1
|
Saini N, Lee DY, Yoon MH, Awasthi K. Unveiling the Potential of Pt Nanoparticle-Decorated PEDOT:PSS Membranes for Efficient Gas Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7700-7708. [PMID: 38289231 DOI: 10.1021/acsami.3c15763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
In the dynamic landscape of industrial processes, membrane technology offers a paradigm shift beyond energy-intensive separation techniques, exemplifying a progressive leap toward sustainability. In this regard, highly flexible and uniform poly(3,4-ethylenedioxythiophene)polystyrenesulfonate (PEDOT:PSS)-engineered membranes at a reduced thickness have been fabricated on track-etched poly(ethylene terephthalate) (PET) substrates. The membranes were functionalized and embedded with platinum nanoparticles (Pt NPs) having a higher affinity toward H2 gas. The materials and fabricated membranes were characterized by using high-resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM) techniques for morphological and structural analysis. FTIR and Raman characterizations were performed to study the characteristic bonds. The uniformity and quantification of Pt nanoparticle binding were tested through inductively coupled plasma mass spectrometry (ICP-MS) studies and FESEM with EDS mapping. The gas separation performance was studied using H2, N2, and CO2 gases in pure and mixed (H2/CO2 in 50:50) states. It was observed that the modified membrane showed a 116% increment in H2 permeability and 82 and 107% increment in H2/CO2 and H2/N2 selectivity values with pure gas, while a 121% increment in H2 permeability and 156% increment in H2/CO2 selectivity using mixed gas. The separation performance in pure and mixed gas states with repeated experiments conspicuously highlighted their prospective viability as prime contenders for gas separation applications.
Collapse
Affiliation(s)
- Nishel Saini
- Department of Physics, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Da-Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology, Jaipur 302017, India
| |
Collapse
|
2
|
Lau HS, Lau SK, Soh LS, Hong SU, Gok XY, Yi S, Yong WF. State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond. MEMBRANES 2022; 12:539. [PMID: 35629866 PMCID: PMC9144028 DOI: 10.3390/membranes12050539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The aggravation of environmental problems such as water scarcity and air pollution has called upon the need for a sustainable solution globally. Membrane technology, owing to its simplicity, sustainability, and cost-effectiveness, has emerged as one of the favorable technologies for water and air purification. Among all of the membrane configurations, hollow fiber membranes hold promise due to their outstanding packing density and ease of module assembly. Herein, this review systematically outlines the fundamentals of hollow fiber membranes, which comprise the structural analyses and phase inversion mechanism. Furthermore, illustrations of the latest advances in the fabrication of organic, inorganic, and composite hollow fiber membranes are presented. Key findings on the utilization of hollow fiber membranes in microfiltration (MF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), pervaporation, gas and vapor separation, membrane distillation, and membrane contactor are also reported. Moreover, the applications in nuclear waste treatment and biomedical fields such as hemodialysis and drug delivery are emphasized. Subsequently, the emerging R&D areas, precisely on green fabrication and modification techniques as well as sustainable materials for hollow fiber membranes, are highlighted. Last but not least, this review offers invigorating perspectives on the future directions for the design of next-generation hollow fiber membranes for various applications. As such, the comprehensive and critical insights gained in this review are anticipated to provide a new research doorway to stimulate the future development and optimization of hollow fiber membranes.
Collapse
Affiliation(s)
- Hui Shen Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Siew Kei Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Leong Sing Soh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Seang Uyin Hong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Xie Yuen Gok
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Shouliang Yi
- U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Rd, Pittsburgh, PA 15236, USA;
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Hu L, Bui VT, Krishnamurthy A, Fan S, Guo W, Pal S, Chen X, Zhang G, Ding Y, Singh RP, Lupion M, Lin H. Tailoring sub-3.3 Å ultramicropores in advanced carbon molecular sieve membranes for blue hydrogen production. SCIENCE ADVANCES 2022; 8:eabl8160. [PMID: 35263122 PMCID: PMC8906570 DOI: 10.1126/sciadv.abl8160] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/19/2022] [Indexed: 05/29/2023]
Abstract
Carbon molecular sieve (CMS) membranes prepared by carbonization of polymers containing strongly size-sieving ultramicropores are attractive for high-temperature gas separations. However, polymers need to be carbonized at extremely high temperatures (900° to 1200°C) to achieve sub-3.3 Å ultramicroporous channels for H2/CO2 separation, which makes them brittle and impractical for industrial applications. Here, we demonstrate that polymers can be first doped with thermolabile cross-linkers before low-temperature carbonization to retain the polymer processability and achieve superior H2/CO2 separation properties. Specifically, polybenzimidazole (PBI) is cross-linked with pyrophosphoric acid (PPA) via H bonding and proton transfer before carbonization at ≤600°C. The synergistic PPA doping and subsequent carbonization of PBI increase H2 permeability from 27 to 140 Barrer and H2/CO2 selectivity from 15 to 58 at 150°C, superior to state-of-the-art polymeric materials and surpassing Robeson's upper bound. This study provides a facile and effective way to tailor subnanopore size and porosity in CMS membranes with desirable molecular sieving ability.
Collapse
Affiliation(s)
- Leiqing Hu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Vinh T. Bui
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Ajay Krishnamurthy
- Theiss Research, La Jolla, CA 92037, USA
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Shouhong Fan
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Wenji Guo
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Sankhajit Pal
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Xiaoyi Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Gengyi Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yifu Ding
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Rajinder P. Singh
- Materials Physics and Applications Division, Carbon Capture and Separations for Energy Applications (CaSEA) Labs, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Monica Lupion
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
4
|
Insights into the progress of polymeric nano-composite membranes for hydrogen separation and purification in the direction of sustainable energy resources. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Castruita‐de León G, Montes‐Luna ÁDJ, Yeverino‐Miranda CY, Alvarado‐Tenorio G, Meléndez‐Ortiz HI, Pérez‐Camacho O, García‐Cerda LA. Preparation of polybenzimidazole‐based mixed matrix membranes containing
modified‐COK
‐12 mesoporous silica and evaluation of the mixed‐gas separation performance. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Ángel de Jesús Montes‐Luna
- Centro de Investigación Científica de Yucatán A.C. Unidad de Materiales Mérida Mexico
- Centro de Investigacián en Química Aplicada, Saltillo Coahuila Unidad de Materiales Mexico
| | | | | | | | - Odilia Pérez‐Camacho
- Centro de Investigacián en Química Aplicada, Saltillo Coahuila Unidad de Materiales Mexico
| | | |
Collapse
|
6
|
Experimental investigation of polysulfone modified cellulose acetate membrane for CO2/H2 gas separation. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0900-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
The Phase Structural Evolution and Gas Separation Performances of Cellulose Acetate/Polyimide Composite Membrane from Polymer to Carbon Stage. MEMBRANES 2021; 11:membranes11080618. [PMID: 34436381 PMCID: PMC8399511 DOI: 10.3390/membranes11080618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
Blending and heat-treatment play significant roles in adjusting gas separation performances of membranes, especially for incorporating thermally labile polymers into carbon molecular sieve membranes (CMSMs). In this work, cellulose acetate (CA) is introduced into polyimide (PI) as a sacrificial phase to adjust the structure and gas separation performance from polymer to carbon. A novel result is observed that the gas permeability is reduced, even when the immiscible CA phase decomposes and forms pores after heat treatment at 350 °C. After carbonization at 600 °C, the miscible CA has changed without contribution, while the role of the immiscible CA phase has changed from original hindrance to facilitation, the composite-based CMSM at a CA content of 10 wt.% shows highest performances, a H2 permeability of ~5300 Barrer (56% enhancement) with a similar H2/N2 permselectivity of 42. The structural analyses reveal that the chain interactions and phase separation behaviors between CA and PI play critical roles on membrane structures and gas diffusion, and the corresponding phase structural evolutions during heat treatment and carbonization determine gas separation properties.
Collapse
|
8
|
Kumar B. S, Sana B, Unnikrishnan G, Jana T, Kumar K. S. S. Polybenzimidazole co-polymers: their synthesis, morphology and high temperature fuel cell membrane properties. Polym Chem 2020. [DOI: 10.1039/c9py01403a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polybenzimidazole (PBI) random co-polymers containing alicyclic and aromatic backbones were synthesized using two different dicarboxylic acids (viz., cyclohexane dicarboxylic acid and terephthalic acid) by varying their molar ratios.
Collapse
Affiliation(s)
- Satheesh Kumar B.
- Polymers and Special Chemicals Division
- Vikram Sarabhai Space Centre
- Thiruvananthapuram-22
- India
| | | | | | - Tushar Jana
- School of Chemistry
- University of Hyderabad
- Hyderabad
- India
| | - Santhosh Kumar K. S.
- Polymers and Special Chemicals Division
- Vikram Sarabhai Space Centre
- Thiruvananthapuram-22
- India
| |
Collapse
|
9
|
Elucidating the effect of chain extenders substituted by aliphatic side chains on morphology and gas separation of polyurethanes. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Bakonyi P, Kumar G, Bélafi-Bakó K, Kim SH, Koter S, Kujawski W, Nemestóthy N, Peter J, Pientka Z. A review of the innovative gas separation membrane bioreactor with mechanisms for integrated production and purification of biohydrogen. BIORESOURCE TECHNOLOGY 2018; 270:643-655. [PMID: 30213541 DOI: 10.1016/j.biortech.2018.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
This review article focuses on an assessment of the innovative Gas Separation Membrane Bioreactor (GS-MBR), which is an emerging technology because of its potential for in-situ biohydrogen production and separation. The GS-MBR, as a special membrane bioreactor, enriches CO2 directly from the headspace of the anaerobic H2 fermentation process. CO2 can be fed as a substrate to auxiliary photo-bioreactors to grow microalgae as a promising raw material for biocatalyzed, dark fermentative H2-evolution. Overall, these features make the GS-MBR worthy of study. To the best of the authors' knowledge, the GS-MBR has not been studied in detail to date; hence, a comprehensive review of this topic will be useful to the scientific community.
Collapse
Affiliation(s)
- Péter Bakonyi
- Research Institute of Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Katalin Bélafi-Bakó
- Research Institute of Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Stanislaw Koter
- Faculty of Chemistry, Department of Physical Chemistry, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100, Toruń, Poland
| | - Wojciech Kujawski
- Faculty of Chemistry, Department of Physical Chemistry, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100, Toruń, Poland
| | - Nándor Nemestóthy
- Research Institute of Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary
| | - Jakub Peter
- Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Zbynek Pientka
- Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
11
|
Giel V, Morávková Z, Peter J, Trchová M. Thermally treated polyaniline/polybenzimidazole blend membranes: Structural changes and gas transport properties. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.04.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Hao J, Zhao W, Zhang H, Wang D, Yang Q, Tang N, Wang X. Controlled synthesis of PANI nanostructures using phenol and hydroquinone as morphology-control agent. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2159-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Qiu B, Li Z, Wang X, Li X, Zhang J. Exploration on the microwave-assisted synthesis and formation mechanism of polyaniline nanostructures synthesized in different hydrochloric acid concentrations. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28707] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Biwei Qiu
- School of Materials Science and Engineering; University of Shanghai for Science and Technology; Shanghai 200093 People's Republic of China
| | - Zhoujing Li
- School of Materials Science and Engineering; University of Shanghai for Science and Technology; Shanghai 200093 People's Republic of China
| | - Xia Wang
- School of Materials Science and Engineering; University of Shanghai for Science and Technology; Shanghai 200093 People's Republic of China
| | - Xiaoyan Li
- School of Materials Science and Engineering; University of Shanghai for Science and Technology; Shanghai 200093 People's Republic of China
| | - Jinrui Zhang
- School of Materials Science and Engineering; University of Shanghai for Science and Technology; Shanghai 200093 People's Republic of China
| |
Collapse
|
14
|
Kumar V, Mahajan R, Bhatnagar D, Kaur I. Nanofibers synthesis of ND:PANI composite by liquid/liquid interfacial polymerization and study on the effect of NDs on growth mechanism of nanofibers. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.07.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|