1
|
Grodzicka M, Michlewska S, Buczkowski A, Ortega P, de la Mata FJ, Bryszewska M, Ionov M. Effect of polyphenolic dendrimers on biological and artificial lipid membranes. Chem Phys Lipids 2024; 265:105444. [PMID: 39265880 DOI: 10.1016/j.chemphyslip.2024.105444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The use of dendrimers as nanovectors for nucleic acids or drugs requires the understanding of their interaction with biological membranes. This study investigates the impact of 1st generation polyphenolic carbosilane dendrimers on biological and model lipid membranes using several biophysical methods. While the increase in the z-average size of DMPC/DPPG liposomes correlated with the number of caffeic acid residues included in the dendrimer structure, dendrimers that contained polyethylene glycol chains generated lower zeta potential when interacting with a liposomal membrane. The increase in the fluorescence anisotropy of DPH and TMA-DPH probes incorporated into erythrocyte membranes predicted the ability of dendrimers to affect membrane fluidity in the hydrophobic interior and hydrophilic/polar region of a lipid bilayer. The presence of caffeic acid and polyethylene glycol chains in the dendrimer structure affected the thermodynamical properties of the membrane lipid matrix.
Collapse
Affiliation(s)
- Marika Grodzicka
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, Lodz 90-236, Poland; The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Department of General Biophysics, Pomorska 141/143, Lodz 90-236, Poland; University of Lodz, Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, Banacha 12/16, Lodz 90-237, Poland.
| | - Sylwia Michlewska
- University of Lodz, Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, Banacha 12/16, Lodz 90-237, Poland.
| | - Adam Buczkowski
- University of Lodz, Faculty of Chemistry, Department of Physical Chemistry, Division of Biophysical Chemistry, Pomorska 165, Lodz 90-236, Poland
| | - Paula Ortega
- Universidad de Alcalá. Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Spain and Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Colmenar Viejo Road, Km 9, 100, Madrid 28034, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Francisco Javier de la Mata
- Universidad de Alcalá. Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Spain and Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Colmenar Viejo Road, Km 9, 100, Madrid 28034, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Maria Bryszewska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, Lodz 90-236, Poland
| | - Maksim Ionov
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, Lodz 90-236, Poland; Mazovian Academy in Plock, Collegium Medicum, Faculty of Medicine, Pl. Dabrowskiego 2, Plock 09-402, Poland
| |
Collapse
|
2
|
Okła E, Michlewska S, Buczkowski A, Zawadzki S, Miłowska K, Sánchez-Nieves J, Gómez R, de la Mata FJ, Bryszewska M, Blasiak J, Ionov M. Pegylated gold nanoparticles interact with lipid bilayer and human serum albumin and transferrin. Sci Rep 2024; 14:24408. [PMID: 39420206 PMCID: PMC11487075 DOI: 10.1038/s41598-024-74898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Gold nanoparticles (AuNPs) are potentially applicable in drug/nucleic acid delivery systems. Low toxicity, high stability, and bioavailability are crucial for the therapeutic use of AuNPs and they are mainly determined by their interactions with proteins and lipids on their route to the target cells. In this work, we investigated the interaction of two pegylated gold nanoparticles, AuNP14a and AuNP14b, with human serum proteins albumin (HSA) and transferrin (Tf) as well as dimyristoyl-phosphatidylcholine (DMPC) liposomes, which can be a representative of biomembranes. We showed that AuNP14a/b interacted with HSA and Tf changing their electrical, thermodynamic, and structural properties as evidenced by dynamic light scattering, zeta potential, transmission electron microscopy, circular dichroism, fluorescence quenching, and isothermal titration calorimetry. These nanoparticles penetrated the DMPC membrane suggesting their ability to reach a target inside the cell. In most of the effects, AuNP14b was more effective than AuNP14a, which might result from its more positive charge. Further studies are needed to evaluate whether the interaction of AuNP14a/b with HSA and Tf is safe for the cell/organism and whether they may safely penetrate natural membranes.
Collapse
Affiliation(s)
- Elżbieta Okła
- Faculty of Biology and Environmental Protection, Department of General Biophysics, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland.
- University of Lodz Doctoral School of Exact and Natural Sciences, 21/23 Matejki St., Lodz, 90-237, Poland.
| | - Sylwia Michlewska
- Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| | - Adam Buczkowski
- Faculty of Chemistry, Department of Physical Chemistry, Division of Biophysical Chemistry, University of Lodz, Pomorska 165, Lodz, 90-236, Poland
| | - Serafin Zawadzki
- Faculty of Biology and Environmental Protection, Department of General Biophysics, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 21/23 Matejki St., 90‑237 , Lodz, Poland
| | - Katarzyna Miłowska
- Faculty of Biology and Environmental Protection, Department of General Biophysics, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland
| | - Javier Sánchez-Nieves
- Universidad de Alcalá Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Spain and Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Colmenar Viejo Road, Km 9, 100, Madrid, 28034, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rafael Gómez
- Universidad de Alcalá Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Spain and Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Colmenar Viejo Road, Km 9, 100, Madrid, 28034, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Francisco Javier de la Mata
- Universidad de Alcalá Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Spain and Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Colmenar Viejo Road, Km 9, 100, Madrid, 28034, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Maria Bryszewska
- Faculty of Biology and Environmental Protection, Department of General Biophysics, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland
| | - Janusz Blasiak
- Collegium Medicum, Faculty of Medicine, Mazovian Academy in Plock, Pl. Dabrowskiego 2, Plock, 09-402, Poland
| | - Maksim Ionov
- Faculty of Biology and Environmental Protection, Department of General Biophysics, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland.
- Collegium Medicum, Faculty of Medicine, Mazovian Academy in Plock, Pl. Dabrowskiego 2, Plock, 09-402, Poland.
| |
Collapse
|
3
|
Yao NT, Liu Q, Ma JW, Du XM, Ru J, Jiang JJ, Zhao L, Meng YS. Manipulating Fe(II) spin states to achieve higher anti-tumor cell activities in multinuclear complexes. Chem Commun (Camb) 2024; 60:11710-11713. [PMID: 39318167 DOI: 10.1039/d4cc03092c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Exploring the different spin states of central metals in the complex to regulate the anti-tumor activity of cancer cells is of great significance in drug design and clinical use. However, it is a challenge to build a strong coupling between spin states and anti-tumor activities in one system. Herein, we present two complexes {FeII2L2[PdII(CN)4]2}·2H2O (L = Bztpen (1), Bztppn (2); Bztpen = N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethylenediamine, Bztppn = N-benzyl-N,N',N'-tris(2-pyridylmethyl)propylenediamine) showing different cytotoxic activities actuated by fine-tuning the structure with different spin states of Fe(II). Magnetic susceptibility measurements and X-ray diffraction revealed that the Fe(II) ion in complexes 1 and 2 remains in the LS and HS state, respectively, at room temperature. Cytotoxicity tests indicate that complex 1 is more biologically effective than complex 2. In complex 2, however, the high-spin Fe(II) played a key role in regulating its in vitro antitumor effects and seems to be associated with ROS-mediated apoptosis. These findings offer a new avenue for developing anti-cancer drugs by designing complexes with different spin states.
Collapse
Affiliation(s)
- Nian-Tao Yao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liao Cheng, 252000, China.
| | - Qiang Liu
- Instrumental Analysis Center, Dalian University of Technology, Dalian, 116024, China
| | - Jun-Wei Ma
- School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xiu-Mei Du
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liao Cheng, 252000, China.
| | - Jing Ru
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liao Cheng, 252000, China.
| | - Jiao-Jiao Jiang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liao Cheng, 252000, China.
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
4
|
Abd-El-Aziz A, Ahmed SA, Zhang X, Ma N, Abd-El-Aziz AS. Macromolecules incorporating transition metals in the treatment and detection of cancer and infectious diseases: Progress over the last decade. Coord Chem Rev 2024; 510:215732. [DOI: 10.1016/j.ccr.2024.215732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Skiba E, Pietrzak M, Michlewska S, Gruszka J, Malejko J, Godlewska-Żyłkiewicz B, Wolf WM. Photosynthesis governed by nanoparticulate titanium dioxide. The Pisum sativum L. case study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122735. [PMID: 37848082 DOI: 10.1016/j.envpol.2023.122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Wide availability of anthropogenic TiO2 nanoparticles facilitates their penetration into environment and prompts interactions with plants. They alter plants growth and change their nutritional status. In particular, metabolic processes are affected. In this work the effect of nanometric TiO2 on photosynthesis efficiency in green pea (Pisum sativum L.) was studied. Hydroponic cultivations with three Ti levels (10; 50 and 100 mg L-1) were applied. At all concentrations nanoparticles penetrated into plant tissues and were detected by the single particle ICP-MS/MS method. Nanoparticles altered the CO2 assimilation rate and gas exchange parameters (i.e. transpiration, stomatal conductance, sub-stomatal CO2 concentration). The most pronounced effects were observed for Ti 50 mg L-1 cultivation where photosynthesis efficiency, transpiration and stomatal conductance were increased by 14.69%, 4.58% and 8.92%, respectively. They were further confirmed by high maximum ribulose 1,5-bisphosphate carboxylation rate (27.40% increase), maximum electron transport rate (21.51% increase) and the lowest CO2 compensation point (45.19% decrease). Furthermore, concentrations of Cu, Mn, Zn, Fe, Mg, Ca, K and P were examined with the most pronounced changes observed for elements directly involved in photosynthesis (Cu, Zn, Mn, and Fe). The Cu concentrations in roots, stems and leaves for Ti 50 mg L-1 cultivation were below the control by 33.15%, 38.28% and 10.76%, respectively. The Zn content in analogous treatment and organs decreased by 30.24%, 26.69% and 13.35%. The Mn and Fe levels in leaves were increased by 72.22% and 50.32%, respectively. Our results indicated that plant defence mechanisms which restrain the water uptake have been overcome in pea by photocatalytic activity of nanoparticulate TiO2 which stimulated photosynthesis. On the contrary to the substantial stomatal conductance, the transpiration has been reduced because exceptional part of water flow was already consumed in chloroplasts and could not have been freed to the atmosphere.
Collapse
Affiliation(s)
- Elżbieta Skiba
- Institute of General and Ecological Chemistry, Lodz University of Technology, Poland.
| | - Monika Pietrzak
- Institute of General and Ecological Chemistry, Lodz University of Technology, Poland
| | - Sylwia Michlewska
- Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, University of Lodz, Poland
| | - Jakub Gruszka
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Poland
| | - Julita Malejko
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Poland
| | | | - Wojciech M Wolf
- Institute of General and Ecological Chemistry, Lodz University of Technology, Poland
| |
Collapse
|
6
|
Michlewska S, Wójkowska D, Watala C, Skiba E, Ortega P, de la Mata FJ, Bryszewska M, Ionov M. Ruthenium metallodendrimer against triple-negative breast cancer in mice. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 53:102703. [PMID: 37591367 DOI: 10.1016/j.nano.2023.102703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/11/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
Carbosilane metallodendrimers, based on the arene Ru(II) complex (CRD13) and integrated to imino-pyridine surface groups have been investigated as an anticancer agent in a mouse model with triple-negative breast cancer. The dendrimer entered into the cells efficiently, and exhibited selective toxicity for 4T1 cells. In vivo investigations proved that a local injection of CRD13 caused a reduction of tumour mass and was non-toxic. ICP analyses indicated that Ru(II) accumulated in all tested tissues with a greater content detected in the tumour.
Collapse
Affiliation(s)
- Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Poland; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland.
| | - Dagmara Wójkowska
- Department of Haemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Poland
| | - Cezary Watala
- Department of Haemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Poland
| | - Elżbieta Skiba
- Institute of General and Ecological Chemistry, Lodz University of Technology, Poland
| | - Paula Ortega
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain; Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Francisco Javier de la Mata
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain; Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| |
Collapse
|
7
|
Puiggalí J. Development of Responsive Nanoparticles for Cancer Therapy. Int J Mol Sci 2023; 24:10371. [PMID: 37373517 DOI: 10.3390/ijms241210371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Great efforts are focused on the development of safe nano-carriers for the treatment of cancer in order to overcome some of the typical limitations of conventional therapies [...].
Collapse
Affiliation(s)
- Jordi Puiggalí
- Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Spain
| |
Collapse
|
8
|
Michlewska S, Garaiova Z, Šubjakova V, Hołota M, Kubczak M, Grodzicka M, Okła E, Naziris N, Balcerzak Ł, Ortega P, de la Mata FJ, Hianik T, Waczulikova I, Bryszewska M, Ionov M. Lipid-coated ruthenium dendrimer conjugated with doxorubicin in anti-cancer drug delivery: Introducing protocols. Colloids Surf B Biointerfaces 2023; 227:113371. [PMID: 37244201 DOI: 10.1016/j.colsurfb.2023.113371] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
One of the major limitations for the treatment of many diseases is an inability of drugs to cross the cell membrane barrier. Different kinds of carriers are being investigated to improve drug bioavailability. Among them, lipid or polymer-based systems are of special interest due to their biocompatibility. In our study, we combined dendritic and liposomal carriers and analysed the biochemical and biophysical properties of these formulations. Two preparation methods of Liposomal Locked-in Dendrimers (LLDs) systems have been established and compared. Carbosilane ruthenium metallodendrimer was complexed with an anti-cancer drug (doxorubicin) and locked in a liposomal structure, using both techniques. The LLDs systems formed by hydrophilic locking had more efficient transfection profiles and interacted with the erythrocyte membrane better than systems using the hydrophobic method. The results indicate these systems have improved transfection properties when compared to non-complexed components. The coating of dendrimers with lipids significantly reduced their hemotoxicity and cytotoxicity. The nanometric size, low polydispersity index and reduced positive zeta potential of such complexes made them attractive for future application in drug delivery. The formulations prepared by the hydrophobic locking protocol were not effective and will not be considered furthermore as prospective drug delivery systems. In contrast, the formulations formed by the hydrophilic loading method have shown promising results where the cytotoxicity of LLD systems with doxorubicin was more effective against cancer than normal cells.
Collapse
Affiliation(s)
- Sylwia Michlewska
- Laboratory of Microscopic Imaging & Specialized Biological Techniques. Faculty of Biology & Environmental Protection. University of Lodz, Banacha 12/16, Lodz 90-237, Poland.
| | - Zuzana Garaiova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
| | - Veronika Šubjakova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
| | - Marcin Hołota
- Department of General Biophysics. Faculty of Biology & Environmental Protection. University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Małgorzata Kubczak
- Department of General Biophysics. Faculty of Biology & Environmental Protection. University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Marika Grodzicka
- Department of General Biophysics. Faculty of Biology & Environmental Protection. University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Elżbieta Okła
- Department of General Biophysics. Faculty of Biology & Environmental Protection. University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Nikolaos Naziris
- Department of General Biophysics. Faculty of Biology & Environmental Protection. University of Lodz, Pomorska 141/143, Lodz 90-236, Poland; Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Łucja Balcerzak
- Laboratory of Microscopic Imaging & Specialized Biological Techniques. Faculty of Biology & Environmental Protection. University of Lodz, Banacha 12/16, Lodz 90-237, Poland
| | - Paula Ortega
- Networking Research Center on Bioengineering. Biomaterials &Nanomedicine (CIBER-BBN), Monforte de Lemos 3-5, Pabell on 11, Planta 028029, Madrid, Spain; Universidad de Alcalá. Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Spain and Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Colmenar Viejo Road, Km 9, 100, 28034 Madrid, Spain
| | - Francisco Javier de la Mata
- Networking Research Center on Bioengineering. Biomaterials &Nanomedicine (CIBER-BBN), Monforte de Lemos 3-5, Pabell on 11, Planta 028029, Madrid, Spain; Universidad de Alcalá. Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Spain and Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Colmenar Viejo Road, Km 9, 100, 28034 Madrid, Spain
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
| | - Iveta Waczulikova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
| | - Maria Bryszewska
- Department of General Biophysics. Faculty of Biology & Environmental Protection. University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Maksim Ionov
- Department of General Biophysics. Faculty of Biology & Environmental Protection. University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| |
Collapse
|
9
|
Kisakova LA, Apartsin EK, Nizolenko LF, Karpenko LI. Dendrimer-Mediated Delivery of DNA and RNA Vaccines. Pharmaceutics 2023; 15:pharmaceutics15041106. [PMID: 37111593 PMCID: PMC10145063 DOI: 10.3390/pharmaceutics15041106] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
DNA and RNA vaccines (nucleic acid-based vaccines) are a promising platform for vaccine development. The first mRNA vaccines (Moderna and Pfizer/BioNTech) were approved in 2020, and a DNA vaccine (Zydus Cadila, India), in 2021. They display unique benefits in the current COVID-19 pandemic. Nucleic acid-based vaccines have a number of advantages, such as safety, efficacy, and low cost. They are potentially faster to develop, cheaper to produce, and easier to store and transport. A crucial step in the technology of DNA or RNA vaccines is choosing an efficient delivery method. Nucleic acid delivery using liposomes is the most popular approach today, but this method has certain disadvantages. Therefore, studies are actively underway to develop various alternative delivery methods, among which synthetic cationic polymers such as dendrimers are very attractive. Dendrimers are three-dimensional nanostructures with a high degree of molecular homogeneity, adjustable size, multivalence, high surface functionality, and high aqueous solubility. The biosafety of some dendrimers has been evaluated in several clinical trials presented in this review. Due to these important and attractive properties, dendrimers are already being used to deliver a number of drugs and are being explored as promising carriers for nucleic acid-based vaccines. This review summarizes the literature data on the development of dendrimer-based delivery systems for DNA and mRNA vaccines.
Collapse
Affiliation(s)
- Lyubov A. Kisakova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| | - Evgeny K. Apartsin
- CBMN, UMR 5248, CNRS, Bordeaux INP, University Bordeaux, F-33600 Pessac, France
| | - Lily F. Nizolenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| |
Collapse
|
10
|
Michlewska S, Maly M, Wójkowska D, Karolczak K, Skiba E, Hołota M, Kubczak M, Ortega P, Watala C, Javier de la Mata F, Bryszewska M, Ionov M. Carbosilane ruthenium metallodendrimer as alternative anti-cancer drug carrier in triple negative breast cancer mouse model: A preliminary study. Int J Pharm 2023; 636:122784. [PMID: 36858135 DOI: 10.1016/j.ijpharm.2023.122784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
The carbosilane metallodendrimer G1-[[NCPh(o-N)Ru(η6- p-cymene)Cl]Cl]4 (CRD13), based on an arene Ru(II) complex coordinated to imino-pyridine surface groups, has been conjugated with anti-cancer drugs. Ruthenium in the positively-charged dendrimer structure allows this nanoparticle to be considered as an anticancer drug carrier, made more efficient because ruthenium has anticancer properties. The ability of CRD13 to form complexes with Doxorubicin (DOX), 5-Fluorouracil (5-Fu), and Methotrexate (MTX) has been evaluated using zeta potential measurement, transmission electron microscopy (TEM) and computer simulation. The results show that it forms stable nanocomplexes with all those drugs, enhancing their effectiveness against MDA-MB-231 cancer cells. In vivo tests indicate that the CRD13/DOX system caused a decrease of tumor weight in mice with triple negative breast cancer. However, the tumors were most visibly reduced when naked dendrimers were injected.
Collapse
Affiliation(s)
- Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Poland; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland.
| | - Marek Maly
- Department of Physics, Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic
| | - Dagmara Wójkowska
- Department of Haemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Mazowiecka st. 6/8, 92-215 Lodz, Poland
| | - Kamil Karolczak
- Department of Haemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Mazowiecka st. 6/8, 92-215 Lodz, Poland
| | - Elżbieta Skiba
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Marcin Hołota
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Małgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Paula Ortega
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain; Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Spain
| | - Cezary Watala
- Department of Haemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Mazowiecka st. 6/8, 92-215 Lodz, Poland
| | - F Javier de la Mata
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain; Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| |
Collapse
|
11
|
Hołota M, Michlewska S, Garcia-Gallego S, del Olmo NS, Ortega P, Bryszewska M, de la Mata FJ, Ionov M. Combination of Copper Metallodendrimers with Conventional Antitumor Drugs to Combat Cancer in In Vitro Models. Int J Mol Sci 2023; 24:4076. [PMID: 36835489 PMCID: PMC9960994 DOI: 10.3390/ijms24044076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Copper carbosilane metallodendrimers containing chloride ligands and nitrate ligands were mixed with commercially available conventional anticancer drugs, doxorubicin, methotrexate and 5-fluorouracil, for a possible therapeutic system. To verify the hypothesis that copper metallodendrimers can form conjugates with anticancer drugs, their complexes were biophysically characterized using zeta potential and zeta size methods. Next, to confirm the existence of a synergetic effect of dendrimers and drugs, in vitro studies were performed. The combination therapy has been applied in two cancer cell lines: MCF-7 (human breast cancer cell line) and HepG2 (human liver carcinoma cell line). The doxorubicin (DOX), methotrexate (MTX) and 5-fluorouracil (5-FU) were more effective against cancer cells when conjugated with copper metallodendrimers. Such combination significantly decreased cancer cell viability when compared to noncomplexed drugs or dendrimers. The incubation of cells with drug/dendrimer complexes resulted in the increase of the reactive oxygen species (ROS) levels and the depolarization of mitochondrial membranes. Copper ions present in the dendrimer structures enhanced the anticancer properties of the whole nanosystem and improved drug effects, inducing both the apoptosis and necrosis of MCF-7 (human breast cancer cell line) and HepG2 (human liver carcinoma cell line) cancer cells.
Collapse
Affiliation(s)
- Marcin Hołota
- Department of General Biophysics, Faculty of Biology & Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Sylwia Michlewska
- Department of General Biophysics, Faculty of Biology & Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Laboratory of Microscopic Imaging & Specialized Biological Techniques, Faculty of Biology & Environmental Protection, University of Lodz, Banacha12/16, 90-237 Lodz, Poland
| | - Sandra Garcia-Gallego
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Natalia Sanz del Olmo
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Madrid, Spain
| | - Paula Ortega
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology & Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology & Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
12
|
Camacho C, Maciel D, Tomás H, Rodrigues J. Biological Effects in Cancer Cells of Mono- and Bidentate Conjugation of Cisplatin on PAMAM Dendrimers: A Comparative Study. Pharmaceutics 2023; 15:pharmaceutics15020689. [PMID: 36840012 PMCID: PMC9960565 DOI: 10.3390/pharmaceutics15020689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum(II)) is a potent chemotherapeutic agent commonly used to treat cancer. However, its use also leads to serious side effects, such as nephrotoxicity, ototoxicity, and cardiotoxicity, which limit the dose that can be safely administered to patients. To minimize these problems, dendrimers may be used as carriers for cisplatin through the coordination of their terminal functional groups to platinum. Here, cisplatin was conjugated to half-generation anionic PAMAM dendrimers in mono- and bidentate forms, and their biological effects were assessed in vitro. After preparation and characterization of the metallodendrimers, their cytotoxicity was evaluated against several cancer cell lines (A2780, A2780cisR, MCF-7, and CACO-2 cells) and a non-cancer cell line (BJ cells). The results showed that all the metallodendrimers were cytotoxic and that the cytotoxicity level depended on the cell line and the type of coordination mode (mono- or bidentate). Although, in this study, a correlation between dendrimer generation (number of carried metallic fragments) and cytotoxicity could not be completely established, the monodentate coordination form of cisplatin resulted in lower IC50 values, thus revealing a more accessible cisplatin release from the dendritic scaffold. Moreover, most of the metallodendrimers were more potent than the cisplatin, especially for the A2780 and A2780cisR cell lines, which showed higher selectivity than for non-cancer cells (BJ cells). The monodentate G0.5COO(Pt(NH3)2Cl)8 and G2.5COO(Pt(NH3)2Cl)32 metallodendrimers, as well as the bidentate G2.5COO(Pt(NH3)2)16 metallodendrimer, were even more active towards the cisplatin-resistant cell line (A2780cisR cells) than the correspondent cisplatin-sensitive one (A2780 cells). Finally, the effect of the metallodendrimers on the hemolysis of human erythrocytes was neglectable, and metallodendrimers' interaction with calf thymus DNA seemed to be stronger than that of free cisplatin.
Collapse
|
13
|
Design, Synthesis and Activity of New N1-Alkyl Tryptophan Functionalized Dendrimeric Peptides against Glioblastoma. Biomolecules 2022; 12:biom12081116. [PMID: 36009010 PMCID: PMC9406037 DOI: 10.3390/biom12081116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Due to resistance to conventional therapy, a blood–brain barrier that results in poor drug delivery, and a high potential for metastasis, glioblastoma (GBM) presents a great medical challenge. Since the repertoire of the possible therapies is very limited, novel therapeutic strategies require new drugs as well as new approaches. The multiple roles played by L-tryptophan (Trp) in tumorigenesis of GBM and the previously found antiproliferative properties of Trp-bearing dendrimers against this malignancy prompted us to design novel polyfunctional peptide-based dendrimers covalently attached to N1-alkyl tryptophan (Trp) residues. Their antiproliferative properties against GBM and normal human astrocytes (NHA) and their antioxidant potential were tested. Methods: Two groups of amphiphilic peptide dendrimers terminated with N1-butyl and N1-aminopentane tryptophan were designed. The influence of dendrimers on viability of NHA and human GBM cell lines, displaying different genetic backgrounds and tumorigenic potentials, was determined by the MTT test. The influence of compounds on the clonogenic potential of GBM cells was assessed by colony-formation assay. Dendrimers were tested for radical scavenging potency as well as redox capability (DPPH, ABTS, and FRAP models). Results: Several peptide dendrimers functionalized with N1-alkyl-tryptophan at 5 µM concentration exhibited high selectivity towards GBM cells retaining 85–95% viable NHA cells while killing cancer cells. In both the MTT and colony-formation assays, compounds 21 (functionalized with N1-butyl-Trp and (+)8 charged) and 25 (functionalized with N1-aminopentane-Trp and (+)12 charged) showed the most promise for their development into anticancer drugs. According to ABTS, DPPH, and FRAP antioxidant tests, dendrimers functionalized with N1-alkylated Trp expressed higher ROS-scavenging capacity (ABTS and DPPH) than those with unsubstituted Trp. Conclusions: Peptide dendrimers functionalized with N1-alkyl-tryptophan showed varying toxicity to NHA, while all were toxic to GBM cells. Based on their activity towards inhibition of GBM viability and relatively mild effect on NHA cells the most advantageous were derivatives 21 and 25 with the respective di-dodecyl and dodecyl residue located at the C-terminus. As expected, peptide dendrimers functionalized with N1-alkyl-tryptophan expressed higher scavenging potency against ROS than dendrimers with unsubstituted tryptophan.
Collapse
|
14
|
Maciel D, Nunes N, Santos F, Fan Y, Li G, Shen M, Tomás H, Shi X, Rodrigues J. New insights into ruthenium( ii) metallodendrimers as anticancer drug nanocarriers: from synthesis to preclinic behaviour. J Mater Chem B 2022; 10:8945-8959. [PMID: 36278302 DOI: 10.1039/d2tb01280d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pre-clinical results highlight the potential of the low-generation poly(alkylidenamine)-based dendrimers as ruthenium metallodrug nanocarriers.
Collapse
Affiliation(s)
- Dina Maciel
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Nádia Nunes
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Francisco Santos
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Helena Tomás
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Xiangyang Shi
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - João Rodrigues
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
15
|
Canonico B, Cangiotti M, Montanari M, Papa S, Fusi V, Giorgi L, Ciacci C, Ottaviani MF, Staneva D, Grabchev I. Characterization of a fluorescent 1,8-naphthalimide-functionalized PAMAM dendrimer and its Cu(ii) complexes as cytotoxic drugs: EPR and biological studies in myeloid tumor cells. Biol Chem 2021; 403:345-360. [PMID: 34883001 DOI: 10.1515/hsz-2021-0388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/18/2021] [Indexed: 01/18/2023]
Abstract
The activity and interacting ability of a polyamidoamine (PAMAM) dendrimer modified with 4-N-methylpiperazine-1,8-naphthalimide units (termed D) and complexed by Cu(ii) ions, towards healthy and cancer cells were studied. Comparative electron paramagnetic resonance (EPR) studies of the Cu(ii)-D complex are presented: coordination mode, chemical structure, flexibility and stability of these complexes, in the absence and presence of myeloid cancer cells and peripheral blood mononuclear cells (PBMC). The interactions of Cu(ii) ions in the biological media at different equilibrium times were studied, highlighting different stability and interacting conditions with the cells. Furthermore, flow cytometry and confocal analysis, trace the peculiar properties of the dendrimers in PBMC and U937 cells. Indeed, a new probe (Fly) was used as a potential fluorescent tool for biological imaging of Cu(ii). The study highlights that dendrimer and, mainly, the Cu(ii) metallodendrimer are cytotoxic agents for the cells, specifically for U937 tumor cells, inducing mitochondrial dysfunction, ROS increase and lysosome involvement. The metallodendrimer shows antitumor selectivity, fewer affecting healthy PBMC, inducing a massive apoptotic cell death on U937 cells, in line with the high stability of this complex, as verified by EPR studies. The results underline the potentiality of this metallodendrimer to be used as anticancer drug.
Collapse
Affiliation(s)
- Barbara Canonico
- Department of Biomolecular Sciences (DISB), University of Urbino, I-61029 Urbino, Italy
| | - Michela Cangiotti
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino, I-61029 Urbino, Italy
| | - Mariele Montanari
- Department of Biomolecular Sciences (DISB), University of Urbino, I-61029 Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences (DISB), University of Urbino, I-61029 Urbino, Italy
| | - Vieri Fusi
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino, I-61029 Urbino, Italy
| | - Luca Giorgi
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino, I-61029 Urbino, Italy
| | - Caterina Ciacci
- Department of Biomolecular Sciences (DISB), University of Urbino, I-61029 Urbino, Italy
| | | | - Desislava Staneva
- University of Chemical Technology and Metallurgy, BG-1756 Sofia, Bulgaria
| | - Ivo Grabchev
- Sofia University "St. Kliment Ohridski", Faculty of Medicine, BG-1407 Sofia, Bulgaria
| |
Collapse
|
16
|
Gou Y, Huang G, Li J, Yang F, Liang H. Versatile delivery systems for non-platinum metal-based anticancer therapeutic agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Mignani S, Shi X, Guidolin K, Zheng G, Karpus A, Majoral JP. Clinical diagonal translation of nanoparticles: Case studies in dendrimer nanomedicine. J Control Release 2021; 337:356-370. [PMID: 34311026 DOI: 10.1016/j.jconrel.2021.07.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022]
Abstract
Among the numerous nanomedicine formulations, dendrimers have emerged as original, efficient, carefully assembled, hyperbranched, polymeric nanoparticles based on synthetic monomers. Dendrimers are used either as nanocarriers of drugs or as drugs themselves. When used as drug carriers, dendrimers are considered 'best-in-class agents', modifying and enhancing the pharmacokinetic and pharmacodynamic properties of the active entities encapsulated or conjugated with the dendrimers. When used as drugs themselves, dendrimers represent a novel category of "first-in-class" drugs. The purpose of this original review is to analyse the different strategies involved in the development, application, and impact of dendrimers as drugs. We examine a selection of nanoparticles that use multifunctional elements and demonstrate clinical multifunctionality, and we extend these principles to applications in dendrimer nanomedicine design. Finally, for practical consideration, the concepts of vertical and diagonal translation are introduced as potential strategies to facilitate dendrimer development.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Xiangyang Shi
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Keegan Guidolin
- Department of Surgery, University of Toronto, Toronto, Canada; Princess Margaret Cancer Centre, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France; Université Toulouse 118 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France; Université Toulouse 118 route de Narbonne, 31077 Toulouse Cedex 4, France.
| |
Collapse
|
18
|
Sowińska M, Szeliga M, Morawiak M, Ziemińska E, Zabłocka B, Urbańczyk-Lipkowska Z. Peptide Dendrimers with Non-Symmetric Bola Structure Exert Long Term Effect on Glioblastoma and Neuroblastoma Cell Lines. Biomolecules 2021; 11:435. [PMID: 33804286 PMCID: PMC8000084 DOI: 10.3390/biom11030435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common malignant tumor of the central nervous system (CNS). Neuroblastoma (NB) is one of the most common cancers of childhood derived from the neural crest cells. The survival rate for patients with GBM and high-risk NB is poor; therefore, novel therapeutic approaches are needed. Increasing evidence suggests a dual role of redox-active compounds in both tumorigenesis and cancer treatment. Therefore, in this study, polyfunctional peptide-based dendrimeric molecules of the bola structure carrying residues with antiproliferative potential on one side and the antioxidant residues on the other side were designed. METHODS We synthesized non-symmetric bola dendrimers and assessed their radical scavenging potency as well as redox capability. The influence of dendrimers on viability of rat primary cerebellar neurons (CGC) and normal human astrocytes (NHA) was determined by propidium iodide staining and cell counting. Cytotoxicity against human GBM cell lines, T98G and LN229, and NB cell line SH-SY5Y was assessed by cell counting and colony forming assay. RESULTS Testing of CGC and NHA viability allowed to establish a range of optimal dendrimers structure and concentration for further evaluation of their impact on two human GBM and one human NB cell lines. According to ABTS, DPPH, FRAP, and CUPRAC antioxidant tests, the most toxic for normal cells were dendrimers with high charge and an excess of antioxidant residues (Trp and PABA) on both sides of the bola structure. At 5 μM concentration, most of the tested dendrimers neither reduced rat CGC viability below 50-40%, nor harmed human neurons (NHA). The same dose of compounds 16 or 22, after 30 min treatment decreased the number of SH-SY5Y and LN229 cells, but did not affect the number of T98G cells 48 h post treatment. However, either compound significantly reduced the number of colonies formed by SH-SY5Y, LN229, and T98G cells measured 14 days after treatment. CONCLUSIONS Peptide dendrimers with non-symmetric bola structure are excellent scaffolds for design of molecules with pro/antioxidant functionality. Design of molecules with an excess of positive charges and antioxidant residues rendered molecules with high neurotoxicity. Single, 30 min exposition of the GBM and NB cell lines to the selected bola dendrimers significantly suppressed their clonogenic potential.
Collapse
Affiliation(s)
- Marta Sowińska
- Institute of Organic Chemistry PAS, 01-224 Warsaw, Poland; (M.S.); (M.M.)
| | - Monika Szeliga
- Mossakowski Medical Research Institute PAS, 02-106 Warsaw, Poland; (E.Z.); (B.Z.)
| | - Maja Morawiak
- Institute of Organic Chemistry PAS, 01-224 Warsaw, Poland; (M.S.); (M.M.)
| | - Elżbieta Ziemińska
- Mossakowski Medical Research Institute PAS, 02-106 Warsaw, Poland; (E.Z.); (B.Z.)
| | - Barbara Zabłocka
- Mossakowski Medical Research Institute PAS, 02-106 Warsaw, Poland; (E.Z.); (B.Z.)
| | | |
Collapse
|
19
|
|
20
|
Skiba E, Michlewska S, Pietrzak M, Wolf WM. Additive interactions of nanoparticulate ZnO with copper, manganese and iron in Pisum sativum L., a hydroponic study. Sci Rep 2020; 10:13574. [PMID: 32782343 PMCID: PMC7421903 DOI: 10.1038/s41598-020-70303-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Widespread occurrence of ZnO nanoparticles in environment follows the growing number of applications either in technology or agriculture. The impact of five forms of nanoparticulate ZnO on copper, manganese and iron uptake by Pisum sativum L. cultivated in Hoagland solutions was investigated. Plants were collected after twelve days of zinc administration. Effect of bulk ZnO has also been studied. Initial zinc concentration was 100 mg L-1. Nanoparticles were characterized by the Transmission Electron Microscopy, Dynamic Light Scattering and Zeta potential measurements. Metal contents were analyzed using the Atomic Absorption Spectrometry with flame atomization for samples digested in a microwave closed system. Analysis of variance indicated that zinc species at either molecular or nanoscale levels altered Cu, Mn and Fe uptake and their further transport in pea plants. In particular, significant reduction of Mn and Fe combined with the Cu increase was observed. Additive interactions originated by nanoparticles affect the heavy metals uptake and indicate pollutants migration pathways in plants. Unfortunately, regulations for the plant cultivation were formulated when anthropogenic nanoparticles were not in common use. They underestimate complexity of metals interactions in either plant or habitat. Our results indicate that these additive interactions cannot be neglected and deserve further investigations.
Collapse
Affiliation(s)
- Elżbieta Skiba
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland.
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Monika Pietrzak
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Wojciech M Wolf
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| |
Collapse
|
21
|
Moffett S, Shiao TC, Mousavifar L, Mignani S, Roy R. Aberrant glycosylation patterns on cancer cells: Therapeutic opportunities for glycodendrimers/metallodendrimers oncology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1659. [PMID: 32776710 DOI: 10.1002/wnan.1659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 01/29/2023]
Abstract
Despite exciting discoveries and progresses in drug design against cancer, its cure is still rather elusive and remains one of the humanities major challenges in health care. The safety profiles of common small molecule anti-cancer therapeutics are less than at acceptable levels and limiting deleterious side-effects have to be urgently addressed. This is mainly caused by their incapacity to differentiate healthy cells from cancer cells; hence, the use of high dosage becomes necessary. One possible solution to improve the therapeutic windows of anti-cancer agents undoubtedly resides in modern nanotechnology. This review presents a discussion concerning multivalent carbohydrate-protein interactions as this topic pertains to the fundamental aspects that lead glycoscientists to tackle glyconanoparticles. The second section describes the detailed properties of cancer cells and how their aberrant glycan surfaces differ from those of healthy cells. The third section briefly describes the immune systems, both innate and adaptative, because the numerous displays of cell surface protein receptors necessitate to be addressed from the multivalent angles, a strength full characteristic of nanoparticles. The next chapter presents recent advances in glyconanotechnologies, including glycodendrimers in particular, as they apply to glycobiology and carbohydrate-based cancer vaccines. This was followed by an overview of metallodendrimers and how this rapidly evolving field may contribute to our arsenal of therapeutic tools to fight cancer. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
| | | | | | | | - René Roy
- Glycovax Pharma Inc, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Michlewska S, Ionov M, Szwed A, Rogalska A, Sanz del Olmo N, Ortega P, Denel M, Jacenik D, Shcharbin D, de la Mata FJ, Bryszewska M. Ruthenium Dendrimers against Human Lymphoblastic Leukemia 1301 Cells. Int J Mol Sci 2020; 21:ijms21114119. [PMID: 32526993 PMCID: PMC7312499 DOI: 10.3390/ijms21114119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023] Open
Abstract
Ruthenium atoms located in the surfaces of carbosilane dendrimers markedly increase their anti-tumor properties. Carbosilane dendrimers have been widely studied as carriers of drugs and genes owing to such characteristic features as monodispersity, stability, and multivalence. The presence of ruthenium in the dendrimer structure enhances their successful use in anti-cancer therapy. In this paper, the activity of dendrimers of generation 1 and 2 against 1301 cells was evaluated using Transmission Electron Microscopy, comet assay and Real Time PCR techniques. Additionally, the level of reactive oxygen species (ROS) and changes of mitochondrial potential values were assessed. The results of the present study show that ruthenium dendrimers significantly decrease the viability of leukemia cells (1301) but show low toxicity to non-cancer cells (peripheral blood mononuclear cells-PBMCs). The in vitro test results indicate that the dendrimers injure the 1301 leukemia cells via the apoptosis pathway.
Collapse
Affiliation(s)
- Sylwia Michlewska
- Laboratory of Microscopic Imaging & Specialized Biological Techniques, Faculty of Biology & Environmental Protection, University of Lodz, 90-237 Lodz, Poland
- Department of General Biophysics, Faculty of Biology & Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (A.S.); (M.B.)
- Correspondence: (S.M.); (M.I.)
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology & Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (A.S.); (M.B.)
- Correspondence: (S.M.); (M.I.)
| | - Aleksandra Szwed
- Department of General Biophysics, Faculty of Biology & Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (A.S.); (M.B.)
| | - Aneta Rogalska
- Department of Medical Biophysics, Faculty of Biology & Protection, University of Lodz, 90-236 Lodz, Poland; (A.R.); (M.D.)
| | - Natalia Sanz del Olmo
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (N.S.d.O.); (P.O.); (F.J.d.l.M.)
- Department of Organic Chemistry and Inorganic Chemistry, Research Institute of Chemistry “Andrés M. del Rio (IQAR)”, Institute “Ramón y Cajal” for Health Research (IRYCIS), University of Alcalá, 28805 Madrid, Spain
| | - Paula Ortega
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (N.S.d.O.); (P.O.); (F.J.d.l.M.)
- Department of Organic Chemistry and Inorganic Chemistry, Research Institute of Chemistry “Andrés M. del Rio (IQAR)”, Institute “Ramón y Cajal” for Health Research (IRYCIS), University of Alcalá, 28805 Madrid, Spain
| | - Marta Denel
- Department of Medical Biophysics, Faculty of Biology & Protection, University of Lodz, 90-236 Lodz, Poland; (A.R.); (M.D.)
| | - Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology & Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Dzmitry Shcharbin
- Institute of Biophysics & Cell Engineering of NASB, 220072 Minsk, Belarus;
| | - Francisco Javier de la Mata
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (N.S.d.O.); (P.O.); (F.J.d.l.M.)
- Department of Organic Chemistry and Inorganic Chemistry, Research Institute of Chemistry “Andrés M. del Rio (IQAR)”, Institute “Ramón y Cajal” for Health Research (IRYCIS), University of Alcalá, 28805 Madrid, Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology & Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (A.S.); (M.B.)
| |
Collapse
|
23
|
Canonico B, Carloni R, Sanz del Olmo N, Papa S, Nasoni MG, Fattori A, Cangiotti M, de la Mata FJ, Ottaviani MF, García-Gallego S. Fine-Tuning the Interaction and Therapeutic Effect of Cu(II) Carbosilane Metallodendrimers in Cancer Cells: An In Vitro Electron Paramagnetic Resonance Study. Mol Pharm 2020; 17:2691-2702. [DOI: 10.1021/acs.molpharmaceut.0c00396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Barbara Canonico
- Department of Biomolecular Science (DiSB), University of Urbino “Carlo Bo”, Urbino 61029, Italy
| | - Riccardo Carloni
- Department of Pure and Applied Sciences, University of Urbino “Carlo Bo”, Urbino 61029, Italy
| | - Natalia Sanz del Olmo
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, Madrid 28871, Spain
| | - Stefano Papa
- Department of Biomolecular Science (DiSB), University of Urbino “Carlo Bo”, Urbino 61029, Italy
| | - Maria Gemma Nasoni
- Department of Biomolecular Science (DiSB), University of Urbino “Carlo Bo”, Urbino 61029, Italy
| | - Alberto Fattori
- Department of Pure and Applied Sciences, University of Urbino “Carlo Bo”, Urbino 61029, Italy
| | - Michela Cangiotti
- Department of Pure and Applied Sciences, University of Urbino “Carlo Bo”, Urbino 61029, Italy
| | - F. Javier de la Mata
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, Madrid 28871, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Institute Ramón y Cajal for Health Research (IRYCIS), Madrid 28034, Spain
| | | | - Sandra García-Gallego
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, Madrid 28871, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Institute Ramón y Cajal for Health Research (IRYCIS), Madrid 28034, Spain
| |
Collapse
|
24
|
Dzhardimalieva GI, Rabinskiy LN, Kydralieva KA, Uflyand IE. Recent advances in metallopolymer-based drug delivery systems. RSC Adv 2019; 9:37009-37051. [PMID: 35539076 PMCID: PMC9075603 DOI: 10.1039/c9ra06678k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Metallopolymers (MPs) or metal-containing polymers have shown great potential as new drug delivery systems (DDSs) due to their unique properties, including universal architectures, composition, properties and surface chemistry. Over the past few decades, the exponential growth of many new classes of MPs that deal with these issues has been demonstrated. This review presents and assesses the recent advances and challenges associated with using MPs as DDSs. Among the most widely used MPs for these purposes, metal complexes based on synthetic and natural polymers, coordination polymers, metal-organic frameworks, and metallodendrimers are distinguished. Particular attention is paid to the stimulus- and multistimuli-responsive metallopolymer-based DDSs. Of considerable interest is the use of MPs for combination therapy and multimodal systems. Finally, the problems and future prospects of using metallopolymer-based DDSs are outlined. The bibliography includes articles published over the past five years.
Collapse
Affiliation(s)
- Gulzhian I Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS Academician Semenov Avenue 1 Chernogolovka Moscow Region 142432 Russian Federation
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Lev N Rabinskiy
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Kamila A Kydralieva
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Igor E Uflyand
- Department of Chemistry, Southern Federal University B. Sadovaya Str. 105/42 Rostov-on-Don 344006 Russian Federation
| |
Collapse
|
25
|
Michlewska S, Kubczak M, Maroto-Díaz M, Sanz Del Olmo N, Ortega P, Shcharbin D, Gomez Ramirez R, Javier de la Mata F, Ionov M, Bryszewska M. Synthesis and Characterization of FITC Labelled Ruthenium Dendrimer as a Prospective Anticancer Drug. Biomolecules 2019; 9:biom9090411. [PMID: 31450702 PMCID: PMC6770823 DOI: 10.3390/biom9090411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/27/2022] Open
Abstract
Metallodendrimers-dendrimers with included metals-are widely investigated as biocompatible equivalents to metal nanoparticles. Applications can be expected in the fields of catalysis, as chemical sensors in molecular recognition and as anticancer drugs. Metallodendrimers can also mimic certain biomolecules, for example, haemoprotein in the case of using a dendrimer with a porphyrin core. In previous papers, we showed the promising anticancer effects of carbosilane ruthenium dendrimers. The present paper is devoted to studying biocompatibility and the cytotoxic effect on normal and cancer cells of carbosilane ruthenium dendrimers labelled with fluorescent probe fluorescein isothiocyanate (FITC). The addition of fluorescent probe allowed tracking the metallodendrimer in both normal and cancer cells. It was found that carbosilane ruthenium dendrimer labelled with FITC in concentration up to 10 µmol/L was more cytotoxic for cancer cells than for normal cells. Thus, FITC labelled carbosilane ruthenium dendrimer is a good candidate for diagnostic imaging and studying anticancer effects of metallodendrimers in cancer therapy.
Collapse
Affiliation(s)
- Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha12/16, 90-237 Lodz, Poland
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Małgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Marta Maroto-Díaz
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Monforte de Lemos 3-5, Pabellon´ 11, Planta, 028029 Madrid, Spain
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), UAH, 28871 Alcalá de Henares, Spain
| | - Natalia Sanz Del Olmo
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Monforte de Lemos 3-5, Pabellon´ 11, Planta, 028029 Madrid, Spain
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), UAH, 28871 Alcalá de Henares, Spain
| | - Paula Ortega
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Monforte de Lemos 3-5, Pabellon´ 11, Planta, 028029 Madrid, Spain
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), UAH, 28871 Alcalá de Henares, Spain
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Akademicheskaja 27, 220072 Minsk, Belarus
| | - Rafael Gomez Ramirez
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Monforte de Lemos 3-5, Pabellon´ 11, Planta, 028029 Madrid, Spain
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), UAH, 28871 Alcalá de Henares, Spain
- Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Colmenar Viejo Road, Km 9, 100, 28034 Madrid, Spain
| | - Francisco Javier de la Mata
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Monforte de Lemos 3-5, Pabellon´ 11, Planta, 028029 Madrid, Spain
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), UAH, 28871 Alcalá de Henares, Spain
- Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Colmenar Viejo Road, Km 9, 100, 28034 Madrid, Spain
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
26
|
Ruthenium dendrimers against acute promyelocytic leukemia: in vitro studies on HL-60 cells. Future Med Chem 2019; 11:1741-1756. [PMID: 31287722 DOI: 10.4155/fmc-2018-0274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Coordination of ruthenium arene fragments on carbosilane dendrimers' surface greatly increases their antitumor properties. Newly synthetized ruthenium dendrimers are water-soluble, monodisperse and stable. Since carbosilane dendrimers are good carriers of drugs and genes, the presence of ruthenium in their structure makes them promising candidates for new drug delivery systems with improved antitumor potential. Carbosilane ruthenium dendrimers are more toxic to cancer cells than normal cells. Results of several in vitro studies applied here indicate that carbosilane ruthenium dendrimers induce apoptosis in promyelocytic leukemia HL-60 cells.
Collapse
|
27
|
Hołota M, Magiera J, Michlewska S, Kubczak M, Del Olmo NS, García-Gallego S, Ortega P, de la Mata FJ, Ionov M, Bryszewska M. In Vitro Anticancer Properties of Copper Metallodendrimers. Biomolecules 2019; 9:E155. [PMID: 31003561 PMCID: PMC6523220 DOI: 10.3390/biom9040155] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/08/2023] Open
Abstract
Newly synthesized carbosilane copper dendrimers (CCD) with chloride and nitrate surface groups seem to be good candidates to be used as gene and drug carriers in anti-cancer therapy, due to their properties such as size and surface charge. Copper attached to the nanoparticles is an important element of many biological processes and recently their anti-cancer properties have been widely examined. Zeta size and potential, transmission electron microscopy (TEM), circular dichroism (CD), analysis of haemolytic activity, and fluorescence anisotropy techniques were used to characterize copper dendrimers. Additionally, their cytotoxic properties toward normal (PBMC) and cancer (1301; HL-60) cells were examined. All tested dendrimers were more cytotoxic against cancer cells in comparison with normal cells.
Collapse
Affiliation(s)
- Marcin Hołota
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Jakub Magiera
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Sylwia Michlewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha12/16, 90-237, Lodz, Poland.
| | - Małgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Natalia Sanz Del Olmo
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcalá, Spain. Instituto de Investigación Química "Andrés M. del Río" (IQAR), UAH, Spain.
| | - Sandra García-Gallego
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcalá, Spain. Instituto de Investigación Química "Andrés M. del Río" (IQAR), UAH, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain.
| | - Paula Ortega
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcalá, Spain. Instituto de Investigación Química "Andrés M. del Río" (IQAR), UAH, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain.
| | - F Javier de la Mata
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcalá, Spain. Instituto de Investigación Química "Andrés M. del Río" (IQAR), UAH, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain.
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| |
Collapse
|
28
|
Moreira T, Francisco R, Comsa E, Duban-Deweer S, Labas V, Teixeira-Gomes AP, Combes-Soia L, Marques F, Matos A, Favrelle A, Rousseau C, Zinck P, Falson P, Garcia MH, Preto A, Valente A. Polymer "ruthenium-cyclopentadienyl" conjugates - New emerging anti-cancer drugs. Eur J Med Chem 2019; 168:373-384. [PMID: 30826512 DOI: 10.1016/j.ejmech.2019.02.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
Abstract
In this work, we aimed to understand the biological activity and the mechanism of action of three polymer-'ruthenium-cyclopentadienyl' conjugates (RuPMC) and a low molecular weight parental compound (Ru1) in cancer cells. Several biological assays were performed in ovarian (A2780) and breast (MCF7, MDA-MB-231) human cancer derived cell lines as well as in A2780cis, a cisplatin resistant cancer cell line. Our results show that all compounds have high activity towards cancer cells with low IC50 values in the micromolar range. We observed that all Ru-PMC compounds are mainly found inside the cells, in contrast with the parental low molecular weight compound Ru1 that was mainly found at the membrane. All compounds induced mitochondrial alterations. PMC3 and Ru1 caused F-actin cytoskeleton morphology changes and reduced the clonogenic ability of the cells. The conjugate PMC3 induced apoptosis at low concentrations comparing to cisplatin and could overcame the platinum resistance of A2780cis cancer cells. A proteomic analysis showed that these compounds induce alterations in several cellular proteins which are related to the phenotypic disorders induced by them. Our results suggest that PMC3 is foreseen as a lead candidate to future studies and acting through a different mechanism of action than cisplatin. Here we established the potential of these Ru compounds as new metallodrugs for cancer chemotherapy.
Collapse
Affiliation(s)
- Tiago Moreira
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Portugal. Campus de Gualtar, Braga, 4710-057, Portugal
| | - Rita Francisco
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Portugal. Campus de Gualtar, Braga, 4710-057, Portugal
| | - Elisabeta Comsa
- Drug Resistance & Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-UCBL1 UMR 5086, IBCP, 69367, Lyon, France
| | - Sophie Duban-Deweer
- Laboratoire de la barrière hémato-encéphalique (LBHE), Plateau Spectrométrie de Masse de l'ARTois (SMART), Université d'Artois, EA 2465, Lens, F-62300, France
| | - Valérie Labas
- Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), PR China, INRA, CNRS, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), PR China, INRA, CNRS, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Lucie Combes-Soia
- Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), PR China, INRA, CNRS, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N.10, 2695-066, Bobadela LRS, Portugal
| | - António Matos
- Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511, Caparica, Portugal
| | - Audrey Favrelle
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Cyril Rousseau
- Unity of Catalysis and Solid State Chemistry, UMR CNRS 8181, University of Artois, 62000, Lens, France
| | - Philippe Zinck
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Pierre Falson
- Drug Resistance & Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-UCBL1 UMR 5086, IBCP, 69367, Lyon, France
| | - M Helena Garcia
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Ana Preto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Portugal. Campus de Gualtar, Braga, 4710-057, Portugal
| | - Andreia Valente
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
29
|
Caminade AM, Majoral JP. Phosphorus dendrimers functionalised with nitrogen ligands, for catalysis and biology. Dalton Trans 2019; 48:7483-7493. [DOI: 10.1039/c9dt01305a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phosphorus dendrimers (dendrimers having one phosphorus atom at each branching point) possess versatile properties, depending on the type of their terminal functions.
Collapse
|
30
|
Gouveia M, Figueira J, Jardim MG, Castro R, Tomás H, Rissanen K, Rodrigues J. Poly(alkylidenimine) Dendrimers Functionalized with the Organometallic Moiety [Ru(η⁵-C₅H₅)(PPh₃)₂]⁺ as Promising Drugs Against Cisplatin-Resistant Cancer Cells and Human Mesenchymal Stem Cells. Molecules 2018; 23:E1471. [PMID: 29914219 PMCID: PMC6100097 DOI: 10.3390/molecules23061471] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 02/05/2023] Open
Abstract
Here and for the first time, we show that the organometallic compound [Ru(η⁵-C₅H₅)(PPh₃)₂Cl] (RuCp) has potential to be used as a metallodrug in anticancer therapy, and further present a new approach for the cellular delivery of the [Ru(η⁵-C₅H₅)(PPh₃)₂]⁺ fragment via coordination on the periphery of low-generation poly(alkylidenimine) dendrimers through nitrile terminal groups. Importantly, both the RuCp and the dendrimers functionalized with [Ru(η⁵-C₅H₅)(PPh₃)₂]⁺ fragments present remarkable toxicity towards a wide set of cancer cells (Caco-2, MCF-7, CAL-72, and A2780 cells), including cisplatin-resistant human ovarian carcinoma cell lines (A2780cisR cells). Also, RuCp and the prepared metallodendrimers are active against human mesenchymal stem cells (hMSCs), which are often found in the tumor microenvironment where they seem to play a role in tumor progression and drug resistance.
Collapse
Affiliation(s)
- Marisol Gouveia
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.
| | - João Figueira
- Department of Chemistry, ScilifeLab, Umeå University, KBC-Building, Linnaeus väg 6, 90736 Umeå, Sweden.
| | - Manuel G Jardim
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.
| | - Rita Castro
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.
| | - Helena Tomás
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, P.O. Box. 35, FI-40014 Jyväskylä, Finland.
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
31
|
Gouveia M, Figueira J, Jardim M, Castro R, Tomás H, Rissanen K, Rodrigues J. Poly(alkylidenimine) Dendrimers Functionalized with the Organometallic Moiety [Ru(η5-C5H5)(PPh3)2]+ as Promising Drugs Against Cisplatin-Resistant Cancer Cells and Human Mesenchymal Stem Cells. Molecules 2018. [DOI: https://doi.org/10.3390/molecules23061471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
32
|
Michlewska S, Ionov M, Maroto-Díaz M, Szwed A, Ihnatsyeu-Kachan A, Loznikova S, Shcharbin D, Maly M, Ramirez RG, de la Mata FJ, Bryszewska M. Ruthenium dendrimers as carriers for anticancer siRNA. J Inorg Biochem 2018; 181:18-27. [PMID: 29353086 DOI: 10.1016/j.jinorgbio.2018.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/29/2017] [Accepted: 01/07/2018] [Indexed: 12/27/2022]
Abstract
Dendrimers, which are considered as one of the most promising tools in the field of nanobiotechnology due to their structural organization, showed a great potential in gene therapy, drug delivery, medical imaging and as antimicrobial and antiviral agents. This article is devoted to study interactions between new carbosilane-based metallodendrimers containing ruthenium and anti-cancer small interfering RNA (siRNA). Formation of complexes between anti-cancer siRNAs and Ru-based carbosilane dendrimers was evaluated by transmission electron microscopy, circular dichroism and fluorescence. The zeta-potential and the size of dendriplexes were determined by dynamic light scattering. The internalization of dendriplexes were estimated using HL-60 cells. Results show that ruthenium dendrimers associated with anticancer siRNA have the ability to deliver siRNA as non-viral vectors into the cancer cells. Moreover, dendrimers can protect siRNA against nuclease degradation. Nevertheless, further research need to be performed to examine the therapeutic potential of ruthenium dendrimers as well as dendrimers complexed with siRNA and anticancer drugs towards cancer cells.
Collapse
Affiliation(s)
- Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha12/16, 90-237 Lodz, Poland; Department of General Biophysics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Marta Maroto-Díaz
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcala de Henares, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Aleksandra Szwed
- Department of General Biophysics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | | | - Svetlana Loznikova
- Institute of Biophysics and Cell Engineering of NASB, Akademicheskaja 27, Minsk 220072, Belarus
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Akademicheskaja 27, Minsk 220072, Belarus
| | - Marek Maly
- Department of Physics, Faculty of Science, J. E. Purkinje University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Rafael Gomez Ramirez
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcala de Henares, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Francisco Javier de la Mata
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcala de Henares, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Maria Bryszewska
- Department of General Biophysics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
33
|
Multi-Target Inhibition of Cancer Cell Growth by SiRNA Cocktails and 5-Fluorouracil Using Effective Piperidine-Terminated Phosphorus Dendrimers. COLLOIDS AND INTERFACES 2017. [DOI: 10.3390/colloids1010006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|