1
|
Wang J, Gao W, Jin Y, Tian W, Zhang Y, Hu C, Wang B, Dong S, Yuan L. Water-dispersible macromolecular antioxidants for toughening and strengthening cellulose membranes. Carbohydr Polym 2024; 339:122246. [PMID: 38823914 DOI: 10.1016/j.carbpol.2024.122246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Biodegradable packaging materials from cellulose are eco-friendly alternatives to traditional petroleum-based plastics. Balancing its mechanical properties as well as protective values (antioxidation, oxygen barrier, etc.) is critical. However, most studies to improve its antioxidation performance were accompanied by sacrificed mechanical properties. In the current work, a series of linear -COOH functionalized phenolic polymers were prepared from phenolic compounds (vanillin, 3,4-dihydroxy benzaldehyde) through a facile tri-component thiol-aldehyde polycondensation. While circumventing the cumbersome protection-deprotection of phenol groups, the one-pot strategy also affords water dispersible polymers for fabricating composites with cellulose nanofibers in an aqueous medium. After introducing 5-10 wt% of the copolymers, a minor soft phase was formed inside the composites, contributing to enhanced mechanical strength, toughness, antioxidation capability, and ultra-violet blocking performance, while its oxygen barrier property was well maintained.
Collapse
Affiliation(s)
- Jie Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Wei Gao
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Yu Jin
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Wangmao Tian
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Yutao Zhang
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Chengcheng Hu
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Baoxia Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Shuqi Dong
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China.
| | - Liang Yuan
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| |
Collapse
|
2
|
Sun T, Bian J, Wang Y, Hu J, Yun X, Chen E, Dong T. One-Step Synthesis of Poly(L-Lactic Acid)-Based Soft Films with Gas Permselectivity for White Mushrooms ( Agaricus bisporus) Preservation. Foods 2023; 12:foods12030586. [PMID: 36766115 PMCID: PMC9914554 DOI: 10.3390/foods12030586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
Proper packaging can extend the shelf life and maintain the quality of mushrooms during storage. The purpose of this study is to investigate the preservation of Agaricus bisporus using copolymer-modified poly (L-lactide-co-butylene fumarate) and poly (L-lactide-co-glycolic acid) (PLBF and PLGA) packaging. Shelf life and quality were evaluated over 15 days of storage of Agaricus bisporus at 4 ± 1 °C and 90% relative humidity, including weight loss, browning index (BI), total phenolics (TP), ascorbic acid (AA), malondialdehyde content (MDA), electrolyte leakage rate (EC), and superoxide dismutase (SOD) and catalase (CAT). The results showed that mushrooms packaged in PLBF films exhibited better retention in BI, TP, and AA than those with PLLA, PLGA, or polyethylene (PE) films. They can reduce the rate of weight loss, EC, and MDA, which in turn increases the activity of SOD and CAT. PLBF and PLGA have substantially improved flexibility in comparison with PLLA. They also significantly reduced oxygen (O2) and carbon dioxide (CO2) permeability and changed the gas permeability ratio. These positive effects resulted in the effective restriction of O2 and CO2 in these packages, extending the post-harvest storage period of white mushrooms.
Collapse
Affiliation(s)
- Tao Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010010, China
| | - Junxia Bian
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010010, China
| | - Yangyang Wang
- Hohhot Huimin District Center for Disease Control and Prevention, Hohhot 010030, China
| | - Jian Hu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010010, China
| | - Xueyan Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010010, China
| | - Eerdunbayaer Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010010, China
| | - Tungalag Dong
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010010, China
- Correspondence:
| |
Collapse
|
3
|
Biodegradable and biocompatible supramolecular polymers based on poly(ε-caprolactone-co-δ-valerolactone)-b-poly(lactide) block copolymers with different branched structures: Synthesis, crystallization and properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Highly toughened poly(ʟ-lactide) by poly(ᴅ-lactide)-containing crosslinked polyurethane shows excellent malleability, flexibility and shape memory property. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Klonos PA, Lazaridou M, Samiotaki C, Kyritsis A, Bikiaris DN. Dielectric and calorimetric study in renewable polymer blends based on poly(ethylene adipate) and poly(lactic acid) with microphase separation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Jing Z, Huang X, Liu X, Liao M, Li Y. Poly(lactide)‐based supramolecular polymers driven by self‐complementary quadruple hydrogen bonds: construction, crystallization and mechanical properties. POLYM INT 2022. [DOI: 10.1002/pi.6445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhanxin Jing
- Department of Applied Chemistry College of Chemistry and Environment Guangdong Ocean University, No.1 Haida Road Zhanjiang 524088 China
| | - Xiaolan Huang
- Department of Applied Chemistry College of Chemistry and Environment Guangdong Ocean University, No.1 Haida Road Zhanjiang 524088 China
| | - Xingqi Liu
- Department of Applied Chemistry College of Chemistry and Environment Guangdong Ocean University, No.1 Haida Road Zhanjiang 524088 China
| | - Mingneng Liao
- Department of Applied Chemistry College of Chemistry and Environment Guangdong Ocean University, No.1 Haida Road Zhanjiang 524088 China
| | - Yong Li
- Department of Applied Chemistry College of Chemistry and Environment Guangdong Ocean University, No.1 Haida Road Zhanjiang 524088 China
| |
Collapse
|
7
|
Farias NC, Major I, Devine D, Brennan Fournet M, Pezzoli R, Farshbaf Taghinezhad S, Hesabi M. Multiple recycling of a
PLA
/
PHB
biopolymer blend for sustainable packaging applications: Rheology‐morphology, thermal, and mechanical performance analysis. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Naiara C. Farias
- Material Research Institute Technological University of the Shannon: Midlands Midwest (TUS) Athlone Ireland
| | - Ian Major
- Material Research Institute Technological University of the Shannon: Midlands Midwest (TUS) Athlone Ireland
| | - Declan Devine
- Material Research Institute Technological University of the Shannon: Midlands Midwest (TUS) Athlone Ireland
| | - Margaret Brennan Fournet
- Material Research Institute Technological University of the Shannon: Midlands Midwest (TUS) Athlone Ireland
| | - Romina Pezzoli
- Applied Polymer Technologies Technological University of the Shannon: Midlands Midwest (TUS) Athlone Ireland
| | | | - Mohammadnabi Hesabi
- Material Research Institute Technological University of the Shannon: Midlands Midwest (TUS) Athlone Ireland
| |
Collapse
|
8
|
Klonos PA, Terzopoulou Z, Zamboulis A, Valera MÁ, Mangas A, Kyritsis A, Pissis P, Bikiaris DN. Direct and indirect effects on molecular mobility in renewable polylactide-poly(propylene adipate) block copolymers as studied via dielectric spectroscopy and calorimetry. SOFT MATTER 2022; 18:3725-3737. [PMID: 35503564 DOI: 10.1039/d2sm00261b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, we study a series of sustainable block copolymers based on polylactide, PLA, and poly(propylene adipate), PPAd, both polymers being prepared from renewable resources. Envisaging a wide range of future applications in the frame of a green and circular economy, e.g., packaging materials replacing conventional petrochemicals, the employment of PPAd aims at lowering the glass transition and melting temperatures of PLA and, finally, facilitation of the enzymatic degradation and compostability. The copolymers have been synthesized via ring opening polymerization of lactides in the presence of propylene adipate oligomers (5, 15 and 25%). The direct effects on the molecular mobility by the structure/composition are assessed in the amorphous state employing broadband dielectric spectroscopy (BDS) and calorimetry. BDS allowed the recording of local PLA and PPAd dynamics in all cases. The effects on local relaxations suggest favoring of interchain interactions, both PLA-PPAd and PPAd-PPAd. Regarding the more important segmental dynamics, the presence of PPAd leads to faster polymer chain diffusion, as monitored by the significant lowering of the dielectric and calorimetric glass transition temperature, Tg. This suggests the plasticizing role of PPAd on PLA (majority) in combination with the lowering of the average molar mass, Mn, in the copolymers from ∼75 to ∼30 kg mol-1, which is the actual scope for the synthesis of these materials. Interestingly, a strong suppression in fragility (chain cooperativity) is additionally recorded. In contrast to calorimetry and due to the high resolving power of BDS, for the higher PPAd fraction, the weak segmental relaxation of PPAd was additionally recorded. Overall, the recordings suggest a strong increase in free volume and two individual dynamic states, one for 0 and 5% PPAd and another for 15 and 25% PPAd. Within the latter, we gained indications for partial phase nano-separation of PPAd. Regarding indirect effects, these were followed via crystallization. Independent of the method of crystallization, namely, melt or cold, the presence of PPAd led to the systematic lowering of crystallization and melting temperatures and enthalpies. The effects reflect the decrease of crystalline nuclei, which is confirmed by optical microscopy as in the copolymers fewer although larger crystals are formed.
Collapse
Affiliation(s)
- Panagiotis A Klonos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
- Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece
| | - Zoi Terzopoulou
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Alexandra Zamboulis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Miguel Ángel Valera
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Ana Mangas
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece
| | - Polycarpos Pissis
- Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece
| | - Dimitrios N Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| |
Collapse
|
9
|
Jing Z, Huang X, Liu X, Liao M, Zhang Z, Li Y. Crystallization, thermal and mechanical properties of stereocomplexed poly(lactide) with flexible PLLA/PCL multiblock copolymer. RSC Adv 2022; 12:13180-13191. [PMID: 35520119 PMCID: PMC9063687 DOI: 10.1039/d2ra00461e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
In this work, the synthesized PLLA/PCL multi-block copolymers with different compositions were introduced into a stereocomplexed poly(lactide) (sc-PLA) matrix to accelerate the stereocomplexation of PLA enantiomers and improve its inherent brittleness. The PLLA/PCL multi-block copolymers were in different compositions to adjust the molecular weight of the PLLA block. The structure, molecular weight, crystallization behavior, crystal structure and thermal stability of PLLA/PCL multi-block copolymers were investigated. The results indicated that PLLA/PCL multi-block copolymers with controllable structure and composition were successfully synthesized. On this basis, the blends of sc-PLA and PLLA/PCL multi-block copolymers were prepared by solution casting, and characterized. The results revealed that the introduction of PLLA/PCL multi-block copolymers promoted the stereocomplexation of the PLA enantiomers during the melting crystallization process to obtain a complete stereocomplexed material. But the presence of the PCL block leads to a decrease in the melting temperature of the stereocomplex and difficulty in homogeneous nucleation. Compared with sc-PLA, the elongation at break of the blends was significantly improved and their tensile strengths were only slightly reduced. And the thermal stability and mechanical properties of the blends could be adjusted by controlling the content and composition of PCL/PLLA multi-block copolymers. These results revealed that the degree of stereocomplexation and toughness of sc-PLA were improved, which may expand the application fields of PLA-based materials. The PLLA/PCL multi-block copolymer was introduced into the stereocomplexed PLA matrix, and its effect on the crystallization, thermal and mechanical properties of the stereocomplexed PLA was discussed.![]()
Collapse
Affiliation(s)
- Zhanxin Jing
- Department of Applied Chemistry, College of Chemistry and Environment, Guangdong Ocean University Zhanjiang China
| | - Xiaolan Huang
- Department of Applied Chemistry, College of Chemistry and Environment, Guangdong Ocean University Zhanjiang China
| | - Xinqi Liu
- Department of Applied Chemistry, College of Chemistry and Environment, Guangdong Ocean University Zhanjiang China
| | - Mingneng Liao
- Department of Applied Chemistry, College of Chemistry and Environment, Guangdong Ocean University Zhanjiang China
| | - Zhaoxia Zhang
- Department of Applied Chemistry, College of Chemistry and Environment, Guangdong Ocean University Zhanjiang China
| | - Yong Li
- Department of Applied Chemistry, College of Chemistry and Environment, Guangdong Ocean University Zhanjiang China
| |
Collapse
|
10
|
Marano S, Laudadio E, Minnelli C, Stipa P. Tailoring the Barrier Properties of PLA: A State-of-the-Art Review for Food Packaging Applications. Polymers (Basel) 2022; 14:1626. [PMID: 35458376 PMCID: PMC9029979 DOI: 10.3390/polym14081626] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
It is now well recognized that the production of petroleum-based packaging materials has created serious ecological problems for the environment due to their resistance to biodegradation. In this context, substantial research efforts have been made to promote the use of biodegradable films as sustainable alternatives to conventionally used packaging materials. Among several biopolymers, poly(lactide) (PLA) has found early application in the food industry thanks to its promising properties and is currently one of the most industrially produced bioplastics. However, more efforts are needed to enhance its performance and expand its applicability in this field, as packaging materials need to meet precise functional requirements such as suitable thermal, mechanical, and gas barrier properties. In particular, improving the mass transfer properties of materials to water vapor, oxygen, and/or carbon dioxide plays a very important role in maintaining food quality and safety, as the rate of typical food degradation reactions (i.e., oxidation, microbial development, and physical reactions) can be greatly reduced. Since most reviews dealing with the properties of PLA have mainly focused on strategies to improve its thermal and mechanical properties, this work aims to review relevant strategies to tailor the barrier properties of PLA-based materials, with the ultimate goal of providing a general guide for the design of PLA-based packaging materials with the desired mass transfer properties.
Collapse
Affiliation(s)
- Stefania Marano
- Department of Science and Engineering of Matter, Environment and Urban Planning, Marche Polytechnic University, 60131 Ancona, Italy; (E.L.); (P.S.)
| | - Emiliano Laudadio
- Department of Science and Engineering of Matter, Environment and Urban Planning, Marche Polytechnic University, 60131 Ancona, Italy; (E.L.); (P.S.)
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy;
| | - Pierluigi Stipa
- Department of Science and Engineering of Matter, Environment and Urban Planning, Marche Polytechnic University, 60131 Ancona, Italy; (E.L.); (P.S.)
| |
Collapse
|
11
|
Golan O, Shalom H, Kaplan-Ashiri I, Cohen SR, Feldman Y, Pinkas I, Ofek Almog R, Zak A, Tenne R. Poly(L-lactic acid) Reinforced with Hydroxyapatite and Tungsten Disulfide Nanotubes. Polymers (Basel) 2021; 13:3851. [PMID: 34771407 PMCID: PMC8587543 DOI: 10.3390/polym13213851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
Poly(L-lactic acid) (PLLA) is a biocompatible, biodegradable, and semi-crystalline polymer with numerous applications including food packaging, medical implants, stents, tissue engineering scaffolds, etc. Hydroxyapatite (HA) is the major component of natural bone. Conceptually, combining PLLA and HA could produce a bioceramic suitable for implants and bone repair. However, this nanocomposite suffers from poor mechanical behavior under tensile strain. In this study, films of PLLA and HA were prepared with small amounts of nontoxic WS2 nanotubes (INT-WS2). The structural aspects of the films were investigated via electron microscopy, X-ray diffraction, Raman microscopy, and infrared absorption spectroscopy. The mechanical properties were evaluated via tensile measurements, micro-hardness tests, and nanoindentation. The thermal properties were investigated via differential scanning calorimetry. The composite films exhibited improved mechanical and thermal properties compared to the films prepared from the PLLA and HA alone, which is advantageous for medical applications.
Collapse
Affiliation(s)
- Ofek Golan
- Department of Materials Engineering, Azrieli College of Engineering, Jerusalem 9103501, Israel; (O.G.); (R.O.A.)
- Department of Molecular Chemistry and Materials Science, Weizmann Institute, Rehovot 76100, Israel;
| | - Hila Shalom
- Department of Molecular Chemistry and Materials Science, Weizmann Institute, Rehovot 76100, Israel;
| | - Ifat Kaplan-Ashiri
- Chemical Research Support Department, Weizmann Institute, Rehovot 76100, Israel; (I.K.-A.); (S.R.C.); (Y.F.); (I.P.)
| | - Sidney R. Cohen
- Chemical Research Support Department, Weizmann Institute, Rehovot 76100, Israel; (I.K.-A.); (S.R.C.); (Y.F.); (I.P.)
| | - Yishay Feldman
- Chemical Research Support Department, Weizmann Institute, Rehovot 76100, Israel; (I.K.-A.); (S.R.C.); (Y.F.); (I.P.)
| | - Iddo Pinkas
- Chemical Research Support Department, Weizmann Institute, Rehovot 76100, Israel; (I.K.-A.); (S.R.C.); (Y.F.); (I.P.)
| | - Rakefet Ofek Almog
- Department of Materials Engineering, Azrieli College of Engineering, Jerusalem 9103501, Israel; (O.G.); (R.O.A.)
| | - Alla Zak
- Department of Sciences, Holon Institute of Technology, Holon 58102, Israel;
| | - Reshef Tenne
- Department of Molecular Chemistry and Materials Science, Weizmann Institute, Rehovot 76100, Israel;
| |
Collapse
|
12
|
Synthesis, Properties, and Biodegradability of Thermoplastic Elastomers Made from 2-Methyl-1,3-propanediol, Glutaric Acid and Lactide. Life (Basel) 2021; 11:life11010043. [PMID: 33445658 PMCID: PMC7828133 DOI: 10.3390/life11010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/01/2022] Open
Abstract
An innovative type of biodegradable thermoplastic elastomers with improved mechanical properties from very common and potentially renewable sources, poly(L-lactide)-b-poly(2-methyl-1,3-propylene glutarate)-b-poly(L-lactide) (PLA-b-PMPG-b-PLA)s, has been developed for the first time. PLA-b-PMPG-b-PLAs were synthesized by polycondensation of 2-methyl-1,3-propanediol and glutaric acid and successive ring-opening polymerization of L-lactide, where PMPG is an amorphous central block with low glass transition temperature and PLA is hard semicrystalline terminal blocks. The copolymers showed glass transition temperature at lower than −40 °C and melting temperature at 130–152 °C. The tensile tests of these copolymers were also performed to evaluate their mechanical properties. The degradation of the copolymers and PMPG by enzymes proteinase K and lipase PS were investigated. Microbial biodegradation in seawater was also performed at 27 °C. The triblock copolymers and PMPG homopolymer were found to show 9–15% biodegradation within 28 days, representing their relatively high biodegradability in seawater. The macromolecular structure of the triblock copolymers of PLA and PMPG can be controlled to tune their mechanical and biodegradation properties, demonstrating their potential use in various applications.
Collapse
|
13
|
Guidotti G, Soccio M, Gazzano M, Fusaro L, Boccafoschi F, Munari A, Lotti N. New thermoplastic elastomer triblock copolymer of PLLA for cardiovascular tissue engineering: Annealing as efficient tool to tailor the solid-state properties. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Liu X, Desilles N, Lebrun L. Polyesters from renewable 1,4:3,6-dianhydrohexitols for food packaging: Synthesis, thermal, mechanical and barrier properties. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Li-Sha Zhao, Yan-Hua Cai. Non-isothermal Crystallization, Melting Behavior, Thermal Decomposition, Fluidity and Mechanical Properties of Melt Processed Poly(L-lactic acid) Nucleated by N,N'-Adipic Bis(piperonylic acid) Dihydrazide. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x20040124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Zhou B, Hu S, Zhang P. Isothermal crystalline polymorphs of poly(l-lactic acid) by FTIR coupled with two-dimensional correlation spectroscopy and perturbation-correlation moving-window two-dimensional analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117953. [PMID: 31865107 DOI: 10.1016/j.saa.2019.117953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
The evolutions of the crystalline polymorphs of poly(l-lactic acid) (PLLA) at 85 °C and 145 °C were respectively studied by Fourier transform infrared (FTIR) spectroscopy coupled with two-dimensional correlation spectroscopy (2DCOS) and perturbation-correlation moving-window two-dimensional (PCMW2D) analysis in the carbonyl stretching band region (1820-1720 cm-1). The perturbation region was divided into a few sub-regions by PCMW2D based on the spectral variations. Further 2DCOS analyses were implemented on these sub-regions. Four stages were identified for crystallization at 85 °C, in which the transformation of amorphous PLLA to α'-PLLA was found in the initial stage (0-30 min), while some of α'-PLLA was also changed to α-PLLA in the growth stage (30-150 min). For isothermal crystallization at 145 °C, the amorphous and the intermediate PLLAs were first changed to the crystalline forms in the initial period (0-30 min), then alternate changes between α-, α'- and intermediate phases occurred in the other periods with the extension of crystallization.
Collapse
Affiliation(s)
- Bingyao Zhou
- College of Chemistry, Analysis & Test Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shui Hu
- College of Chemistry, Analysis & Test Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pudun Zhang
- College of Chemistry, Analysis & Test Center, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
17
|
Jin C, Leng X, Zhang M, Wang Y, Wei Z, Li Y. Fully biobased biodegradable poly(
l
‐lactide)‐
b
‐poly(ethylene brassylate)‐
b
‐poly(
l
‐lactide) triblock copolymers: synthesis and investigation of relationship between crystallization morphology and thermal properties. POLYM INT 2020. [DOI: 10.1002/pi.5958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chenhao Jin
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| | - Xuefei Leng
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| | - Manwen Zhang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| | - Yanshai Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| |
Collapse
|
18
|
Flores I, Martínez de Ilarduya A, Sardon H, Müller AJ, Muñoz-Guerra S. ROP and crystallization behaviour of partially renewable triblock aromatic-aliphatic copolymers derived from L-lactide. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Siracusa V. Microbial Degradation of Synthetic Biopolymers Waste. Polymers (Basel) 2019; 11:polym11061066. [PMID: 31226767 PMCID: PMC6630276 DOI: 10.3390/polym11061066] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 11/16/2022] Open
Abstract
Over the last ten years, the demand of biodegradable polymers has grown at an annual rate of 20–30%. However, the market share is about less than 0.1% of the total plastic production due to their lower performances, higher price and limited legislative attention in respect to the standard materials. The biodegradability as a functional added property is often not completely perceived from the final consumers. However, the opportunity to use renewable resources and to reduce the dependency from petroleum resources could become an incentive to accelerate their future growth. Renewable raw materials, coming from industrial wastes such as oilseed crops, starch from cereals and potatoes, cellulose from straw and wood, etc., can be converted into chemical intermediates and polymers, in order to substitute fossil fuel feedstock. The introduction of these new products could represent a significant contribution to sustainable development. However, the use of renewable resources and the production of the bioplastics are no longer a guarantee for a minimal environmental impact. The production process as well as their technical performances and their ultimate disposal has to be carefully considered. Bioplastics are generally biodegradable, but the diffusion of the composting technology is a prerequisite for their development. Efforts are required at industry level in order to develop less expensive and high performance products, with minimal environmental impact technologies.
Collapse
Affiliation(s)
- Valentina Siracusa
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
20
|
Zhao LS, Cai YH, Liu HL. Physical properties of Poly(L-lactic acid) fabricated using salicylic hydrazide derivative with tetraamide structure. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2019.1625386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Li-Sha Zhao
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing, P.R. China
| | - Yan-Hua Cai
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing, P.R. China
| | - Hui-Li Liu
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing, P.R. China
| |
Collapse
|
21
|
Zhao LS, Cai YH, Liu HL. N, N’-sebacic bis(hydrocinnamic acid) dihydrazide: A crystallization accelerator for poly(L-lactic acid). E-POLYMERS 2019. [DOI: 10.1515/epoly-2019-0016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractDeveloping more organic nucleating agent with different molecular structure is very instructive to improve the crystallization of poly(L-lactic acid) (PLLA) and explore the crystallization mechanism. In this study, N, N’-sebacic bis(hydrocinnamic acid) dihydrazide (HAD) was synthesized to serve as a nucleating agent for PLLA. The effects of HAD on the non-isothermal crystallization, melting behavior, thermal stability and optical performance of PLLA were investigated by differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), and light transmittance meter. The melt crystallization behavior showed that HAD was able to promote the crystallization of PLLA via heterogenous nucleation in cooling, and it was found that, upon the cooling of 1°C/min, the incorporation of 1 wt% HAD made the crystallization temperature and non-isothermal crystallization enthalpy increase from 94.5°C and 0.1 J/g to 131.6°C and 48.5 J/g comparing with the pure PLLA. Additionally, the melt crystallization significantly depended on the cooling rate and the final melting temperature. For the cold crystallization, when the nucleation density from HAD and PLLA itself was saturated, the influence of the HAD concentration on the cold crystallization process of the PLLA/HAD samples is negligible. The melting behavior after isothermal or non-isothermal crystallization further confirmed the crystallization accelerating effect of HAD for PLLA, and the appearance of the double melting peaks was attributed to the melting-recrystallization. Unfortunately, the addition of HAD decreased the thermal stability and light transmittance of PLLA.
Collapse
Affiliation(s)
- Li-Sha Zhao
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing- 402160,China
| | - Yan-Hua Cai
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing- 402160,China
| | - Hui-Li Liu
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing- 402160,China
| |
Collapse
|
22
|
Cai YH, Zhao LS. Investigation on the modification of N,N′-adipic bis(benzoic acid) dihydrazide on poly(l-lactic acid). Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-018-2498-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Isodimorphic aliphatic copolyester as midblock of poly(l-lactide)-based triblock copolymers towards largely enhanced impact toughness. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Zhao LS, Cai YH. Investigating the Physical Properties of Poly(L-lactic acid) Modified Using an Aromatics Succinic Dihydrazide Derivative. POLYMER SCIENCE SERIES A 2018. [DOI: 10.1134/s0965545x18070088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Bio-based poly(butylene 2,5-furandicarboxylate)-b-poly(ethylene glycol) copolymers with adjustable degradation rate and mechanical properties: Synthesis and characterization. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Siracusa V, Genovese L, Ingrao C, Munari A, Lotti N. Barrier Properties of Poly(Propylene Cyclohexanedicarboxylate) Random Eco-Friendly Copolyesters. Polymers (Basel) 2018; 10:E502. [PMID: 30966536 PMCID: PMC6415378 DOI: 10.3390/polym10050502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 11/16/2022] Open
Abstract
Random copolymers of poly(propylene 1,4-cyclohexanedicarboxylate) containing different amounts of neopentyl glycol sub-unit were investigated from the gas barrier point of view at the standard temperature of analysis (23 °C) with respect to the three main gases used in food packaging field: N₂, O₂, and CO₂. The effect of temperature was also evaluated, considering two temperatures close to the Tg sample (8 and 15 °C) and two above Tg (30 and 38 °C). Barrier performances were checked after food contact simulants and in different relative humidity (RH) environments obtained with two saturated saline solutions (Standard Atmosphere, 23 °C, 85% of RH, with saturated KCl solution; Tropical Climate, 38 °C, 90% RH, with saturated KNO₃ solution). The results obtained were compared to those of untreated film, which was used as a reference. The relationships between the gas transmission rate, the diffusion coefficients, the solubility, and the copolymer composition were established. The results highlighted a correlation between barrier performance and copolymer composition and the applied treatment. In particular, copolymerization did not cause a worsening of the barrier properties, whereas the different treatments differently influenced the gas barrier behavior, depending on the chemical polymer structure. After treatment, Fourier transform infrared analysis confirmed the chemical stability of these copolymers. Films were transparent, with a light yellowish color, slightly more intense after all treatments.
Collapse
Affiliation(s)
- Valentina Siracusa
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania (CT), Italy.
| | - Laura Genovese
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna (BO), Italy.
| | - Carlo Ingrao
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania (CT), Italy.
| | - Andrea Munari
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna (BO), Italy.
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna (BO), Italy.
| |
Collapse
|
27
|
Ding J, Zhao C, Zhao L, Li Y, Xiang D. Synergistic effect of α-ZrP and graphene oxide nanofillers on the gas barrier properties of PVA films. J Appl Polym Sci 2018. [DOI: 10.1002/app.46455] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jie Ding
- Department of Materials Science and Engineering; Southwest Petroleum University; Chengdu 610500 People's Republic of China
| | - Chunxia Zhao
- Department of Materials Science and Engineering; Southwest Petroleum University; Chengdu 610500 People's Republic of China
| | - Ling Zhao
- Department of Materials Science and Engineering; Southwest Petroleum University; Chengdu 610500 People's Republic of China
| | - Yuntao Li
- Department of Materials Science and Engineering; Southwest Petroleum University; Chengdu 610500 People's Republic of China
| | - Dong Xiang
- Department of Materials Science and Engineering; Southwest Petroleum University; Chengdu 610500 People's Republic of China
| |
Collapse
|
28
|
Guidotti G, Soccio M, Siracusa V, Gazzano M, Salatelli E, Munari A, Lotti N. Novel Random PBS-Based Copolymers Containing Aliphatic Side Chains for Sustainable Flexible Food Packaging. Polymers (Basel) 2017; 9:E724. [PMID: 30966023 PMCID: PMC6418904 DOI: 10.3390/polym9120724] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 11/16/2022] Open
Abstract
In the last decade, there has been an increased interest from the food packaging industry toward the development and application of biodegradable and biobased plastics, to contribute to the sustainable economy and to reduce the huge environmental problem afflicting the planet. In this framework, the present paper describes the synthesis of novel PBS (poly(butylene succinate))-based random copolymers with different composition containing glycol sub-units characterized by alkyl pendant groups of different length. The prepared samples were subjected to molecular, thermal, diffractometric and mechanical characterization. The barrier performances to O₂, CO₂ and N₂ gases were also evaluated, envisioning for these new materials an application in food packaging. The presence of the side alkyl groups did not alter the thermal stability, whereas it significantly reduced the sample crystallinity degree, making these materials more flexible. The barrier properties were found to be worse than PBS; however, some of them were comparable to, or even better than, those of Low Density Polyethylene (LDPE), widely employed for flexible food packaging. The entity of variations in the final properties due to copolymerization were more modest in the case of the co-unit with short side methyl groups, which, when included in the PBS crystal lattice, causes a more modest decrement of crystallinity degree.
Collapse
Affiliation(s)
- Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Valentina Siracusa
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Massimo Gazzano
- Organic Synthesis and Photoreactivity Institute, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy.
| | - Elisabetta Salatelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy.
| | - Andrea Munari
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| |
Collapse
|
29
|
Su L, Zou J, Dong S, Hao N, Xu H. Influence of different β-nucleation agents on poly(l-lactic acid): structure, morphology, and dynamic mechanical behavior. RSC Adv 2017. [DOI: 10.1039/c7ra10550a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The WBG-II and TMB-5000 are both effective nucleating agents, which not only can enhance the crystallization rate, but also alter the packing structure of PLLA chain in the crystals.
Collapse
Affiliation(s)
- Lele Su
- School of Materials Science and Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- P. R. China
| | - Jun Zou
- School of Materials Science and Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- P. R. China
| | - Shengtao Dong
- School of Materials Science and Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- P. R. China
| | - Niyuan Hao
- School of Materials Science and Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- P. R. China
| | - Haiqing Xu
- Jiangsu Provincial Engineering Laboratory for Advanced Materials of Salt Chemical Industry
- Huaiyin Institute of Technology
- Huaian
- P. R. China
| |
Collapse
|