneration cycles. The findings of this study suggested that synthesized TA-poly(AN-co-AA) can be applied successfully to remove cationic dyes from aquatic environments.
Collapse
Affiliation(s)
- Abel Adekanmi Adeyi
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia.
- Department of Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti, ABUAD, KM. 8.5, Afe Babalola Way, P.M.B. 5454, Ado-Ekiti, Ekiti State, Nigeria.
| | - Siti Nurul Ain Md Jamil
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia.
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia.
| | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia.
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang 43400, Malaysia.
| | - Thomas Shean Yaw Choong
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia.
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang 43400, Malaysia.
| | - Kia Li Lau
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia.
| | - Mohammad Abdullah
- Faculty of Chemical Engineering, Universiti Teknologi Mara, Masai 81750, Johor darul Takzim, Malaysia.
| |
Collapse
|
16
|
Kaldéus T, Telaretti Leggieri MR, Cobo Sanchez C, Malmström E. All-Aqueous SI-ARGET ATRP from Cellulose Nanofibrils Using Hydrophilic and Hydrophobic Monomers. Biomacromolecules 2019; 20:1937-1943. [DOI: 10.1021/acs.biomac.9b00153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Engström J, Benselfelt T, Wågberg L, D'Agosto F, Lansalot M, Carlmark A, Malmström E. Tailoring adhesion of anionic surfaces using cationic PISA-latexes - towards tough nanocellulose materials in the wet state. NANOSCALE 2019; 11:4287-4302. [PMID: 30644950 DOI: 10.1039/c8nr08057g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cationic latexes with Tgs ranging between -40 °C and 120 °C were synthesised using n-butyl acrylate (BA) and/or methyl methacrylate (MMA) as the core polymers. Reversible addition-fragmentation chain transfer (RAFT) combined with polymerisation-induced self-assembly (PISA) allowed for in situ chain-extension of a cationic macromolecular RAFT agent (macroRAFT) of poly(N-[3-(dimethylamino)propyl] methacrylamide) (PDMAPMA), used as stabiliser in so-called surfactant-free emulsion polymerisation. The resulting narrowly distributed nanosized latexes adsorbed readily onto silica surfaces and to model surfaces of cellulose nanofibrils, as demonstrated by quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. Adsorption to anionic surfaces increased when increasing ionic strength to 10 mM, indicating the influence of the polyelectrolyte effect exerted by the corona. The polyelectrolyte corona affected the interactions in the wet state, the stability of the latex and re-dispersibility after drying. The QCM-D measurements showed that a lower Tg of the core results in a more strongly interacting adsorbed layer at the solid-liquid interface, despite a comparable adsorbed mass, indicating structural differences of the investigated latexes in the wet state. The two latexes with Tg below room temperature (i.e. PBATg-40 and P(BA-co-MMA)Tg3) exhibited film formation in the wet state, as shown by AFM colloidal probe measurements. It was observed that P(BA-co-MMA)Tg3 latex resulted in the largest pull-off force, above 200 m Nm-1 after 120 s in contact. The strongest wet adhesion was achieved with PDMAPMA-stabilized latexes soft enough to allow for interparticle diffusion of polymer chains, and stiff enough to create a strong adhesive joint. Fundamental understanding of interfacial properties of latexes and cellulose enables controlled and predictive strategies to produce strong and tough materials with high nanocellulose content, both in the wet and dry state.
Collapse
Affiliation(s)
- J Engström
- KTH Royal Institute of Technology, School of Chemistry, Biotechnology and Health, Wallenberg Wood Science Center, SE-100 44, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
18
|
Sharma A, Thakur M, Bhattacharya M, Mandal T, Goswami S. Commercial application of cellulose nano-composites - A review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 21:e00316. [PMID: 30847286 PMCID: PMC6389799 DOI: 10.1016/j.btre.2019.e00316] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 11/19/2022]
Abstract
Cellulose is the biosynthetic product from plants, animals and bacteria. Cellulose is the most abundant polymer having long linear chain like structure composed of (1,4) linked β-D glucopyranosyl units assembled into hierarchical structures of microfibrils with excellent strength and stiffness. And 'nanocellulose' refers to the cellulosic materials with defined nano-scale structural dimensions. They may be cellulose nanocrystal (CNC or NCC), cellulose nanofibers (CNF) or bacterial nanocellulose. Nanocellulose is non-toxic, biodegradable and biocompatible with no adverse effects on health and environment. Due to its low thermal expansion coefficient, high aspect ratio, better tensile strength, good mechanical and optical properties, they find many applications in thermo-reversible and tenable hydrogels, paper making, coating additives, food packaging, flexible screens, optically transparent films and light weight materials for ballistic protection, automobile windows. It also find potential in biopharmaceutical applications such as in drug delivery and for fabricating temporary implants with PHB like sutures, stents etc.
Collapse
Affiliation(s)
- Amita Sharma
- Center of Innovative and Applied Bioprocessing, Knowledge City, Sector-81 Mohali, Punjab 140306 India
- Department of Chemical Engineering, National Institute of Technology, Durgapur, West Bengal 713209 India
| | - Manisha Thakur
- Center of Innovative and Applied Bioprocessing, Knowledge City, Sector-81 Mohali, Punjab 140306 India
| | - Munna Bhattacharya
- Center of Innovative and Applied Bioprocessing, Knowledge City, Sector-81 Mohali, Punjab 140306 India
| | - Tamal Mandal
- Department of Chemical Engineering, National Institute of Technology, Durgapur, West Bengal 713209 India
| | - Saswata Goswami
- Center of Innovative and Applied Bioprocessing, Knowledge City, Sector-81 Mohali, Punjab 140306 India
| |
Collapse
|
19
|
Younas M, Noreen A, Sharif A, Majeed A, Hassan A, Tabasum S, Mohammadi A, Zia KM. A review on versatile applications of blends and composites of CNC with natural and synthetic polymers with mathematical modeling. Int J Biol Macromol 2019; 124:591-626. [PMID: 30447361 DOI: 10.1016/j.ijbiomac.2018.11.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/04/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022]
Abstract
Cellulose is world's most abundant, renewable and recyclable polysaccharide on earth. Cellulose is composed of both amorphous and crystalline regions. Cellulose nanocrystals (CNCs) are extracted from crystalline region of cellulose. The most attractive feature of CNC is that it can be used as nanofiller to reinforce several synthetic and natural polymers. In this article, a comprehensive overview of modification of several natural and synthetic polymers using CNCs as reinforcer in respective polymer matrix is given. The immense activities of CNCs are successfully utilized to enhance the mechanical properties and to broaden the field of application of respective polymer. All the technical scientific issues have been discussed highlighting the recent advancement in biomedical and packaging field.
Collapse
Affiliation(s)
- Muhammad Younas
- Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Aqsa Sharif
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Ayesha Majeed
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Abida Hassan
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Abbas Mohammadi
- Department of Polymer Chemistry, University of Isfahan, Isfahan, Islamic Republic of Iran
| | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan.
| |
Collapse
|
20
|
|
21
|
Kaldéus T, Nordenström M, Carlmark A, Wågberg L, Malmström E. Insights into the EDC-mediated PEGylation of cellulose nanofibrils and their colloidal stability. Carbohydr Polym 2018; 181:871-878. [DOI: 10.1016/j.carbpol.2017.11.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/31/2017] [Accepted: 11/18/2017] [Indexed: 11/15/2022]
|
22
|
Boujemaoui A, Cobo Sanchez C, Engström J, Bruce C, Fogelström L, Carlmark A, Malmström E. Polycaprolactone Nanocomposites Reinforced with Cellulose Nanocrystals Surface-Modified via Covalent Grafting or Physisorption: A Comparative Study. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35305-35318. [PMID: 28895728 DOI: 10.1021/acsami.7b09009] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the present work, cellulose nanocrystals (CNCs) have been surface-modified either via covalent grafting or through physisorption of poly(n-butyl methacrylate) (PBMA) and employed as reinforcement in PCL. Covalent grafting was achieved by surface-initiated atom transfer radical polymerization (SI-ATRP). Two approaches were utilized for the physisorption: using either micelles of poly(dimethyl aminoethyl methacrylate)-block-poly(n-butyl methacrylate) (PDMAEMA-b-PBMA) or latex nanoparticles of poly(dimethyl aminoethyl methacrylate-co-methacrylic acid)-block-poly(n-butyl methacrylate) (P(DMAEMA-co-MAA)-b-PBMA). Block copolymers (PDMAEMA-b-PBMA)s were obtained by ATRP and subsequently micellized. Latex nanoparticles were produced via reversible addition-fragmentation chain-transfer (RAFT) mediated surfactant-free emulsion polymerization, employing polymer-induced self-assembly (PISA) for the particle formation. For a reliable comparison, the amounts of micelles/latex particles adsorbed and the amount of polymer grafted onto the CNCs were kept similar. Two different chain lengths of PBMA were targeted, below and above the critical molecular weight for chain entanglement of PBMA (Mn,c ∼ 56 000 g mol-1). Poly(ε-caprolactone) (PCL) nanocomposites reinforced with unmodified and modified CNCs in different weight percentages (0.5, 1, and 3 wt %) were prepared via melt extrusion. The resulting composites were evaluated by UV-vis, scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and tensile testing. All materials resulted in higher transparency, greater thermal stability, and stronger mechanical properties than unfilled PCL and nanocomposites containing unmodified CNCs. The degradation temperature of PCL reinforced with grafted CNCs was higher than that of micelle-modified CNCs, and the latter was higher than that of latex-adsorbed CNCs with a long PBMA chain length. The results clearly indicate that covalent grafting is superior to physisorption with regard to thermal and mechanical properties of the final nanocomposite. This unique study is of great value for the future design of CNC-based nanocomposites with tailored properties.
Collapse
Affiliation(s)
- Assya Boujemaoui
- Division of Coating Technology and ‡Wallenberg Wood Science Center, School of Chemical Science and Engineering, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology , SE-100 44 Stockholm, Sweden
| | - Carmen Cobo Sanchez
- Division of Coating Technology and ‡Wallenberg Wood Science Center, School of Chemical Science and Engineering, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology , SE-100 44 Stockholm, Sweden
| | - Joakim Engström
- Division of Coating Technology and ‡Wallenberg Wood Science Center, School of Chemical Science and Engineering, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology , SE-100 44 Stockholm, Sweden
| | - Carl Bruce
- Division of Coating Technology and ‡Wallenberg Wood Science Center, School of Chemical Science and Engineering, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology , SE-100 44 Stockholm, Sweden
| | - Linda Fogelström
- Division of Coating Technology and ‡Wallenberg Wood Science Center, School of Chemical Science and Engineering, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology , SE-100 44 Stockholm, Sweden
| | - Anna Carlmark
- Division of Coating Technology and ‡Wallenberg Wood Science Center, School of Chemical Science and Engineering, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology , SE-100 44 Stockholm, Sweden
| | - Eva Malmström
- Division of Coating Technology and ‡Wallenberg Wood Science Center, School of Chemical Science and Engineering, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology , SE-100 44 Stockholm, Sweden
| |
Collapse
|
23
|
Bodratti AM, Sarkar B, Alexandridis P. Adsorption of poly(ethylene oxide)-containing amphiphilic polymers on solid-liquid interfaces: Fundamentals and applications. Adv Colloid Interface Sci 2017; 244:132-163. [PMID: 28069108 DOI: 10.1016/j.cis.2016.09.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 12/30/2022]
Abstract
The adsorption of amphiphilic molecules of varying size on solid-liquid interfaces modulates the properties of colloidal systems. Nonionic, poly(ethylene oxide) (PEO)-based amphiphilic molecules are particularly useful because of their graded hydrophobic-hydrophilic nature, which allows for adsorption on a wide array of solid surfaces. Their adsorption also results in other useful properties, such as responsiveness to external stimuli and solubilization of hydrophobic compounds. This review focuses on the adsorption properties of PEO-based amphiphiles, beginning with a discussion of fundamental concepts pertaining to the adsorption of macromolecules on solid-liquid interfaces, and more specifically the adsorption of PEO homopolymers. The main portion of the review highlights studies on factors affecting the adsorption and surface self-assembly of PEO-PPO-PEO block copolymers, where PPO is poly(propylene oxide). Block copolymers of this type are commercially available and of interest in several fields, due to their low toxicity and compatibility in aqueous systems. Examples of applications relevant to the interfacial behavior of PEO-PPO-PEO block copolymers are paints and coatings, detergents, filtration, and drug delivery. The methods discussed herein for manipulating the adsorption properties of PEO-PPO-PEO are emphasized for their ability to shed light on molecular interactions at interfaces. Knowledge of these interactions guides the formulation of novel materials with useful mesoscale organization and micro- and macrophase properties.
Collapse
|
24
|
Grafting-from cellulose nanocrystals via photoinduced Cu-mediated reversible-deactivation radical polymerization. Carbohydr Polym 2017; 157:1033-1040. [DOI: 10.1016/j.carbpol.2016.10.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/10/2016] [Accepted: 10/21/2016] [Indexed: 12/24/2022]
|
25
|
Engström J, Hatton FL, Wågberg L, D'Agosto F, Lansalot M, Malmström E, Carlmark A. Soft and rigid core latex nanoparticles prepared by RAFT-mediated surfactant-free emulsion polymerization for cellulose modification – a comparative study. Polym Chem 2017. [DOI: 10.1039/c6py01904h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Latex nanoparticles of high and low Tg-core block-copolymers were produced and their adsorption to (nano)cellulose surfaces was investigated.
Collapse
Affiliation(s)
- J. Engström
- Fibre and Polymer Technology
- KTH Royal Institute of Technology
- 100 44 Stockholm
- Sweden
- Wallenberg Wood Science Centre
| | - F. L. Hatton
- Fibre and Polymer Technology
- KTH Royal Institute of Technology
- 100 44 Stockholm
- Sweden
| | - L. Wågberg
- Fibre and Polymer Technology
- KTH Royal Institute of Technology
- 100 44 Stockholm
- Sweden
- Wallenberg Wood Science Centre
| | - F. D'Agosto
- Université de Lyon
- Univ Lyon 1
- CPE Lyon
- CNRS
- UMR 5265
| | - M. Lansalot
- Université de Lyon
- Univ Lyon 1
- CPE Lyon
- CNRS
- UMR 5265
| | - E. Malmström
- Fibre and Polymer Technology
- KTH Royal Institute of Technology
- 100 44 Stockholm
- Sweden
| | - A. Carlmark
- Fibre and Polymer Technology
- KTH Royal Institute of Technology
- 100 44 Stockholm
- Sweden
- Wallenberg Wood Science Centre
| |
Collapse
|
26
|
Hatton FL, Engström J, Forsling J, Malmström E, Carlmark A. Biomimetic adsorption of zwitterionic–xyloglucan block copolymers to CNF: towards tailored super-absorbing cellulose materials. RSC Adv 2017. [DOI: 10.1039/c6ra28236a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Block-copolymer of xyloglucan and zwitterionic PSBMA prepared by RAFT as a biomimetic adsorbent for cellulose nanofibrils to create super-adsorbing gels.
Collapse
Affiliation(s)
- F. L. Hatton
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Department of Fibre and Polymer Technology
- SE-100 44 Stockholm
- Sweden
| | - J. Engström
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Department of Fibre and Polymer Technology
- SE-100 44 Stockholm
- Sweden
| | - J. Forsling
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Department of Fibre and Polymer Technology
- SE-100 44 Stockholm
- Sweden
| | - E. Malmström
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Department of Fibre and Polymer Technology
- SE-100 44 Stockholm
- Sweden
| | - A. Carlmark
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Department of Fibre and Polymer Technology
- SE-100 44 Stockholm
- Sweden
| |
Collapse
|
27
|
Effect of polymer rigidity on the phase behaviour of polymer adsorption on to planar surface. Biosci Rep 2016; 36:BSR20160220. [PMID: 27756826 PMCID: PMC5293574 DOI: 10.1042/bsr20160220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/09/2016] [Accepted: 10/18/2016] [Indexed: 11/17/2022] Open
Abstract
We study the process of a semiflexible polymer chain adsorption on to planar surface by the dynamic Monte Carlo (DMC) method, based on the 3D off-lattice model. Both the strength of attractive monomer-surface interaction (εa) and bending energy (b) have pronounced effect on the adsorption and shape of semiflexible polymer chain. The semiflexible polymer can just fully adsorb on to the surface at certain εa, which is defined as critical εa The essential features of the semiflexible polymer adsorption on to surface are that (i) the critical εa increases with increase in b; (ii) the shape of the fully adsorbed semiflexible polymer chain is film-like toroid, and the toroid becomes more and more perfect with increase in b In addition, the size of toroid and the number of turns of toroid can be controlled by the b and εa.
Collapse
|
28
|
Sakakibara K, Yano H, Tsujii Y. Surface Engineering of Cellulose Nanofiber by Adsorption of Diblock Copolymer Dispersant for Green Nanocomposite Materials. ACS APPLIED MATERIALS & INTERFACES 2016; 8:24893-24900. [PMID: 27559606 DOI: 10.1021/acsami.6b07769] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An effective approach for the dispersion of hydrophilic cellulose nanofiber (CNF) in hydrophobic high-density polyethylene (HDPE) is presented using adsorption of a diblock copolymer dispersant. The dispersant consists of both resin compatible poly(lauryl methacrylate) (PLMA) and cellulose interactive poly(2-hydroxyethyl methacrylate) blocks. The PLMA-adsorbed CNFs are characterized by FT-IR and contact angle measurement, revealing successful hydrophobization. X-ray CT imaging shows there are apparently less CNF aggregates in the nanocomposites if adding amount of the dispersant was enough. The good dispersion results in a high mechanical reinforcement, corresponding to 140% higher Young's modulus and 84% higher tensile strength than the neat HDPE. This approach is broadly applicable and allows for easy manufacturing process for strong and lightweight CNF-reinforced nanocomposite materials.
Collapse
Affiliation(s)
- Keita Sakakibara
- Institute for Chemical Research (ICR) and ‡Research Institute for Sustainable Humanosphere (RISH), Kyoto University , Gokasho, Uji, Kyoto 611-0011, Japan
| | - Hiroyuki Yano
- Institute for Chemical Research (ICR) and ‡Research Institute for Sustainable Humanosphere (RISH), Kyoto University , Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yoshinobu Tsujii
- Institute for Chemical Research (ICR) and ‡Research Institute for Sustainable Humanosphere (RISH), Kyoto University , Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
29
|
Wåhlander M, Nilsson F, Carlmark A, Gedde UW, Edmondson S, Malmström E. Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states. NANOSCALE 2016; 8:14730-14745. [PMID: 27230294 DOI: 10.1039/c6nr01502f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors.
Collapse
Affiliation(s)
- Martin Wåhlander
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Fibre and Polymer Technology, SE-100 44 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
30
|
Ingverud T, Larsson E, Hemmer G, Rojas R, Malkoch M, Carlmark A. High water-content thermoresponsive hydrogels via electrostatic macrocrosslinking of cellulose nanofibrils. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tobias Ingverud
- Department of Fibre and Polymer Technology; School of Chemical Science and Engineering, KTH Royal Institute of Technology; Teknikringen 56-58 Stockholm SE-100 44 Sweden
- KTH Royal Institute of Technology, Wallenberg Wood Science Center; Teknikringen 56-58 Stockholm SE-100 44 Sweden
| | - Emma Larsson
- Department of Fibre and Polymer Technology; School of Chemical Science and Engineering, KTH Royal Institute of Technology; Teknikringen 56-58 Stockholm SE-100 44 Sweden
- KTH Royal Institute of Technology, BiMaC Innovation; Teknikringen 8(D) Stockholm SE-100 44 Sweden
| | - Guillaume Hemmer
- Department of Fibre and Polymer Technology; School of Chemical Science and Engineering, KTH Royal Institute of Technology; Teknikringen 56-58 Stockholm SE-100 44 Sweden
| | - Ramiro Rojas
- Department of Fibre and Polymer Technology; School of Chemical Science and Engineering, KTH Royal Institute of Technology; Teknikringen 56-58 Stockholm SE-100 44 Sweden
- KTH Royal Institute of Technology, Wallenberg Wood Science Center; Teknikringen 56-58 Stockholm SE-100 44 Sweden
| | - Michael Malkoch
- Department of Fibre and Polymer Technology; School of Chemical Science and Engineering, KTH Royal Institute of Technology; Teknikringen 56-58 Stockholm SE-100 44 Sweden
| | - Anna Carlmark
- Department of Fibre and Polymer Technology; School of Chemical Science and Engineering, KTH Royal Institute of Technology; Teknikringen 56-58 Stockholm SE-100 44 Sweden
- KTH Royal Institute of Technology, BiMaC Innovation; Teknikringen 8(D) Stockholm SE-100 44 Sweden
| |
Collapse
|
31
|
Hatton FL, Ruda M, Lansalot M, D’Agosto F, Malmström E, Carlmark A. Xyloglucan-Functional Latex Particles via RAFT-Mediated Emulsion Polymerization for the Biomimetic Modification of Cellulose. Biomacromolecules 2016; 17:1414-24. [DOI: 10.1021/acs.biomac.6b00036] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fiona L. Hatton
- KTH Royal Institute of Technology, School of
Chemical Science and Engineering, Department of Fibre and Polymer
Technology, Teknikringen
56, SE-100 44 Stockholm, Sweden
| | - Marcus Ruda
- CelluTech AB, Teknikringen
38, SE-114 28 Stockholm, Sweden
| | - Muriel Lansalot
- Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS, UMR
5265, C2P2 (Chemistry, Catalysis, Polymers and Processes), Team LCPP,
Bat 308F, 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Franck D’Agosto
- Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS, UMR
5265, C2P2 (Chemistry, Catalysis, Polymers and Processes), Team LCPP,
Bat 308F, 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Eva Malmström
- KTH Royal Institute of Technology, School of
Chemical Science and Engineering, Department of Fibre and Polymer
Technology, Teknikringen
56, SE-100 44 Stockholm, Sweden
| | - Anna Carlmark
- KTH Royal Institute of Technology, School of
Chemical Science and Engineering, Department of Fibre and Polymer
Technology, Teknikringen
56, SE-100 44 Stockholm, Sweden
| |
Collapse
|