1
|
Li W, Bie Q, Zhang K, Linli F, Yang W, Chen X, Chen P, Qi Q. Regulated anthocyanin release through novel pH-responsive peptide hydrogels in simulated digestive environment. Food Chem X 2024; 23:101645. [PMID: 39113736 PMCID: PMC11304862 DOI: 10.1016/j.fochx.2024.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
The instability of anthocyanins significantly reduces their bioavailability as food nutrients. This proof-of-concept study aimed to develop efficient carriers for anthocyanins to overcome this challenge. Characterization of the hydrogels via SEM (scanning electron microscope) and rheological analysis revealed the formation of typical gel structures. MTT (methyl thiazolyl tetrazolium) and hemolysis assays confirmed that their high biocompatibility. Encapsulation efficiency analysis and fluorescence microscopy images demonstrated successful and efficient encapsulation of anthocyanins by pH-responsive hydrogels. Stability studies further validated the effect of peptide hydrogels in helping anthocyanin molecules withstand factors such as gastric acid, high temperatures, and heavy metals. Subsequently, responsive studies in simulated gastric (intestinal) fluid demonstrated that the pH-responsive peptide hydrogels could protect anthocyanin molecules from gastric acid while achieving rapid and complete release in intestinal fluid environments. These results indicate that these peptide hydrogels could stabilize anthocyanins and facilitate their controlled release, potentially leading to personalized delivery systems.
Collapse
Affiliation(s)
- Wenjun Li
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
| | - Qianqian Bie
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Kaihui Zhang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Fangzhou Linli
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Wenyu Yang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Xianggui Chen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Pengfei Chen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Qi Qi
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
| |
Collapse
|
2
|
Xiang S, Chen C, Liu F, Wang L, Feng J, Lin X, Yang H, Feng X, Wan C. Phosphorus and nitrogen supramolecule for fabricating flame-retardant, transparent and robust polyvinyl alcohol film. J Colloid Interface Sci 2024; 669:775-786. [PMID: 38744155 DOI: 10.1016/j.jcis.2024.05.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Supramolecular flame retardants have attracted increasing attention recently due to their simple and eco-friendly preparation process. In this study, a novel flame retardant HEPFR was prepared using supramolecular self-assembly technology between piperazine and 1-hydroxy ethylidene-1,1-diphosphonic acid (HEDP). It was introduced into polyvinyl alcohol (PVA) matrix to form PVA/HEPFR composite film. Subsequently, the transparency, mechanical properties, thermal stability, and flame retardancy of PVA/HEPFR films were studied. Due to the hydrogen bonded cross-linked network structure between PVA and HEPFR, the mechanical properties of PVA/HEPFR films have been improved, while maintaining good transparency. With 10 wt% addition of HEPFR, PVA films can reach the VTM-0 level in UL-94 testing. And the limiting oxygen index can be increased from 18.5% of pure PVA to 26.5%. The peak heat release rate was reduced by 61.5%. The flame retardancy and thermal stability of PVA/HEPFR films have been greatly improved. This study provides a "one stone, three birds" strategy for preparing flame-retardant, transparent, and robust PVA film.
Collapse
Affiliation(s)
- Simeng Xiang
- College of Materials Science and Engineering, Chongqing University, 174 Shazhengjie, Shapingba, Chongqing 400044, China
| | - Chiyuan Chen
- College of Materials Science and Engineering, Chongqing University, 174 Shazhengjie, Shapingba, Chongqing 400044, China
| | - Feng Liu
- College of Materials Science and Engineering, Chongqing University, 174 Shazhengjie, Shapingba, Chongqing 400044, China
| | - Linsheng Wang
- College of Materials Science and Engineering, Chongqing University, 174 Shazhengjie, Shapingba, Chongqing 400044, China
| | - Jiao Feng
- College of Materials Science and Engineering, Chongqing University, 174 Shazhengjie, Shapingba, Chongqing 400044, China
| | - Xiang Lin
- College of Materials Science and Engineering, Chongqing University, 174 Shazhengjie, Shapingba, Chongqing 400044, China
| | - Hongyu Yang
- College of Materials Science and Engineering, Chongqing University, 174 Shazhengjie, Shapingba, Chongqing 400044, China.
| | - Xiaming Feng
- College of Materials Science and Engineering, Chongqing University, 174 Shazhengjie, Shapingba, Chongqing 400044, China.
| | - Chaojun Wan
- College of Materials Science and Engineering, Chongqing University, 174 Shazhengjie, Shapingba, Chongqing 400044, China
| |
Collapse
|
3
|
Bercea M. Recent Advances in Poly(vinyl alcohol)-Based Hydrogels. Polymers (Basel) 2024; 16:2021. [PMID: 39065336 PMCID: PMC11281164 DOI: 10.3390/polym16142021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Poly(vinyl alcohol) (PVA) is a versatile synthetic polymer, used for the design of hydrogels, porous membranes and films. Its solubility in water, film- and hydrogel-forming capabilities, non-toxicity, crystallinity and excellent mechanical properties, chemical inertness and stability towards biological fluids, superior oxygen and gas barrier properties, good printability and availability (relatively low production cost) are the main aspects that make PVA suitable for a variety of applications, from biomedical and pharmaceutical uses to sensing devices, packaging materials or wastewater treatment. However, pure PVA materials present low stability in water, limited flexibility and poor biocompatibility and biodegradability, which restrict its use alone in various applications. PVA mixed with other synthetic polymers or biomolecules (polysaccharides, proteins, peptides, amino acids etc.), as well as with inorganic/organic compounds, generates a wide variety of materials in which PVA's shortcomings are considerably improved, and new functionalities are obtained. Also, PVA's chemical transformation brings new features and opens the door for new and unexpected uses. The present review is focused on recent advances in PVA-based hydrogels.
Collapse
Affiliation(s)
- Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
4
|
Morarad R, Uerpairojkit K, Chalermkitpanit P, Sirivat A. Comparative study of iontophoresis-assisted transdermal delivery of bupivacaine and lidocaine as anesthetic drugs. Drug Deliv Transl Res 2024:10.1007/s13346-024-01627-5. [PMID: 38782881 DOI: 10.1007/s13346-024-01627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Postoperative pain management is an important aspect of the overall surgical care process. Effective pain management not only provides patient comfort but also promotes faster recovery and reduces the risk of complications. Bupivacaine (BUP) and Lidocaine (LID) transdermal drug deliveries via thermoplastic polyurethane matrix (TPU) and iontophoresis technique are proposed here as alternative routes for postoperative pain instead of the injection route. Under applied electric field, the amounts of BUP and LID released were 95% and 97% from the loaded amounts, which were higher than the passive patch of 40%. The time to equilibrium of BUP turned out to be faster than the time to equilibrium of LID by approximately 1.5 times. This was due to 2 factors namely the drug molecular weight and the drug pKa value; they play an important role in the selection of a suitable drug for fast-acting or long-acting for the postoperative patients. By using this transdermal patch via iontophoresis system, BUP was deemed as the suitable drug for fast-acting due to the shorter time to equilibrium, whereas LID was the suitable drug for long-acting. The in-vitro drug release - permeation study through a porcine skin indicated the efficiency and potential of the system with the amounts of drug permeated up to 76% for BUP and 81% for LID. The TPU transdermal system was demonstrated here as potential to deliver BUP and LID for postoperative patients.
Collapse
Affiliation(s)
- Rawita Morarad
- Conductive and Electroactive Polymers Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ketchada Uerpairojkit
- Department of Anesthesiology, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pornpan Chalermkitpanit
- Pain Management Research Unit, Department of Anesthesiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Anuvat Sirivat
- Conductive and Electroactive Polymers Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Yuan Y, Tyson C, Szyniec A, Agro S, Tavakol TN, Harmon A, Lampkins D, Pearson L, Dumas JE, Taite LJ. Bioactive Polyurethane-Poly(ethylene Glycol) Diacrylate Hydrogels for Applications in Tissue Engineering. Gels 2024; 10:108. [PMID: 38391438 PMCID: PMC10887679 DOI: 10.3390/gels10020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Polyurethanes (PUs) are a highly adaptable class of biomaterials that are among some of the most researched materials for various biomedical applications. However, engineered tissue scaffolds composed of PU have not found their way into clinical application, mainly due to the difficulty of balancing the control of material properties with the desired cellular response. A simple method for the synthesis of tunable bioactive poly(ethylene glycol) diacrylate (PEGDA) hydrogels containing photocurable PU is described. These hydrogels may be modified with PEGylated peptides or proteins to impart variable biological functions, and the mechanical properties of the hydrogels can be tuned based on the ratios of PU and PEGDA. Studies with human cells revealed that PU-PEG blended hydrogels support cell adhesion and viability when cell adhesion peptides are crosslinked within the hydrogel matrix. These hydrogels represent a unique and highly tailorable system for synthesizing PU-based synthetic extracellular matrices for tissue engineering applications.
Collapse
Affiliation(s)
- Yixuan Yuan
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Caleb Tyson
- Department of Chemical Engineering, Hampton University, Hampton, VA 23668, USA
| | - Annika Szyniec
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Samuel Agro
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Tara N Tavakol
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Alexander Harmon
- Department of Chemical Engineering, Hampton University, Hampton, VA 23668, USA
| | - DessaRae Lampkins
- Department of Chemical Engineering, Hampton University, Hampton, VA 23668, USA
| | - Lauran Pearson
- Department of Chemical Engineering, Hampton University, Hampton, VA 23668, USA
| | - Jerald E Dumas
- Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural & Technical State University, Greensboro, NC 27401, USA
| | - Lakeshia J Taite
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
6
|
Plugariu IA, Gradinaru LM, Avadanei M, Rosca I, Nita LE, Maxim C, Bercea M. Thermosensitive Polyurethane-Based Hydrogels as Potential Vehicles for Meloxicam Delivery. Pharmaceuticals (Basel) 2023; 16:1510. [PMID: 38004376 PMCID: PMC10674489 DOI: 10.3390/ph16111510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Meloxicam (MX) is a nonsteroidal anti-inflammatory drug (NSAID) used mainly to reduce pain, inflammation, and fever. In the present study, thermosensitive polyurethane (PU)-based hydrogels with various excipients (PEG, PVP, HPC, and essential oil) were prepared and loaded with MX. Rheological investigations were carried out on the PU-based formulations in various shear regimes, and their viscoelastic characteristics were determined. The average size of the PU micelles was 35.8 nm at 37 °C and slightly increased at 37 nm in the presence of MX. The zeta potential values of the hydrogels were between -10 mV and -11.5 mV. At pH = 6 and temperature of 37 °C, the formulated PU-based hydrogels loaded with MX could deliver significant amounts of the active substance, between 60% and 80% over 24-48 h and more than 90% within 2 weeks. It was found that anomalous transport phenomena dominated MX's release mechanism from the PU-based networks. The results are encouraging for further studies aiming to design alternative carriers to commercial dosage forms of nonsteroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Ioana-Alexandra Plugariu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| | - Luiza Madalina Gradinaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| | - Mihaela Avadanei
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| | - Irina Rosca
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| | - Loredana Elena Nita
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| | - Claudia Maxim
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, 73A, D. Mangeron Blvd., 700050 Iasi, Romania;
| | - Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| |
Collapse
|
7
|
Lin S, Chang R, Cao X, Zhang Y, Chen J, Jiang W, Zhang Z. Poly(vinyl alcohol)/modified porous starch gel beads for microbial preservation and reactivation: preparation, characterization and its wastewater treatment performance. RSC Adv 2023; 13:30217-30229. [PMID: 37842668 PMCID: PMC10573856 DOI: 10.1039/d3ra05371g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
Poly(vinyl alcohol) (PVA)/modified porous starch (MPS) gel beads were prepared through in situ chemical cross-linking by incorporating with MPS, which was obtained by modifying porous starch (PS) with polyethyleneimine (PEI) and glutaraldehyde (GA). Addition of MPS could improve the storage modulus and the effective crosslinking density (ve) of the gel beads, and the mechanical properties were enhanced. The PVA-MPS gel beads were preserved as immobilized microbial carriers for 40 d and reactivated in wastewater. Scanning electron microscope (SEM) observations showed that the beads were highly porous and conducive for microorganism adhesion. The PVA-MPS gel beads were able to remove 97% of ammonia nitrogen and 80% of chemical oxygen demand (COD) after reactivation under all four preservation conditions. The abundance of Hydrogenophaga as denitrifying bacteria on PVA-MPS gel beads increased, with abundance of 8.44%, 5.55%, 8.90% and 9.48%, respectively. It proved that the carrier provided a partial hypoxic environment for microorganisms.
Collapse
Affiliation(s)
- Shutao Lin
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University Chongqing 400045 China
- College of Environment and Ecology, Chongqing University Chongqing 400045 China
| | - Ruiting Chang
- College of Environment and Ecology, Chongqing University Chongqing 400045 China
| | - Xinyu Cao
- College of Environment and Ecology, Chongqing University Chongqing 400045 China
| | - Yongheng Zhang
- College of Environment and Ecology, Chongqing University Chongqing 400045 China
| | - Jiabo Chen
- College of Environment and Ecology, Chongqing University Chongqing 400045 China
| | - Wenchao Jiang
- College of Environment and Ecology, Chongqing University Chongqing 400045 China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University Chongqing 400045 China
- College of Environment and Ecology, Chongqing University Chongqing 400045 China
| |
Collapse
|
8
|
Serbezeanu D, Iftime MM, Ailiesei GL, Ipate AM, Bargan A, Vlad-Bubulac T, Rîmbu CM. Evaluation of Poly(vinyl alcohol)-Xanthan Gum Hydrogels Loaded with Neomycin Sulfate as Systems for Drug Delivery. Gels 2023; 9:655. [PMID: 37623110 PMCID: PMC10454009 DOI: 10.3390/gels9080655] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
In recent years, multidrug-resistant bacteria have developed the ability to resist multiple antibiotics, limiting the available options for effective treatment. Raising awareness and providing education on the appropriate use of antibiotics, as well as improving infection control measures in healthcare facilities, are crucial steps to address the healthcare crisis. Further, innovative approaches must be adopted to develop novel drug delivery systems using polymeric matrices as carriers and support to efficiently combat such multidrug-resistant bacteria and thus promote wound healing. In this context, the current work describes the use of two biocompatible and non-toxic polymers, poly(vinyl alcohol) (PVA) and xanthan gum (XG), to achieve hydrogel networks through cross-linking by oxalic acid following the freezing/thawing procedure. PVA/XG-80/20 hydrogels were loaded with different quantities of neomycin sulfate to create promising low-class topical antibacterial formulations with enhanced antimicrobial effects. The inclusion of neomycin sulfate in the hydrogels is intended to impart them with powerful antimicrobial properties, thereby facilitating the development of exceptionally efficient topical antibacterial formulations. Thus, incorporating higher quantities of neomycin sulfate in the PVA/XG-80/20-2 and PVA/XG-80/20-3 formulations yielded promising cycling characteristics. These formulations exhibited outstanding removal efficiency, exceeding 80% even after five cycles, indicating remarkable and consistent adsorption performance with repeated use. Furthermore, both PVA/XG-80/20-2 and PVA/XG-80/20-3 formulations outperformed the drug-free sample, PVA/XG-80/20, demonstrating a significant enhancement in maximum compressive stress.
Collapse
Affiliation(s)
- Diana Serbezeanu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.M.I.); (G.-L.A.); (A.-M.I.); (A.B.); (T.V.-B.)
| | - Manuela Maria Iftime
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.M.I.); (G.-L.A.); (A.-M.I.); (A.B.); (T.V.-B.)
| | - Gabriela-Liliana Ailiesei
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.M.I.); (G.-L.A.); (A.-M.I.); (A.B.); (T.V.-B.)
| | - Alina-Mirela Ipate
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.M.I.); (G.-L.A.); (A.-M.I.); (A.B.); (T.V.-B.)
| | - Alexandra Bargan
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.M.I.); (G.-L.A.); (A.-M.I.); (A.B.); (T.V.-B.)
| | - Tǎchiţǎ Vlad-Bubulac
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.M.I.); (G.-L.A.); (A.-M.I.); (A.B.); (T.V.-B.)
| | - Cristina Mihaela Rîmbu
- Department of Public Health, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 8 Sadoveanu Alley, 707027 Iasi, Romania;
| |
Collapse
|
9
|
Thamilselvan G, David H, Sajeevan A, Rajaramon S, Solomon AP, Durai RD, Narayanan VHB. Polymer based dual drug delivery system for targeted treatment of fluoroquinolone resistant Staphylococcus aureus mediated infections. Sci Rep 2023; 13:11373. [PMID: 37452106 PMCID: PMC10349073 DOI: 10.1038/s41598-023-38473-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
The present study attempts to treat S. aureus-induced soft skin infections using a combinatorial therapy with an antibiotic, Ciprofloxacin (CIP), and an efflux pump inhibitor 5-Nitro-2-(3-phenylpropoxy) pyridine (5-NPPP) through a smart hydrogel delivery system. The study aims to reduce the increasing rates of infections and antimicrobial resistance; therefore, an efflux pump inhibitor molecule is synthesized and delivered along with an antibiotic to re-sensitize the pathogen towards antibiotics and treat the infections. CIP-loaded polyvinyl alcohol (PVA) hydrogels at varying concentrations were fabricated and optimized by a chemical cross-linking process, which exhibited sustained drug release for 5 days. The compound 5-NPPP loaded hydrogels provided linear drug release for 2 days, necessitating the need for the development of polymeric nanoparticles to alter the release drug pattern. 5-NPPP loaded Eudragit RSPO nanoparticles were prepared by modified nanoprecipitation-solvent evaporation method, which showed optimum average particle size of 230-280 nm with > 90% drug entrapment efficiency. The 5-NPPP polymeric nanoparticles loaded PVA hydrogels were fabricated to provide a predetermined sustained release of the compound to provide a synergistic effect. The selected 7% PVA hydrogels loaded with the dual drugs were evaluated using Balb/c mice models induced with S. aureus soft skin infections. The results of in vivo studies were evidence that the dual drugs loaded hydrogels were non-toxic and reduced the bacterial load causing re-sensitization towards antibiotics, which could initiate re-epithelization. The research concluded that the PVA hydrogels loaded with CIP and 5-NPPP nanoparticles could be an ideal and promising drug delivery system for treating S. aureus-induced skin infections.
Collapse
Affiliation(s)
- Gopalakrishnan Thamilselvan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India
| | - Anusree Sajeevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India
| | - Shobana Rajaramon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India.
| | - Ramya Devi Durai
- Pharmaceutical Technology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India.
| | - Vedha Hari B Narayanan
- Pharmaceutical Technology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India
| |
Collapse
|
10
|
Wang Q, Gao J, Liu S, Wang Y, Wu L. Lignin nanoparticle reinforced multifunctional polyvinyl alcohol/polyurethane composite hydrogel with excellent mechanical, UV-blocking, rheological and thermal properties. Int J Biol Macromol 2023; 232:123338. [PMID: 36706881 DOI: 10.1016/j.ijbiomac.2023.123338] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/26/2023]
Abstract
In this study, we innovatively synthesized a multifunctional PVA/PU-LNP composite hydrogel with integrated distinguished UV-blocking, mechanical strength, dynamic viscoelasticity and thermal properties by introducing lignin nanoparticle (LNP) into polyvinyl alcohol (PVA) and polyurethane (PU) mixed matrix through freeze-thaw cycle. The rigid porous network structure was established by hydrogen bond interactions among the well-distributed LNP and PVA/PU molecular chains, which endowed excellent mechanical strength, viscoelasticity, thermal stability and flexibility with PVA/PU-LNP composite hydrogel. The elongation at break and tensile strength of PVA/PU-LNP composite hydrogel were markedly improved from 227.3 % and 247.1 KPa to 460.1 % and 950.4 KPa with the LNP loading of 2 % based on PVA weight, respectively. Meanwhile, PVA/PU-2%LNP hydrogel exhibited prominent compressive resistance and pleasing shape recovery capability. Moreover, the blending of LNP at a low dosage (0.5 %) based on PVA weight effectively shielded 99.34 % of UV light and penetrated 42.27 % of visible light, indicating that PVA/PU-LNP composite hydrogel demonstrated outstanding anti-UV performance. In addition, the incorporation of LNP caused a remarkable decline in the pore size of PVA/PU-LNP composite hydrogel (4.39 ± 0.46 μm to 1.54 ± 0.22 μm), which slightly reduced water uptake capacity of composite hydrogel. Therefore, this work provided a new approach to constructing a multifunctional composite hydrogel.
Collapse
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Jia Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Shanshan Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China.
| | - Yingchao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China; Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| | - Liran Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| |
Collapse
|
11
|
Gradinaru LM, Bercea M, Lupu A, Gradinaru VR. Development of Polyurethane/Peptide-Based Carriers with Self-Healing Properties. Polymers (Basel) 2023; 15:polym15071697. [PMID: 37050311 PMCID: PMC10096672 DOI: 10.3390/polym15071697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
In situ-forming gels with self-assembling and self-healing properties are materials of high interest for various biomedical applications, especially for drug delivery systems and tissue regeneration. The main goal of this research was the development of an innovative gel carrier based on dynamic inter- and intramolecular interactions between amphiphilic polyurethane and peptide structures. The polyurethane architecture was adapted to achieve the desired amphiphilicity for self-assembly into an aqueous solution and to facilitate an array of connections with peptides through physical interactions, such as hydrophobic interactions, dipole-dipole, electrostatic, π–π stacking, or hydrogen bonds. The mechanism of the gelation process and the macromolecular conformation in water were evaluated with DLS, ATR-FTIR, and rheological measurements at room and body temperatures. The DLS measurements revealed a bimodal distribution of small (~30–40 nm) and large (~300–400 nm) hydrodynamic diameters of micelles/aggregates at 25 °C for all samples. The increase in the peptide content led to a monomodal distribution of the peaks at 37 °C (~25 nm for the sample with the highest content of peptide). The sol–gel transition occurs very quickly for all samples (within 20–30 s), but the equilibrium state of the gel structure is reached after 1 h in absence of peptide and required more time as the content of peptide increases. Moreover, this system presented self-healing properties, as was revealed by rheological measurements. In the presence of peptide, the structure recovery after each cycle of deformation is a time-dependent process, the recovery is complete after about 300 s. Thus, the addition of the peptide enhanced the polymer chain entanglement through intermolecular interactions, leading to the preparation of a well-defined gel carrier. Undoubtedly, this type of polyurethane/peptide-based carrier, displaying a sol–gel transition at a biologically relevant temperature and enhanced viscoelastic properties, is of great interest in the development of medical devices for minimally invasive procedures or precision medicine.
Collapse
|
12
|
Trombino S, Sole R, Di Gioia ML, Procopio D, Curcio F, Cassano R. Green Chemistry Principles for Nano- and Micro-Sized Hydrogel Synthesis. Molecules 2023; 28:molecules28052107. [PMID: 36903352 PMCID: PMC10004334 DOI: 10.3390/molecules28052107] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 03/06/2023] Open
Abstract
The growing demand for drug carriers and green-technology-based tissue engineering materials has enabled the fabrication of different types of micro- and nano-assemblies. Hydrogels are a type of material that have been extensively investigated in recent decades. Their physical and chemical properties, such as hydrophilicity, resemblance to living systems, swelling ability and modifiability, make them suitable to be exploited for many pharmaceutical and bioengineering applications. This review deals with a brief account of green-manufactured hydrogels, their characteristics, preparations, importance in the field of green biomedical technology and their future perspectives. Only hydrogels based on biopolymers, and primarily on polysaccharides, are considered. Particular attention is given to the processes of extracting such biopolymers from natural sources and the various emerging problems for their processing, such as solubility. Hydrogels are catalogued according to the main biopolymer on which they are based and, for each type, the chemical reactions and the processes that enable their assembly are identified. The economic and environmental sustainability of these processes are commented on. The possibility of large-scale processing in the production of the investigated hydrogels are framed in the context of an economy aimed at waste reduction and resource recycling.
Collapse
|
13
|
Bercea M, Plugariu IA, Gradinaru LM, Avadanei M, Doroftei F, Gradinaru VR. Hybrid Hydrogels for Neomycin Delivery: Synergistic Effects of Natural/Synthetic Polymers and Proteins. Polymers (Basel) 2023; 15:polym15030630. [PMID: 36771933 PMCID: PMC9920321 DOI: 10.3390/polym15030630] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
This paper reports new physical hydrogels obtained by the freezing/thawing method. They include pullulan (PULL) and poly(vinyl alcohol) (PVA) as polymers, bovine serum albumin (BSA) as protein, and a tripeptide, reduced glutathione (GSH). In addition, a sample containing PULL/PVA and lysozyme was obtained in similar conditions. SEM analysis evidenced the formation of networks with porous structure. The average pore size was found to be between 15.7 μm and 24.5 μm. All samples exhibited viscoelastic behavior typical to networks, the hydrogel strength being influenced by the protein content. Infrared spectroscopy analysis revealed the presence of intermolecular hydrogen bonds and hydrophobic interactions (more pronounced for BSA content between 30% and 70%). The swelling kinetics investigated in buffer solution (pH = 7.4) at 37 °C evidenced a quasi-Fickian diffusion for all samples. The hydrogels were loaded with neomycin trisulfate salt hydrate (taken as a model drug), and the optimum formulations (samples containing 10-30% BSA or 2% lysozyme) proved a sustained drug release over 480 min in simulated physiological conditions. The experimental data were analyzed using different kinetic models in order to investigate the drug release mechanism. Among them, the semi-empirical Korsmeyer-Peppas and Peppas-Sahlin models were suitable to describe in vitro drug release mechanism of neomycin sulfate from the investigated hybrid hydrogels. The structural, viscoelastic, and swelling properties of PULL/PVA/protein hybrid hydrogels are influenced by their composition and preparation conditions, and they represent important factors for in vitro drug release behavior.
Collapse
Affiliation(s)
- Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
- Correspondence:
| | - Ioana-Alexandra Plugariu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Luiza Madalina Gradinaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Mihaela Avadanei
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Florica Doroftei
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Vasile Robert Gradinaru
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bd., 700506 Iasi, Romania
| |
Collapse
|
14
|
Smith M, Roberts M, Al-Kassas R. Implantable drug delivery systems for the treatment of osteomyelitis. Drug Dev Ind Pharm 2022; 48:511-527. [PMID: 36222433 DOI: 10.1080/03639045.2022.2135729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Osteomyelitis is an infection of the bone tissue and bone marrow which is becoming increasingly difficult to treat due to the infection causing pathogens associated. Staphylococcus aureus is one of the main bacteria that causes this infection, which has a broad spectrum of antibiotic resistance making it extremely difficult to treat. Conventional metal implants used in orthopaedic applications often have the drawback of implant induced osteomyelitis as well as the requirement of a second surgery to remove the implant once it is no longer required. Recently, attention has been focused on the design and fabrication of biodegradable implants for the treatment of bone infection. The main benefit of biodegradable implants over polymethylmethacrylate (PMMA) based non-degradable systems is that they do not require a second surgery for removal and so making degradable implants safer and easier to use. The main purpose of a biodegradable implant is to provide the necessary support and conductivity to allow the bone to regenerate whilst themselves degrading at a rate that is compatible with the rate of formation of new bone. They must be highly biocompatible to ensure there is no inflammation or irritation within the surrounding tissue. During this review, the latest research into antibiotic loaded biodegradable implants will be explored. Their benefits and drawbacks will be compared with those non-degradable PMMA beads, which is the stable material used within antibiotic loaded implants. Biodegradable implants most frequently used are based on biodegradable natural and synthetic polymers. Implants can take the form of many different structures; the most commonly fabricated structure is a scaffold. Other structures that will be explored within this review are hydrogels, nanoparticles and surface coatings, all with their own benefits/drawbacks.
Collapse
Affiliation(s)
- Megan Smith
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom St, Liverpool, L3 3AF, UK
| | - Matthew Roberts
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom St, Liverpool, L3 3AF, UK
| | - Raida Al-Kassas
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom St, Liverpool, L3 3AF, UK
| |
Collapse
|
15
|
Idumah CI, Nwuzor IC, Odera SR, Timothy UJ, Ngenegbo U, Tanjung FA. Recent advances in polymeric hydrogel nanoarchitectures for drug delivery applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - I. C. Nwuzor
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - S. R. Odera
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. J. Timothy
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. Ngenegbo
- Department of Parasitology and Entomology, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - F. A. Tanjung
- Faculty of Science and Technology, Universitas Medan Area, Medan, Indonesia
| |
Collapse
|
16
|
Preparation and characterization of electrospun magnetic poly(ether urethane) nanocomposite mats: Relationships between the viscosity of the polymer solutions and the electrospinning ability. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Bercea M. Bioinspired Hydrogels as Platforms for Life-Science Applications: Challenges and Opportunities. Polymers (Basel) 2022; 14:polym14122365. [PMID: 35745941 PMCID: PMC9229923 DOI: 10.3390/polym14122365] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
Hydrogels, as interconnected networks (polymer mesh; physically, chemically, or dynamic crosslinked networks) incorporating a high amount of water, present structural characteristics similar to soft natural tissue. They enable the diffusion of different molecules (ions, drugs, and grow factors) and have the ability to take over the action of external factors. Their nature provides a wide variety of raw materials and inspiration for functional soft matter obtained by complex mechanisms and hierarchical self-assembly. Over the last decade, many studies focused on developing innovative and high-performance materials, with new or improved functions, by mimicking biological structures at different length scales. Hydrogels with natural or synthetic origin can be engineered as bulk materials, micro- or nanoparticles, patches, membranes, supramolecular pathways, bio-inks, etc. The specific features of hydrogels make them suitable for a wide variety of applications, including tissue engineering scaffolds (repair/regeneration), wound healing, drug delivery carriers, bio-inks, soft robotics, sensors, actuators, catalysis, food safety, and hygiene products. This review is focused on recent advances in the field of bioinspired hydrogels that can serve as platforms for life-science applications. A brief outlook on the actual trends and future directions is also presented.
Collapse
Affiliation(s)
- Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| |
Collapse
|
18
|
Barbălată-Mândru M, Serbezeanu D, Butnaru M, Rîmbu CM, Enache AA, Aflori M. Poly(vinyl alcohol)/Plant Extracts Films: Preparation, Surface Characterization and Antibacterial Studies against Gram Positive and Gram Negative Bacteria. MATERIALS 2022; 15:ma15072493. [PMID: 35407829 PMCID: PMC9000143 DOI: 10.3390/ma15072493] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 11/23/2022]
Abstract
In this study, we aim to obtain biomaterials with antibacterial properties by combining poly(vinyl alcohol) with the extracts obtained from various selected plants from Romania. Natural herbal extracts of freshly picked flowers of the lavender plant (Lavandula angustifolia) and leaves of the peppermint plant (Mentha piperita), hemp plant (Cannabis sativa L.), verbena plant (Verbena officinalis) and sage plant (Salvia officinalis folium) were selected after an intensive analyzing of diverse medicinal plants often used as antibacterial and healing agents from the country flora. The plant extracts were characterized by different methods such as totals of phenols and flavonoids content and UV-is spectroscopy. The highest amounts of the total phenolic and flavonoid contents, respectively, were recorded for Salvia officinalis. Moreover, the obtained films of poly(vinyl alcohol) (PVA) loaded with plant extracts were studied concerning the surface properties and their antibacterial or cytotoxicity activity. The Attenuated Total Reflection Fourier Transform Infrared analysis described the successfully incorporation of each plant extract in the poly(vinyl alcohol) matrix, while the profilometry demonstrated the enhanced surface properties. The results showed that the plant extracts conferred significant antibacterial effects to films toward Staphylococcus aureus and Escherichia coli and are not toxic against fibroblastic cells from the rabbit.
Collapse
Affiliation(s)
- Mihaela Barbălată-Mândru
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. GhicaVoda, 700487 Iasi, Romania; (M.B.-M.); (M.B.)
| | - Diana Serbezeanu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. GhicaVoda, 700487 Iasi, Romania; (M.B.-M.); (M.B.)
- Correspondence: (D.S.); (M.A.)
| | - Maria Butnaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. GhicaVoda, 700487 Iasi, Romania; (M.B.-M.); (M.B.)
- Department of Biomedical Sciences, “Grigore T. Popa” University of Medicine and Pharmacy, 9-13, Kogalniceanu Street, 700115 Iasi, Romania
| | - Cristina Mihaela Rîmbu
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences (IULS), Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| | | | - Magdalena Aflori
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. GhicaVoda, 700487 Iasi, Romania; (M.B.-M.); (M.B.)
- Correspondence: (D.S.); (M.A.)
| |
Collapse
|
19
|
|
20
|
Bercea M. Self-Healing Behavior of Polymer/Protein Hybrid Hydrogels. Polymers (Basel) 2021; 14:130. [PMID: 35012155 PMCID: PMC8747654 DOI: 10.3390/polym14010130] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
The paper presents the viscoelastic properties of new hybrid hydrogels containing poly(vinyl alcohol) (PVA), hydroxypropylcellulose (HPC), bovine serum albumin (BSA) and reduced glutathione (GSH). After heating the mixture at 55 °C, in the presence of GSH, a weak network is formed due to partial BSA unfolding. By applying three successive freezing/thawing cycles, a stable porous network structure with elastic properties is designed, as evidenced by SEM and rheology. The hydrogels exhibit self-healing properties when the samples are cut into two pieces; the intermolecular interactions are reestablished in time and therefore the fragments repair themselves. The effects of the BSA content, loaded deformation and temperature on the self-healing ability of hydrogels are presented and discussed through rheological data. Due to their versatile viscoelastic behavior, the properties of PVA/HPC/BSA hydrogels can be tuned during their preparation in order to achieve suitable biomaterials for targeted applications.
Collapse
Affiliation(s)
- Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
21
|
Su J, Li J, Liang J, Zhang K, Li J. Hydrogel Preparation Methods and Biomaterials for Wound Dressing. Life (Basel) 2021; 11:life11101016. [PMID: 34685387 PMCID: PMC8540918 DOI: 10.3390/life11101016] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Wounds have become one of the causes of death worldwide. The metabolic disorder of the wound microenvironment can lead to a series of serious symptoms, especially chronic wounds that bring great pain to patients, and there is currently no effective and widely used wound dressing. Therefore, it is important to develop new multifunctional wound dressings. Hydrogel is an ideal dressing candidate because of its 3D structure, good permeability, excellent biocompatibility, and ability to provide a moist environment for wound repair, which overcomes the shortcomings of traditional dressings. This article first briefly introduces the skin wound healing process, then the preparation methods of hydrogel dressings and the characteristics of hydrogel wound dressings made of natural biomaterials and synthetic materials are introduced. Finally, the development prospects and challenges of hydrogel wound dressings are discussed.
Collapse
Affiliation(s)
- Jingjing Su
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China; (J.S.); (J.L.); (J.L.)
| | - Jiankang Li
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China; (J.S.); (J.L.); (J.L.)
| | - Jiaheng Liang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China; (J.S.); (J.L.); (J.L.)
| | - Kun Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China; (J.S.); (J.L.); (J.L.)
- Correspondence: (K.Z.); (J.L.); Tel.:+86-185-3995-8495 (K.Z.); +86-185-3995-6211 (J.L.)
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
- Correspondence: (K.Z.); (J.L.); Tel.:+86-185-3995-8495 (K.Z.); +86-185-3995-6211 (J.L.)
| |
Collapse
|
22
|
Bercea M, Gradinaru LM, Barbalata-Mandru M, Vlad S, Nita LE, Plugariu IA, Albulescu R. Shear flow of associative polymers in aqueous solutions. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Allami T, Alamiery A, Nassir MH, Kadhum AH. Investigating Physio-Thermo-Mechanical Properties of Polyurethane and Thermoplastics Nanocomposite in Various Applications. Polymers (Basel) 2021; 13:2467. [PMID: 34372071 PMCID: PMC8347130 DOI: 10.3390/polym13152467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/03/2022] Open
Abstract
The effect of the soft and hard polyurethane (PU) segments caused by the hydrogen link in phase-separation kinetics was studied to investigate the morphological annealing of PU and thermoplastic polyurethane (TPU). The significance of the segmented PUs is to achieve enough stability for further applications in biomedical and environmental fields. In addition, other research focuses on widening the plastic features and adjusting the PU-polyimide ratio to create elastomer of the poly(urethane-imide). Regarding TPU- and PU-nanocomposite, numerous studies investigated the incorporation of inorganic nanofillers such as carbon or clay to incorporating TPU-nanocomposite in several applications. Additionally, the complete exfoliation was observed up to 5% and 3% of TPU-clay modified with 12 amino lauric acid and benzidine, respectively. PU-nanocomposite of 5 wt.% Cloisite®30B showed an increase in modulus and tensile strength by 110% and 160%, respectively. However, the nanocomposite PU-0.5 wt.% Carbone Nanotubes (CNTs) show an increase in the tensile modulus by 30% to 90% for blown and flat films, respectively. Coating PU influences stress-strain behavior because of the interaction between the soft segment and physical crosslinkers. The thermophysical properties of the TPU matrix have shown two glass transition temperatures (Tg's) corresponding to the soft and the hard segment. Adding a small amount of tethered clay shifts Tg for both segments by 44 °C and 13 °C, respectively, while adding clay from 1 to 5 wt.% results in increasing the thermal stability of TPU composite from 12 to 34 °C, respectively. The differential scanning calorimetry (DSC) was used to investigate the phase structure of PU dispersion, showing an increase in thermal stability, solubility, and flexibility. Regarding the electrical properties, the maximum piezoresistivity (10 S/m) of 7.4 wt.% MWCNT was enhanced by 92.92%. The chemical structure of the PU-CNT composite has shown a degree of agglomeration under disruption of the sp2 carbon structure. However, with extended graphene loading to 5.7 wt.%, piezoresistivity could hit 10-1 S/m, less than 100 times that of PU. In addition to electrical properties, the acoustic behavior of MWCNT (0.35 wt.%)/SiO2 (0.2 wt.%)/PU has shown sound absorption of 80 dB compared to the PU foam sample. Other nanofillers, such as SiO2, TiO2, ZnO, Al2O3, were studied showing an improvement in the thermal stability of the polymer and enhancing scratch and abrasion resistance.
Collapse
Affiliation(s)
- Tyser Allami
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia; (A.A.); (M.H.N.); (A.H.K.)
| | | | | | | |
Collapse
|
24
|
Photothermal-modulated drug release from a composite hydrogel based on silk fibroin and sodium alginate. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Poly(Vinyl Alcohol) Recent Contributions to Engineering and Medicine. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4040175] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Poly(vinyl alcohol) (PVA) is a thermoplastic synthetic polymer, which, unlike many synthetic polymers, is not obtained by polymerization, but by hydrolysis of poly(vinyl acetate) (PVAc). Due to the presence of hydroxylic groups, hydrophilic polymers such as PVA and its composites made mainly with biopolymers are used for producing hydrogels that possess interesting morphological and physico-mechanical features. PVA hydrogels and other PVA composites are studied in light of their numerous application for electrical film membranes for chemical separation, element and dye removal, adsorption of metal ions, fuel cells, and packaging. Aside from applications in the engineering field, PVA, like other synthetic polymers, has applications in medicine and biological areas and has become one of the principal objectives of the researchers in the polymer domain. The review presents a few recent applications of PVA composites and contributions related to tissue engineering (repair and regeneration), drug carriers, and wound healing.
Collapse
|
26
|
de Lima CSA, Balogh TS, Varca JPRO, Varca GHC, Lugão AB, A. Camacho-Cruz L, Bucio E, Kadlubowski SS. An Updated Review of Macro, Micro, and Nanostructured Hydrogels for Biomedical and Pharmaceutical Applications. Pharmaceutics 2020; 12:E970. [PMID: 33076231 PMCID: PMC7602430 DOI: 10.3390/pharmaceutics12100970] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Hydrogels are materials with wide applications in several fields, including the biomedical and pharmaceutical industries. Their properties such as the capacity of absorbing great amounts of aqueous solutions without losing shape and mechanical properties, as well as loading drugs of different nature, including hydrophobic ones and biomolecules, give an idea of their versatility and promising demand. As they have been explored in a great number of studies for years, many routes of synthesis have been developed, especially for chemical/permanent hydrogels. In the same way, stimuli-responsive hydrogels, also known as intelligent materials, have been explored too, enhancing the regulation of properties such as targeting and drug release. By controlling the particle size, hydrogel on the micro- and nanoscale have been studied likewise and have increased, even more, the possibilities for applications of the so-called XXI century materials. In this paper, we aimed to produce an overview of the recent studies concerning methods of synthesis, biomedical, and pharmaceutical applications of macro-, micro, and nanogels.
Collapse
Affiliation(s)
- Caroline S. A. de Lima
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil; (C.S.A.d.L.); (T.S.B.); (J.P.R.O.V.); (A.B.L.)
| | - Tatiana S. Balogh
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil; (C.S.A.d.L.); (T.S.B.); (J.P.R.O.V.); (A.B.L.)
| | - Justine P. R. O. Varca
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil; (C.S.A.d.L.); (T.S.B.); (J.P.R.O.V.); (A.B.L.)
| | - Gustavo H. C. Varca
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil; (C.S.A.d.L.); (T.S.B.); (J.P.R.O.V.); (A.B.L.)
| | - Ademar B. Lugão
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil; (C.S.A.d.L.); (T.S.B.); (J.P.R.O.V.); (A.B.L.)
| | - Luis A. Camacho-Cruz
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México CDMX 04510, Mexico; (L.A.C.-C.); (E.B.)
| | - Emilio Bucio
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México CDMX 04510, Mexico; (L.A.C.-C.); (E.B.)
| | - Slawomir S. Kadlubowski
- Institute of Applied Radiation Chemistry (IARC), Lodz University of Technology, Wroblewskiego No. 15, 93-590 Lodz, Poland;
| |
Collapse
|
27
|
de Souza Ferreira SB, Braga G, Oliveira ÉLD, Rosseto HC, Hioka N, Caetano W, Bruschi ML. Colloidal systems composed of poloxamer 407, different acrylic acid derivatives and curcuminoids: Optimization of preparation method, type of bioadhesive polymer and storage conditions. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Structural Properties and Catalytic Activity of Binary Poly (vinyl alcohol)/Al2O3 Nanocomposite Film for Synthesis of Thiazoles. Catalysts 2020. [DOI: 10.3390/catal10010100] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A solution casting technique was applied to prepare a binary poly (vinyl alcohol)/Al2O3 nanocomposite. The structural properties of nanocomposite were investigated using Fourier-transform infrared spectra, field emission scanning electron microscope, energy dispersive X-ray analyses, and X-ray diffraction. The hybrid PVA/Al2O3 film exhibited a conspicuous catalytic performance for synthesis of thiazole derivatives under mild reaction conditions. Moreover, the optimization of catalytic efficiency and reusability of this nanocomposite have been investigated.
Collapse
|
29
|
Jing Z, Dai X, Xian X, Du X, Liao M, Hong P, Li Y. Tough, stretchable and compressive alginate-based hydrogels achieved by non-covalent interactions. RSC Adv 2020; 10:23592-23606. [PMID: 35517309 PMCID: PMC9054928 DOI: 10.1039/d0ra03733h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/10/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, two alginate-based hydrogels with good mechanical strength, toughness and resilience were synthesized by hydrophobic interaction and coordination bonding. Sodium alginate/poly(acrylamide) semi-interpenetrating network (NaAlg/PAM semi-IPN) hydrogels were first synthesized through the micelle copolymerization of acrylamide and stearyl methacrylate in the presence of sodium alginate, then calcium alginate/poly(acrylamide) double network (CaAlg/PAM DN) hydrogels were prepared by immersing the as-prepared NaAlg/PAM semi-IPN hydrogels in a CaCl2 solution. FT-IR and XPS results revealed NaAlg/PAM semi-IPN hydrogels and CaAlg/PAM DN hydrogels were successfully synthesized through non-covalent interactions. The tensile strength of CaAlg/PAM DN hydrogels could reach 733.6 kPa, and their compressive strengths at 80% strain are significantly higher than those of the corresponding NaAlg/PAM semi-IPN hydrogels, which is attributed to the alginate network crosslinked by Ca2+. The dual physically crosslinked CaAlg/PAM DN hydrogels can achieve fast self-recovery, and good fatigue resistance, which is mainly assigned to energy dissipation through dynamic reversible non-covalent interactions in both networks. The self-healing ability, swelling behavior and morphology of the synthesized alginate-based hydrogels were also evaluated. This study offers a new avenue to design and construct hydrogels with high mechanical strength, high toughness and fast self-recovery properties, which broadens the current research and application of hydrogels. Alginate-based hydrogels based on non-covalent interactions were synthesized, and exhibited good mechanical strength, toughness and resilience.![]()
Collapse
Affiliation(s)
- Zhanxin Jing
- College of Chemistry and Environment
- Guangdong Ocean University
- Zhanjiang
- People's Republic of China
| | - Xiangyi Dai
- College of Chemistry and Environment
- Guangdong Ocean University
- Zhanjiang
- People's Republic of China
| | - Xueying Xian
- College of Chemistry and Environment
- Guangdong Ocean University
- Zhanjiang
- People's Republic of China
| | - Xiaomei Du
- College of Chemistry and Environment
- Guangdong Ocean University
- Zhanjiang
- People's Republic of China
| | - Mingneng Liao
- College of Chemistry and Environment
- Guangdong Ocean University
- Zhanjiang
- People's Republic of China
| | - Pengzhi Hong
- College of Chemistry and Environment
- Guangdong Ocean University
- Zhanjiang
- People's Republic of China
| | - Yong Li
- College of Chemistry and Environment
- Guangdong Ocean University
- Zhanjiang
- People's Republic of China
| |
Collapse
|
30
|
Xi T, Lu Y, Ai X, Tang L, Yao L, Hao W, Cui P. Ionic liquid copolymerized polyurethane membranes for pervaporation separation of benzene/cyclohexane mixtures. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
31
|
Bercea M, Gradinaru LM, Plugariu I, Mandru M, Tigau DL. Viscoelastic behaviour of self‐assembling polyurethane and poly(vinyl alcohol). POLYM INT 2019. [DOI: 10.1002/pi.5928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maria Bercea
- 'Petru Poni' Institute of Macromolecular Chemistry Iaşi Romania
| | | | | | - Mihaela Mandru
- 'Petru Poni' Institute of Macromolecular Chemistry Iaşi Romania
| | | |
Collapse
|