1
|
Alizadeh MH, Namazi H. Core-shell structured magnetite carboxymethyl cellulose for cervical cancer treatment by maintaining methotrexate serum concentration. Int J Biol Macromol 2025; 284:137832. [PMID: 39586447 DOI: 10.1016/j.ijbiomac.2024.137832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 11/27/2024]
Abstract
In this work, we attempted to improve the properties of magnetite carboxymethyl cellulose nanoparticles (Mag CMC NPs) through Ugi multicomponent reaction (MCR) to obtain magnetite carboxymethyl cellulose@functionalized carboxamide nanoparticles (Mag CMC@FCA NPs) as a new nano bio-carrier. Typically, at first Mag CMC NPs prepared by the co-precipitation method. Then by performing the Ugi MCR on Mag CMC NPs, the Mag CMC@FCA NPs achieved better properties in swelling ratio, loading efficiency and loading capacity. The prepared Mag CMC@FCA NPs characterized in detail. Evaluation of the prepared system functionality showed the swelling rate increased from 294 % to 1472 %. Furthermore, for methotrexate (MTX), loading efficiency increased from 24.62 % for Mag CMC NPs to 57.25 % for Mag CMC@FCA NPs, and the drug loading capacity increased from 1.23 % to 2.86 %. The loading of Ampicillin (AMP) and MTX has been observed to have a beneficial effect. When AMP is placed in the metabolic pathway of MTX, it prevents biodegradation of MTX up to 35 %, which results in a longer duration of high MTX concentration in the blood. Consequently, the toxicity of the prepared medication on healthy cells of the body is reduced, and the death rate is decreased to some extent.
Collapse
Affiliation(s)
- Mohammad Hossein Alizadeh
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
2
|
Patle RY, Dongre RS. Recent advances in PAMAM mediated nano-vehicles for targeted drug delivery in cancer therapy. J Drug Target 2024:1-21. [PMID: 39530737 DOI: 10.1080/1061186x.2024.2428966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/02/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
3-D multi-faceted, nano-globular PAMAM dendritic skeleton is a highly significant polymer that offers applications in biomedical, industrial, environmental and agricultural fields. This is mainly due to its enhanced properties, including adjustable surface functionalities, biocompatibility, non-toxicity, high uniformity and reduced cytotoxicity, as well as its numerous internal cavities. This trait inspires further exploration and advancements in tailoring approaches. The implementation of deliberate strategic modifications in the morphological characteristics of PAMAM is crucial through chemical and biological interventions, in addition to its therapeutic advancements. Thus, the production of peripheral groups remains a prominent and highly advanced technique in molecular fabrication, aimed at boosting the potential of PAMAM conjugates. Currently, there exist numerous dendritic-hybrid materials, despite the widespread use of PAMAM-conjugated frameworks as drug delivery systems, which are well regarded for their efficacy in enhancing potency through the incorporation of surface functions. This paper provides a comprehensive review of recent progress in the design and assembly of various components of PAMAM conjugates, focusing on their unique formulations. The review encompasses synthetic methodologies, a thorough evaluation of their applicability, and an analysis of their potential functions in the context of Drug Delivery Systems (DDS) in the current period.
Collapse
Affiliation(s)
- Ramkrishna Y Patle
- PGTD Chemistry, RTM Nagpur University, Nagpur, India
- Mahatma Gandhi College of Science, Chandrapur, India
| | | |
Collapse
|
3
|
Zeynalzadeh E, Khodadadi E, Khodadadi E, Ahmadian Z, Kazeminava F, Rasoulzadehzali M, Samadi Kafil H. Navigating the neurological frontier: Macromolecular marvels in overcoming blood-brain barrier challenges for advanced drug delivery. Heliyon 2024; 10:e35562. [PMID: 39170552 PMCID: PMC11336773 DOI: 10.1016/j.heliyon.2024.e35562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
The blood-brain interface poses formidable obstacles in addressing neurological conditions such as Alzheimer's, Multiple Sclerosis, brain cancers, and cerebrovascular accidents. Serving as a safeguard against potential threats in the blood, this barrier hinders direct drug delivery to affected cells, necessitating specialized transport mechanisms. Within the realm of nanotechnology, the creation of nanoscale carriers, including macromolecules such as polymers, lipids, and metallic nanoparticles, is gaining prominence. These carriers, tailored in diverse forms and sizes and enriched with specific functional groups for enhanced penetration and targeting, are capturing growing interest. This revised abstract explores the macromolecular dimension in understanding how nanoparticles interact with the blood-brain barrier. It re-evaluates the structure and function of the blood-brain barrier, highlighting macromolecular nanocarriers utilized in drug delivery to the brain. The discussion delves into the intricate pathways through which drugs navigate the blood-brain barrier, emphasizing the distinctive attributes of macromolecular nanocarriers. Additionally, it explores recent innovations in nanotechnology and unconventional approaches to drug delivery. Ultimately, the paper addresses the intricacies and considerations in developing macromolecular-based nanomedicines for the brain, aiming to advance the creation and evolution of nanomedicines for neurological ailments.
Collapse
Affiliation(s)
- Elham Zeynalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Khodadadi
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fahimeh Kazeminava
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Rasoulzadehzali
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Zaręba M, Chmiel-Szukiewicz E, Uram Ł, Noga J, Rzepna M, Wołowiec S. A Novel PAMAM G3 Dendrimer-Based Foam with Polyether Polyol and Castor Oil Components as Drug Delivery System into Cancer and Normal Cells. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3905. [PMID: 39203083 PMCID: PMC11355831 DOI: 10.3390/ma17163905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
One of the intensively developed tools for cancer therapy is drug-releasing matrices. Polyamidoamine dendrimers (PAMAM) are commonly used as nanoparticles to increase the solubility, stability and retention of drugs in the human body. Most often, drugs are encapsulated in PAMAM cavities or covalently attached to their surface. However, there are no data on the use of PAMAM dendrimers as a component of porous matrices based on polyurethane foams for the controlled release of drugs and biologically active substances. Therefore, in this work, porous materials based on polyurethane foam with incorporated third-generation poly(amidoamine) dendrimers (PAMAM G3) were synthesized and characterized. Density, water uptake and morphology of foams were examined with SEM and XPS. The PAMAM was liquefied with polyether polyol (G441) and reacted with polymeric 4,4'-diphenylmethane diisocyanate (pMDI) in the presence of silicone, water and a catalyst to obtain foam (PF1). In selected compositions, the castor oil was added (PF2). Analogs without PAMAM G3 were also synthesized (F1 and F2, respectively). An SEM analysis of foams showed that they are composed of thin ribs/walls forming an interconnected network containing hollow bubbles/pores and showing some irregularities in the structure. Foam from a G3:G441:CO (PF2) composition is characterized by a more regular structure than the foam from the composition without castor oil. The encapsulation efficiency of drugs determined by the XPS method shows that it varies depending on the matrix and the drug and ranges from several to a dozen mass percent. In vitro biological studies with direct contact and extract assays indicated that the F2 matrix was highly biocompatible. Significant toxicity of dendrimeric matrices PF1 and PF2 containing 50% of PAMAM G3 was higher against human squamous carcinoma cells than human immortalized keratinocytes. The ability of the matrices to immobilize drugs was demonstrated in the example of perspective (Nimesulide, 8-Methoxypsolarene) or approved anticancer drugs (Doxorubicin-DOX, 5-Aminolevulinic acid). Release into the culture medium and penetration of DOX into the tested SCC-15 and HaCaT cells were also proved. The results show that further modification of the obtained matrices may lead to their use as drug delivery systems, e.g., for anticancer therapy.
Collapse
Affiliation(s)
- Magdalena Zaręba
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Elżbieta Chmiel-Szukiewicz
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Łukasz Uram
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Justyna Noga
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Magdalena Rzepna
- Centre for Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland;
| | - Stanisław Wołowiec
- Medical College, University of Rzeszow, 1a Warzywna Street, 35-310 Rzeszow, Poland
| |
Collapse
|
5
|
Saadh MJ, Mustafa MA, Kumar A, Alamir HTA, Kumar A, Khudair SA, Faisal A, Alubiady MHS, Jalal SS, Shafik SS, Ahmad I, Khry FAF, Abosaoda MK. Stealth Nanocarriers in Cancer Therapy: a Comprehensive Review of Design, Functionality, and Clinical Applications. AAPS PharmSciTech 2024; 25:140. [PMID: 38890191 DOI: 10.1208/s12249-024-02843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Nanotechnology has significantly transformed cancer treatment by introducing innovative methods for delivering drugs effectively. This literature review provided an in-depth analysis of the role of nanocarriers in cancer therapy, with a particular focus on the critical concept of the 'stealth effect.' The stealth effect refers to the ability of nanocarriers to evade the immune system and overcome physiological barriers. The review investigated the design and composition of various nanocarriers, such as liposomes, micelles, and inorganic nanoparticles, highlighting the importance of surface modifications and functionalization. The complex interaction between the immune system, opsonization, phagocytosis, and the protein corona was examined to understand the stealth effect. The review carefully evaluated strategies to enhance the stealth effect, including surface coating with polymers, biomimetic camouflage, and targeting ligands. The in vivo behavior of stealth nanocarriers and their impact on pharmacokinetics, biodistribution, and toxicity were also systematically examined. Additionally, the review presented clinical applications, case studies of approved nanocarrier-based cancer therapies, and emerging formulations in clinical trials. Future directions and obstacles in the field, such as advancements in nanocarrier engineering, personalized nanomedicine, regulatory considerations, and ethical implications, were discussed in detail. The review concluded by summarizing key findings and emphasizing the transformative potential of stealth nanocarriers in revolutionizing cancer therapy. This review enhanced the comprehension of nanocarrier-based cancer therapies and their potential impact by providing insights into advanced studies, clinical applications, and regulatory considerations.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, India
| | | | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, 247341, Uttar Pradesh, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | | | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | | | - Sarah Salah Jalal
- College of Pharmacy, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Shafik Shaker Shafik
- Experimental Nuclear Radiation Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Faeza A F Khry
- Faculty of pharmacy, department of pharmaceutics, Al-Esraa University, Baghdad, Iraq
| | - Munther Kadhim Abosaoda
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Qadisiyyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
6
|
Pooresmaeil M, Namazi H. Hyaluronic acid functionalized citric acid dendrimer/UiO-66-COOH as a stable and biocompatible platform for daunorubicin delivery. Int J Biol Macromol 2024; 268:131590. [PMID: 38621563 DOI: 10.1016/j.ijbiomac.2024.131590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
This work aimed to prepare a new system for daunorubicin (DNR) delivery to improve therapeutic efficiency and decrease unwanted side effects. Typically, at first, a carboxylic acid functional group containing metal-organic framework (UiO-66-COOH) was synthesized in a simple way. Then, a third generation of citric acid dendrimer (CAD G3) was grown on it (UiO-66-COOH-CAD G3). Finally, the system was functionalized with pre-modified hyaluronic acid (UiO-66-COOH-CAD-HA). SEM analysis displayed that the synthesized particles have a spherical shape with an average particle size ranging from 260 to 280 nm. An increase in hydrodynamic diameter from 223 nm for UiO-66-COOH to 481 nm for UiO-66-COOH-CAD-HA is a sign of success in the performed reactions. Also, the average pore size was calculated at about 4.04 nm. The DNR loading efficiency of UiO-66-COOH-CAD-HA was evaluated at ∼74 % (DNR@UiO-66-COOH-CAD-HA). It was observed that the drug release rate at a lower pH is more than higher pH. The maximum hemolysis of <3 % means that the UiO-66-COOH-CAD-HA is hemocompatible. The use of DNR-loaded UiO-66-COOH-CAD-HA led to cell-killing of 77.9 % for MDA-MB 231. These results specified the great potential of UiO-66-COOH-CAD-HA for tumor drug delivery, so it could be proposed as a new carrier for anticancer agents to minimize adverse effects and improve therapeutic efficacy.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
7
|
Caselli L, Nylander T, Malmsten M. Neutron reflectometry as a powerful tool to elucidate membrane interactions of drug delivery systems. Adv Colloid Interface Sci 2024; 325:103120. [PMID: 38428362 DOI: 10.1016/j.cis.2024.103120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
The last couple of decades have seen an explosion of novel colloidal drug delivery systems, which have been demonstrated to increase drug efficacy, reduce side-effects, and provide various other advantages for both small-molecule and biomacromolecular drugs. The interactions of delivery systems with biomembranes are increasingly recognized to play a key role for efficient eradication of pathogens and cancer cells, as well as for intracellular delivery of protein and nucleic acid drugs. In parallel, there has been a broadening of methodologies for investigating such systems. For example, advanced microscopy, mass-spectroscopic "omic"-techniques, as well as small-angle X-ray and neutron scattering techniques, which only a few years ago were largely restricted to rather specialized areas within basic research, are currently seeing increased interest from researchers within wide application fields. In the present discussion, focus is placed on the use of neutron reflectometry to investigate membrane interactions of colloidal drug delivery systems. Although the technique is still less extensively employed for investigations of drug delivery systems than, e.g., X-ray scattering, such studies may provide key mechanistic information regarding membrane binding, re-modelling, translocation, and permeation, of key importance for efficacy and toxicity of antimicrobial, cancer, and other therapeutics. In the following, examples of this are discussed and gaps/opportunities in the research field identified.
Collapse
Affiliation(s)
| | - Tommy Nylander
- Physical Chemistry 1, Lund University, S-221 00 Lund, Sweden
| | - Martin Malmsten
- Physical Chemistry 1, Lund University, S-221 00 Lund, Sweden; Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
8
|
Vodyashkin A, Sergorodceva A, Kezimana P, Morozova M, Nikolskaya E, Mollaeva M, Yabbarov N, Sokol M, Chirkina M, Butusov L, Timofeev A. Synthesis and activation of pH-sensitive metal-organic framework Sr(BDC) ∞ for oral drug delivery. Dalton Trans 2024; 53:1048-1057. [PMID: 38099594 DOI: 10.1039/d3dt02822d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Metal-organic frameworks (MOFs) are widely used in the biomedical industry. In this study, we developed a new method for obtaining a metal-organic structure of strontium and terephthalic acid, Sr(BDC), and an alternative activation method for removing DMF from the pores. Sr(BDC) MOFs were successfully prepared and characterized by XRD, FTIR, TGA, and SEM. The importance of the activation steps was confirmed by TGA, which showed that the Sr(BDC)(DMF) sample can contain up to a quarter of the solvent (DMF) before activation. In our study, IR spectroscopy confirmed the possibility of removing DMF by ethanol treatment from the Sr-BDC crystals. A comparative analysis of the effect of the activation method on the specific surface and pore size of Sr-BDC and its sorption properties using the model drug doxorubicin showed that due to the undeveloped surface of the Sr-(BDC)(DMF) sample, it is not possible to obtain an adsorption isotherm and determine the pore size distribution, thus showing the importance of the activation step. Cytotoxicity and apoptosis assays were carried out to study the biological activity of MOFs, and we observed relatively low toxicity in the tested concentration range after 48 h, with over 92% cell survival for Sr(BDC)(DMF) and Sr(BDC)(260 °C), with a decrease only in the highest concentration (800 mg L-1). Similar results were observed in our apoptosis assays, as they revealed low apoptotic population generation of 2.52%, 3.23%, and 2.77% for Sr(BDC)(DMF), Sr(BDC) and Sr(BDC)(260 °C), respectively. Overall, the findings indicate that ethanol-activated Sr(BDC) shows potential as a safe and effective material for drug delivery.
Collapse
Affiliation(s)
- Andrey Vodyashkin
- RUDN University, 117198, Moscow, Russia
- Bauman Moscow State Technical University, 105005, Moscow, Russia.
| | | | | | | | - Elena Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | - Mariia Mollaeva
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | - Nikita Yabbarov
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | - Maria Sokol
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | - Margarita Chirkina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | | | - Alexey Timofeev
- RUDN University, 117198, Moscow, Russia
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia
| |
Collapse
|
9
|
Shahzadi U, Zeeshan R, Tabassum S, Khadim H, Arshad M, Ansari AA, Safi SZ, ul Haq RI, Asif A. Physico‐chemical properties and in‐vitro biocompatibility of thermo‐sensitive hydrogel developed with enhanced antimicrobial activity for soft tissue engineering. POLYM ADVAN TECHNOL 2023; 34:3870-3884. [DOI: 10.1002/pat.6188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/02/2023] [Indexed: 10/07/2024]
Abstract
AbstractSmart materials such as thermo‐sensitive in situ forming hydrogels can be effective agents in drug delivery and tissue regeneration with minimal invasion. Injection method would avoid complex surgical procedures facilitating rapid recovery process. In this research, we report the fabrication of an easy, reproducible thermo‐sensitive hydrogel constituting of chitosan (CHI), glycerol phosphate (GP) with variable quantity of ‐poly‐l‐lysine (PS). Fourier‐transform infrared spectra exhibited hydrogel formation where interactions between CHI and GP were seen. The gelation kinetics presented gelation time of 8 min at physiological temperature. The results indicated an increase in degradation rate with the passage of time. Contact angles measurements were employed to observe hydrophilic characteristics which were shown to be favorable. Mechanical strength was determined to be in the range of ~0.1–0.6 MPa for all the hydrogels. Due to intrinsic antibacterial features of CHI and PS, the hydrogels showed potent antibacterial activity against Escherichia coli, Staphylococcus aureus, and Methicillin‐resistant S. aureus (MR‐SA). Interestingly, PS's addition in the hydrogel resulted in potent antibacterial activity against clinically relevant MR‐SA. The hydrogels can hence be delivered to a specific target for localized treatments where the potential of inhibiting multidrug resistant strain is clinically relevant. Biocompatibility of the hydrogels was seen by an overall increase in cell viability of mouse fibroblast cells and scratch assay revealed favorable migration potential. Proangiogenic Vascular endothelial growth factor (VEGF)'s expression showed a gradual increase with increasing concentration of PS, whereas one composition demonstrated a slight increase in the expression of cytosolic prostaglandin E synthase (cPGES) as determined by RT‐PCR. Overall, an increase in PS content of the hydrogels resulted in simultaneously enhanced antibacterial efficiency and marked increase in fibroblast cell viability, hence, reiterating their potential as potent antibacterial agents that can be explored as wound healing agents. In conclusion, novel antibacterial thermo‐sensitive hydrogels were synthesized with a potential of regulating proangiogenic and tissue regeneration factors that highlight their role as wound healing agents.
Collapse
Affiliation(s)
- Uzma Shahzadi
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | - Rabia Zeeshan
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | - Sobia Tabassum
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | - Hina Khadim
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
- Department of Chemistry COMSATS University Islamabad Lahore Pakistan
| | - Muhammad Arshad
- Institute of Chemistry The Islamia University of Bahawalpur Pakistan
| | - Arsalan Ahmad Ansari
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | - Sher Zaman Safi
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | | | - Anila Asif
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| |
Collapse
|
10
|
Ajith S, Almomani F, Elhissi A, Husseini GA. Nanoparticle-based materials in anticancer drug delivery: Current and future prospects. Heliyon 2023; 9:e21227. [PMID: 37954330 PMCID: PMC10637937 DOI: 10.1016/j.heliyon.2023.e21227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
The past decade has witnessed a breakthrough in novel strategies to treat cancer. One of the most common cancer treatment modalities is chemotherapy which involves administering anti-cancer drugs to the body. However, these drugs can lead to undesirable side effects on healthy cells. To overcome this challenge and improve cancer cell targeting, many novel nanocarriers have been developed to deliver drugs directly to the cancerous cells and minimize effects on the healthy tissues. The majority of the research studies conclude that using drugs encapsulated in nanocarriers is a much safer and more effective alternative than delivering the drug alone in its free form. This review provides a summary of the types of nanocarriers mainly studied for cancer drug delivery, namely: liposomes, polymeric micelles, dendrimers, magnetic nanoparticles, mesoporous nanoparticles, gold nanoparticles, carbon nanotubes and quantum dots. In this review, the synthesis, applications, advantages, disadvantages, and previous studies of these nanomaterials are discussed in detail. Furthermore, the future opportunities and possible challenges of translating these materials into clinical applications are also reported.
Collapse
Affiliation(s)
- Saniha Ajith
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha, Qatar
| | | | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|
11
|
Alizadeh MH, Pooresmaeil M, Namazi H. Carboxymethyl cellulose@multi wall carbon nanotubes functionalized with Ugi reaction as a new curcumin carrier. Int J Biol Macromol 2023; 234:123778. [PMID: 36822289 DOI: 10.1016/j.ijbiomac.2023.123778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
In recent years, the fabrication of new drug delivery systems (DDSs) based on functionalization by multi-component reactions (MCRs) has received special attention. In this regard, to obtain a new oral administration system for colon-specific cancer treatment, the CMC@MWCNTs@FCA carrier was designed and prepared from the functionalization of the CMC@MWCNTs as a biocompatible raw material with carboxamide group by the Ugi reaction. FT-IR analysis confirmed the successful synthesis of the product through the change in the functional groups of reagents. Additionally, the crystalline structure and porosity of the samples were studied by XRD and BET techniques. After a detailed characterization, the curcumin (CUR) was loaded on CMC@MWCNTs and CMC@MWCNTs@FCA, respectively, about 29 % and 38 %. In vitro drug release behavior studies for CUR-loaded CMC@MWCNTs@FCA showed the controlled release for it, so 11.6 % and 76.5 % of CUR, respectively were released at pH 1.2 and pH 7.4. Toxicological analysis displayed the IC50 of CMC@MWCNTs@FCA@CUR is 752 μg/mL. In conclusion, the obtained findings display that the fabricated system can be proposed as a biocompatible carrier for specific colon cancer treatment.
Collapse
Affiliation(s)
- Mohammad Hossein Alizadeh
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
12
|
Zhao H, Xu C, Wang T, Liu J. Biomimetic Construction of Artificial Selenoenzymes. Biomimetics (Basel) 2023; 8:biomimetics8010054. [PMID: 36810385 PMCID: PMC9944854 DOI: 10.3390/biomimetics8010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Selenium exists in the form of selenocysteines in selenoproteins and plays a pivotal role in the catalytic process of the antioxidative enzymes. In order to study the structural and functional properties of selenium in selenoproteins, explore the significance of the role of selenium in the fields of biology and chemistry, scientists conducted a series of artificial simulations on selenoproteins. In this review, we sum up the progress and developed strategies in the construction of artificial selenoenzyme. Using different mechanisms from different catalytic angles, selenium-containing catalytic antibodies, semi-synthetic selenonezyme, and the selenium-containing molecularly imprinted enzymes have been constructed. A variety of synthetic selenoenzyme models have been designed and constructed by selecting host molecules such as cyclodextrins, dendrimers, and hyperbranched polymers as the main scaffolds. Then, a variety of selenoprotein assemblies as well as cascade antioxidant nanoenzymes were built by using electrostatic interaction, metal coordination, and host-guest interaction. The unique redox properties of selenoenzyme glutathione peroxidase (GPx) can be reproduced.
Collapse
|
13
|
Hybrid perylene-cored poly(amidoamine) dendrimer with coumarin and calcozine red 6G end groups: From photophysical properties to cell imaging. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Alhaj-Suliman SO, Wafa EI, Salem AK. Engineering nanosystems to overcome barriers to cancer diagnosis and treatment. Adv Drug Deliv Rev 2022; 189:114482. [PMID: 35944587 DOI: 10.1016/j.addr.2022.114482] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
Over the past two decades, multidisciplinary investigations into the development of nanoparticles for medical applications have continually increased. However, nanoparticles are still subject to biological barriers and biodistribution challenges, which limit their overall clinical potential. This has motivated the implementation of innovational modifications to a range of nanoparticle formulations designed for cancer imaging and/or cancer treatment to overcome specific barriers and shift the accumulation of payloads toward the diseased tissues. In recent years, novel technological and chemical approaches have been employed to modify or functionalize the surface of nanoparticles or manipulate the characteristics of nanoparticles. Combining these approaches with the identification of critical biomarkers provides new strategies for enhancing nanoparticle specificity for both cancer diagnostic and therapeutic applications. This review discusses the most recent advances in the design and engineering of nanoparticles as well as future directions for developing the next generation of nanomedicines.
Collapse
Affiliation(s)
- Suhaila O Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States; Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, United States.
| |
Collapse
|
15
|
Soltani A, Faramarzi M, Farjadian F, Parsa SAM, Panahi HA. pH-responsive glycodendrimer as a new active targeting agent for doxorubicin delivery. Int J Biol Macromol 2022; 221:508-522. [PMID: 36089082 DOI: 10.1016/j.ijbiomac.2022.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 11/05/2022]
Abstract
The present study synthesized a new kind of pH-responsive active targeting glycodendrimer (ATGD) for doxorubicin delivery to cancerous cells. First, the glycodendrimer was synthesized based on the cultivation of chitosan dendrons on amine-functionalized, silica-grafted cellulose nanocrystals. Afterward, glycodendrimer was conjugated with folic acid to provide a folate receptor-targeting agent. The response surface method was employed to obtain the optimum conditions for the preparation of doxorubicin-loaded ATGD. The effect of doxorubicin/ATGD ratio, temperature, and pH on doxorubicin loading capacity was evaluated, and high loading capacity was achieved under optimized conditions. After determining doxorubicin release pattern at acidic and physiological pH, ATGD cytotoxicity was surveyed by MTT assay. Based on the results, the loading behavior of doxorubicin onto ATGD was in good agreement with monolayer-physisorption, and drug release was Fickian diffusion-controlled. ATGD could release the doxorubicin much more at acidic pH than physiological pH, corresponding to pH-responsive release behavior. Results of MTT assay confirmed the cytotoxicity of doxorubicin-loaded ATGD in cancer cells, while ATGD (without drug) was biocompatible with no tangible toxicity. These results suggested that ATGD has the potential for the treatment of cancer.
Collapse
Affiliation(s)
- Ali Soltani
- Department of Chemical Engineering, Yasuj Branch, Islamic Azad University, Yasuj, Iran
| | - Mehdi Faramarzi
- Department of Chemical Engineering, Yasuj Branch, Islamic Azad University, Yasuj, Iran; Department of Chemical Engineering, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Homayon Ahmad Panahi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
16
|
Wang J, Li B, Qiu L, Qiao X, Yang H. Dendrimer-based drug delivery systems: history, challenges, and latest developments. J Biol Eng 2022; 16:18. [PMID: 35879774 PMCID: PMC9317453 DOI: 10.1186/s13036-022-00298-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Since the first dendrimer was reported in 1978 by Fritz Vögtle, dendrimer research has grown exponentially, from synthesis to application in the past four decades. The distinct structure characteristics of dendrimers include nanoscopic size, multi-functionalized surface, high branching, cavernous interior, and so on, making dendrimers themselves ideal drug delivery vehicles. This mini review article provides a brief overview of dendrimer’s history and properties and the latest developments of dendrimers as drug delivery systems. This review focuses on the latest progress in the applications of dendrimers as drug and gene carriers, including 1) active drug release strategies to dissociate drug/gene from dendrimer in response to stimuli; 2) size-adaptive and charge reversal dendrimer delivery systems that can better take advantage of the size and surface properties of dendrimer; 3) bulk and micro/nano dendrimer gel delivery systems. The recent advances in dendrimer formulations may lead to the generation of new drug and gene products and enable the development of novel combination therapies.
Collapse
Affiliation(s)
- Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Boxuan Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Li Qiu
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xin Qiao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| |
Collapse
|
17
|
Pornpitchanarong C, Rojanarata T, Opanasopit P, Ngawhirunpat T, Bradley M, Patrojanasophon P. Maleimide-functionalized carboxymethyl cellulose: A novel mucoadhesive polymer for transmucosal drug delivery. Carbohydr Polym 2022; 288:119368. [DOI: 10.1016/j.carbpol.2022.119368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 12/23/2022]
|
18
|
Safety Challenges and Application Strategies for the Use of Dendrimers in Medicine. Pharmaceutics 2022; 14:pharmaceutics14061292. [PMID: 35745863 PMCID: PMC9230513 DOI: 10.3390/pharmaceutics14061292] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/07/2023] Open
Abstract
Dendrimers are used for a variety of applications in medicine but, due to their host–guest and entrapment characteristics, are particularly used for the delivery of genes and drugs. However, dendrimers are intrinsically toxic, thus creating a major limitation for their use in biological systems. To reduce such toxicity, biocompatible dendrimers have been designed and synthesized, and surface engineering has been used to create advantageous changes at the periphery of dendrimers. Although dendrimers have been reviewed previously in the literature, there has yet to be a systematic and comprehensive review of the harmful effects of dendrimers. In this review, we describe the routes of dendrimer exposure and their distribution in vivo. Then, we discuss the toxicity of dendrimers at the organ, cellular, and sub-cellular levels. In this review, we also describe how technology can be used to reduce dendrimer toxicity, by changing their size and surface functionalization, how dendrimers can be combined with other materials to generate a composite formulation, and how dendrimers can be used for the diagnosis of disease. Finally, we discuss future challenges, developments, and research directions in developing biocompatible and safe dendrimers for medical purposes.
Collapse
|
19
|
Toomari Y, Ebrahimpour H, Pooresmaeil M, Namazi H. D-glucose functionalized β-cyclodextrin as a controlled anticancer drug carrier for in vitro evaluation. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Jurczyk M, Kasperczyk J, Wrześniok D, Beberok A, Jelonek K. Nanoparticles Loaded with Docetaxel and Resveratrol as an Advanced Tool for Cancer Therapy. Biomedicines 2022; 10:biomedicines10051187. [PMID: 35625921 PMCID: PMC9138983 DOI: 10.3390/biomedicines10051187] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
A growing interest in the use of a combination of chemosensitizers and cytostatics for overcoming cancer resistance to treatment and the development of their delivery systems has been observed. Resveratrol (Res) presents antioxidant, anti-inflammatory and chemopreventive properties but also limits multidrug resistance against docetaxel (Dtx), which is one of the main causes of failure in cancer therapy with this drug. However, the use of both drugs presents challenges, including poor bioavailability, the unfavourable pharmacokinetics and chemical instability of Res and the poor water solubility and dose-limiting toxicity of Dtx. In order to overcome these difficulties, attempts have been made to create different forms of delivery for both agents. This review is focused on the latest developments in nanoparticles for the delivery of Dtx, Res and for the combined delivery of those two drugs. The aim of this review was also to summarize the synergistic mechanism of action of Dtx and Res on cancer cells. According to recent reports, Dtx and Res loaded in a nano-delivery system exhibit better efficiency in cancer treatment compared to free drugs. Also, the co-delivery of Dtx and Res in one actively targeted delivery system providing the simultaneous release of both drugs in cancer cells has a chance to fulfil the requirements of effective anticancer therapy and reduce limitations in therapy caused by multidrug resistance (MDR).
Collapse
Affiliation(s)
- Magdalena Jurczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland; (M.J.); (J.K.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (D.W.); (A.B.)
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland; (M.J.); (J.K.)
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (D.W.); (A.B.)
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (D.W.); (A.B.)
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland; (M.J.); (J.K.)
- Correspondence: ; Tel.: +48-32-271-2969
| |
Collapse
|
21
|
Rajendran K, Karthikeyan A, Krishnan UM. Emerging trends in nano-bioactive-mediated mitochondria-targeted therapeutic stratagems using polysaccharides, proteins and lipidic carriers. Int J Biol Macromol 2022; 208:627-641. [PMID: 35341885 DOI: 10.1016/j.ijbiomac.2022.03.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
The emergence of new lifestyle disorders and pharmaco-resistant variants of diseases has necessitated the search for effective therapeutic moieties and approaches that could overcome the limitations in the existing treatment modalities. In this context, bioactives such as flavonoids, polyphenols, tannins, terpenoids and alkaloids have demonstrated promise in therapy owing to their ability to scavenge free radicals and modulate the mitochondrial function as well as regulate metabolic pathways. However, their clinical applicability is low owing to their poor bioavailability and aqueous solubility. The encapsulation of bioactives in nanodimensional particles has overcome these limitations to a large extent while simultaneously conferring additional advantages of improved circulation time, enhanced cell uptake and target specific release. A wide range of nanocarriers derived from biopolymers such as polysaccharides, lipids and proteins, have been explored for encapsulation of different bioactives and have reported significant improvement of the bioavailability and therapeutic efficacy of the encapsulated cargo. However, incorporation of cell-specific and mitochondria-specific elements on the nanocarriers has been relatively less explored. This review summarizes some of the recent attempts to treat different disorders using bioactives encapsulated in biopolymer nanostructures and few instances of mitochondria-specific delivery.
Collapse
Affiliation(s)
- Kayalvizhi Rajendran
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613 401, India; School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Akhilasree Karthikeyan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613 401, India; School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613 401, India; School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India; School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur 613 401, India.
| |
Collapse
|
22
|
Pooresmaeil M, Namazi H, Salehi R. Dual anticancer drug delivery of D-galactose-functionalized stimuli-responsive nanogels for targeted therapy of the liver hepatocellular carcinoma. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111061] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Pooresmaeil M, Namazi H. Folic acid-modified photoluminescent dialdehyde carboxymethyl cellulose crosslinked bionanogels for pH-controlled and tumor-targeted co-drug delivery. Int J Biol Macromol 2022; 200:247-262. [PMID: 35007630 DOI: 10.1016/j.ijbiomac.2022.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/21/2021] [Accepted: 01/01/2022] [Indexed: 01/21/2023]
Abstract
This work aimed to fabricate a new photoluminescent bionanogel with both targeted anticancer drug delivery and bioimaging potentials. Briefly, at first photoluminescent carbon dots (CDs) were synthesized from the low-cost and more available black pepper with traditional medicinal properties. The as-synthesized dialdehyde carboxymethyl cellulose (DCMC) was used as a safe crosslinker for gelatin crosslinking in the presence of CDs (CDs/DCMC-Gel). Eventually, the residual amine functional groups of gelatin were used for the conjugation of CDs/DCMC-Gel with folic acid (FA) ((CDs/DCMC-Gel)-FA bionanogels). All employed physicochemical characterization methods approved the (CDs/DCMC-Gel)-FA bionanogels fabrication route. SEM analysis specified the spherical morphology with a diameter of ~70-90 nm for it. Curcumin (CUR) and doxorubicin (DOX) respectively were loaded with drug entrapment efficiency of about 44.0% and 41.4%. The release rate for both drugs in acidic conditions was higher than in physiological conditions. In vitro antitumor experiments; MTT, DAPI staining, cellular uptake, and cell cycle tests showed the superior anticancer effect of the CUR@DOX@(CDs/DCMC-Gel)-FA in comparison with free CUR@DOX. Moreover, the (CDs/DCMC-Gel)-FA acted as a hopeful bio-imaging tool. Taken together, the designed (CDs/DCMC-Gel)-FA could be proposed as a promising nanosystem for efficient chemotherapy.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
24
|
Resen AK, Atiroğlu A, Atiroğlu V, Guney Eskiler G, Aziz IH, Kaleli S, Özacar M. Effectiveness of 5-Fluorouracil and gemcitabine hydrochloride loaded iron‑based chitosan-coated MIL-100 composite as an advanced, biocompatible, pH-sensitive and smart drug delivery system on breast cancer therapy. Int J Biol Macromol 2022; 198:175-186. [PMID: 34973989 DOI: 10.1016/j.ijbiomac.2021.12.130] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/18/2021] [Accepted: 12/19/2021] [Indexed: 11/25/2022]
Abstract
This study was planned to evolve the bioavailability and therapeutic efficiency of Gemcitabine (GEM) and 5-Fluorouracil with decreased side effects using MIL-100 nano-composite as carrier. Impregnation approach was used for encapsulation of 5-Fluorouracil alone and with GEM inside the MIL-100. The formed 5-Fluorouracil@MIL-100 and 5-Fluorouracil-GEM@MIL-100 were then coated with chitosan, sequentially chelated with iron(III) and conjugated with quercetin, eventually obtaining a multifunctional MIL-100 nanocarrier. The hybrid nanocarrier nascency was verified by different characterization results. pH-sensitive releases of 5-Fluorouracil and GEM were observed because of the inherent pH-dependent stability of MIL-100. Additionally, we evaluated the anti-cancer activity of these nanocarriers through WST-1 analysis and acridine orange staining in MCF-7 human breast cancer and HUVEC control cell lines. Our findings showed that all nanocarriers exhibited anti-cancer activity and induced apoptosis in MCF-7 cells. However, 5-Fluorouracil@MIL-100 and chitosan-coated 5-Fluorouracil@MIL-100 with quercetin were more effective than other nanocarriers in MCF-7 cells (p < 0.05). Moreover, we observed cytotoxicity in HUVEC cells due to the adverse side effects of chemotherapy drugs. However, chitosan coated nanocarriers with quercetin were less toxic on HUVEC cells at particularly 1 µg/mL. Therefore, MIL-100 could be used for a promising chemotherapeutic drugs delivery and chitosan coated drugs with quercetin could be useful for reducing toxicity on normal cells.
Collapse
Affiliation(s)
- Ali K Resen
- University of Baghdad, Genetic Engineering and Biotechnology Institute, Baghdad, Iraq
| | - Atheer Atiroğlu
- Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research & Development Group (BIOE N AMS R & D Group), 54187 Sakarya, Turkey; Sakarya University, Biomedical, Magnetic and Semiconductor Materials Application and Research Center (BIMAS-RC), 54187 Sakarya, Turkey.
| | - Vesen Atiroğlu
- Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research & Development Group (BIOE N AMS R & D Group), 54187 Sakarya, Turkey; Sakarya University, Biomedical, Magnetic and Semiconductor Materials Application and Research Center (BIMAS-RC), 54187 Sakarya, Turkey.
| | - Gamze Guney Eskiler
- Sakarya University, Faculty of Medicine, Department of Medical Biology, 54290 Sakarya, Turkey
| | - Ismail H Aziz
- University of Baghdad, Genetic Engineering and Biotechnology Institute, Baghdad, Iraq
| | - Suleyman Kaleli
- Sakarya University, Faculty of Medicine, Department of Medical Biology, 54290 Sakarya, Turkey
| | - Mahmut Özacar
- Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research & Development Group (BIOE N AMS R & D Group), 54187 Sakarya, Turkey; Sakarya University, Science & Arts Faculty, Department of Chemistry, 54187 Sakarya, Turkey
| |
Collapse
|
25
|
Mekuria SL, Ouyang Z, Song C, Rodrigues J, Shen M, Shi X. Dendrimer-Based Nanogels for Cancer Nanomedicine Applications. Bioconjug Chem 2022. [DOI: https:/doi.org/10.1021/acs.bioconjchem.1c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Shewaye Lakew Mekuria
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Gondar, 196, Ethiopia
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Cong Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - João Rodrigues
- CQM-Centro de Química da Madeira, Universidade da Madeira, 9020-105, Funchal, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- CQM-Centro de Química da Madeira, Universidade da Madeira, 9020-105, Funchal, Portugal
| |
Collapse
|
26
|
Mekuria SL, Ouyang Z, Song C, Rodrigues J, Shen M, Shi X. Dendrimer-Based Nanogels for Cancer Nanomedicine Applications. Bioconjug Chem 2022; 33:87-96. [PMID: 34967608 DOI: 10.1021/acs.bioconjchem.1c00587] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent advances in the field of nanotechnology bring an alternative approach to personalized medicine in cancer treatment. Nanogels (NGs) are among the nanosized superconstructs composed of amphiphilic or hydrophilic polymer networks. The design of different types of biodegradable polymer-based NGs in various biomedical applications has received extensive attention, due to their unique physicochemical properties such as highly porous structure, stimuli-responsiveness, and mimicking of some biological properties. In this review, we concisely surveyed the synthesis of dendrimer-based NGs synthesized via different methods including covalent conjugation, inverse nanoprecipitation, physical cross-linking, or self-assembly for various cancer nanomedicine applications, particularly for drug delivery, gene delivery, photothermal therapy, and combination therapy, as well as for biological imaging-guided chemotherapy. Additionally, we provide herein future perspective toward the new design of dendrimer-based NGs for different cancer nanomedicine uses.
Collapse
Affiliation(s)
- Shewaye Lakew Mekuria
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Gondar, 196, Ethiopia
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Cong Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - João Rodrigues
- CQM-Centro de Química da Madeira, Universidade da Madeira, 9020-105, Funchal, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
- CQM-Centro de Química da Madeira, Universidade da Madeira, 9020-105, Funchal, Portugal
| |
Collapse
|
27
|
Sadhu P, Kumari M, Rathod F, Shah N, Patel S. A Review on Poly(amidoamine) Dendrimers: Properties, Synthesis, and Characterization Prospects. ARCHIVES OF PHARMACY PRACTICE 2022. [DOI: 10.51847/eawu3ry0yc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
28
|
Pooresmaeil M, Namazi H. Facile coating of the methotrexate-layered double hydroxide nanohybrid via carboxymethyl starch as a pH-responsive biopolymer to improve its performance for colon-specific therapy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Torres FG, De-la-Torre GE. Synthesis, characteristics, and applications of modified starch nanoparticles: A review. Int J Biol Macromol 2022; 194:289-305. [PMID: 34863968 DOI: 10.1016/j.ijbiomac.2021.11.187] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/03/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022]
Abstract
Nowadays, starch nanoparticles (SNPs) are drawing attention to the scientific community due to their versatility and wide range of applications. Although several works have extensively addressed the SNP production routes, not much is discussed about the SNPs modification techniques, as well as the use of modified SNPs in typical and unconventional applications. Here, we focused on the SNP modification strategies and characteristics and performance of the resulting products, as well as their practical applications, while pointing out the main limitations and recommendations. We aim to guide researchers by identifying the next steps in this emerging line of research. SNPs esterification and oxidation are preferred chemical modifications, which result in changes in the functional groups. Moreover, additional polymers are incorporated into the SNP surface through copolymer grafting. Physical modification of starch has demonstrated similar changes in the functional groups without the need for toxic chemicals. Modified SNPs rendered differentiated properties, such as size, shape, crystallinity, hydrophobicity, and Zeta-potential. For multiple applications, tailoring the aforementioned properties is key to the performance of nanoparticle-based systems. However, the number of studies focusing on emerging applications is fairly limited, while their applications as drug delivery systems lack in vivo studies. The main challenges and prospects were discussed.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru.
| | | |
Collapse
|
30
|
Mekuria SL, Ouyang Z, Song C, Rodrigues J, Shen M, Shi X. Dendrimer-Based Nanogels for Cancer Nanomedicine Applications. Bioconjug Chem 2021. [DOI: https://doi.org/10.1021/acs.bioconjchem.1c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shewaye Lakew Mekuria
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Gondar, 196, Ethiopia
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Cong Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - João Rodrigues
- CQM-Centro de Química da Madeira, Universidade da Madeira, 9020-105, Funchal, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- CQM-Centro de Química da Madeira, Universidade da Madeira, 9020-105, Funchal, Portugal
| |
Collapse
|
31
|
Pooresmaeil M, Namazi H. Chitosan coated Fe 3O 4@Cd-MOF microspheres as an effective adsorbent for the removal of the amoxicillin from aqueous solution. Int J Biol Macromol 2021; 191:108-117. [PMID: 34537293 DOI: 10.1016/j.ijbiomac.2021.09.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/28/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022]
Abstract
In this work, for the first time, a new magnetic cadmium-based MOFs (Fe3O4@Cd-MOF) was successfully synthesized in a green way and then modified with chitosan (CS) in the microsphere form (Fe3O4@Cd-MOF@CS). The obtained materials were fully characterized by several techniques. In the following, the efficiency of Fe3O4@Cd-MOF@CS was explored for the removal of amoxicillin (AMX). The outcome of the adsorption study showed that the removal efficiency is affected by CS and reaches its optimum at pH 8 and contact time of 240 min. Under optimized conditions, over 75% of AMX was removed. The kinetic and the isotherm of the adsorption were fit with the pseudo-second-order model and the Langmuir adsorption isotherm respectively. Eventually, the maximum adsorption capacity was obtained ~103.09 mg/g. Interestingly, these findings convince that the newly prepared Fe3O4@Cd-MOF@CS could be proposed as a promising magnetically separable adsorbent for antibiotic contaminants removal from the aqueous solution.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
32
|
Biocompatible Nanocarriers for Enhanced Cancer Photodynamic Therapy Applications. Pharmaceutics 2021; 13:pharmaceutics13111933. [PMID: 34834348 PMCID: PMC8624654 DOI: 10.3390/pharmaceutics13111933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, the role of nanotechnology in drug delivery has become increasingly important, and this field of research holds many potential benefits for cancer treatment, particularly, in achieving cancer cell targeting and reducing the side effects of anticancer drugs. Biocompatible and biodegradable properties have been essential for using a novel material as a carrier molecule in drug delivery applications. Biocompatible nanocarriers are easy to synthesize, and their surface chemistry often enables them to load different types of photosensitizers (PS) to use targeted photodynamic therapy (PDT) for cancer treatment. This review article explores recent studies on the use of different biocompatible nanocarriers, their potential applications in PDT, including PS-loaded biocompatible nanocarriers, and the effective targeting therapy of PS-loaded biocompatible nanocarriers in PDT for cancer treatment. Furthermore, the review briefly recaps the global clinical trials of PDT and its applications in cancer treatment.
Collapse
|
33
|
Pooresmaeil M, Javanbakht S, Namazi H, Shaabani A. Application or function of citric acid in drug delivery platforms. Med Res Rev 2021; 42:800-849. [PMID: 34693555 DOI: 10.1002/med.21864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Nontoxic materials with natural origin are promising materials in the designing and preparation of the new drug delivery systems (DDSs). Today's, citric acid (CA) has attracted a great deal of attention because of its special features; green nature, biocompatibility, low price, biodegradability, and commercially available property. So, CA has been employed in the preparation of the various platforms to induce a suitable property on their structure. Recently, several research groups investigated the CA-based platforms in different forms like tablets, dendrimers, hyperbranched polymers, (co)polymer, hydrogels, and nanoparticles as efficient DDSs. By considering an increasing amount of published articles in this field, for the first time, in this review, an overview of the published works regarding CA applications in the design of various DDSs is presented with a detailed and insightful discussion.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
34
|
Wang Z, Ye M, Ma D, Shen J, Fang F. Engineering of 177Lu-labeled gold encapsulated into dendrimeric nanomaterials for the treatment of lung cancer. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:197-211. [PMID: 34686102 DOI: 10.1080/09205063.2021.1982446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As a novel type of theranostic radioactive agents, 177Lu-labeled nanomaterials conjugated to macromolecules have been described. The study aimed to fabricate PAMAM-G4-(177Lu-dendrimer)-bombesin-folate in the dendrimeric cavity, assess the radiopharmaceutical ability for specifically targeted radiotherapy and simultaneously detects gastrin-releasing peptide receptors (GRPR) and folate receptors (FRs) overexpressed in lung carcinoma cells, respectively. In an aqueous-basic media, p-SCN-benzyl-DOTA was conjugated to the dendrimer. This dendrimer was formed by activating the carboxylic acid groups of DOTA-folic acid and bombesin with HATU and conjugating them to develop the dendrimer. As part of this process, the conjugate was combined with 1% HAuCl4, added NaBH4 and filtered by ultrafiltration. Infrared, UV-Vis, TEM analysis, dynamic light scattering (DLS), and fluorescence spectroscopy were employed to observe the composition of the fabricated sample. Radio-labeled 177LuCl3 was used to label the conjugate, which was then evaluated using the radio-HPLC method. Findings demonstrated dendrimeric functionalization with remarkable radiochemical composition purity up to >96%. Because of fluorescence studies, it was determined that the occurrence of AuNMs in the dendrimeric cavities gives beneficial photo-physical characteristics to the radiopharmaceutical for bio-imaging. HEL-299 lung cancer cells exhibited a selective absorption of the drug (%). It might be helpful as nuclear and optical imaging agents for lung cancers that overexpress FRs and GRPR and as a specific target for radiation therapy if combined with folate-bombesin.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Minhua Ye
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Dehua Ma
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Jianfei Shen
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Fang Fang
- Operating Room, Taizhou Hospital of Zhejiang Province, Taizhou, China
| |
Collapse
|
35
|
Pooresmaeil M, Asl EA, Namazi H. Simple fabrication of biocompatible chitosan/graphene oxide microspheres for pH-controlled amoxicillin delivery. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Preparation of a multifunctional silver nanoparticles polylactic acid food packaging film using mango peel extract. Int J Biol Macromol 2021; 188:678-688. [PMID: 34343590 DOI: 10.1016/j.ijbiomac.2021.07.161] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022]
Abstract
As high-efficiency, safe, and low-drug resistant antibacterial agents, silver nanoparticles (AgNPs) have been widely applied in food and biomedicine. AgNPs was prepared using mango peel extract (MPE) as green and cheap reducing agent and stabilizer. In addition, a novel of preservative film material was developed with polylactic acid (PLA) as protective and substrate. AgNPs was characterized by XPS, XRD and TEM, and the size of AgNPs were in the range of 2.5-6.5 nm. The addition of AgNPs improved the mechanical properties of the film and its barrier ability to water vapor and oxygen. The film exhibited excellent antibacterial properties, and the inhibition rate against Escherichia coli and Staphylococcus aureus were above 95%. Furthermore, in terms of safety, the silver migration and cytotoxicity of the film met the relevant standards, and the shelf life of strawberries was significantly extended.
Collapse
|
37
|
Singh V, Kesharwani P. Dendrimer as a promising nanocarrier for the delivery of doxorubicin as an anticancer therapeutics. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1882-1909. [PMID: 34078252 DOI: 10.1080/09205063.2021.1938859] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendrimers are macromolecules with high-polymeric branching capable of undergoing major modifications. These characteristics make them an efficient nanocarrier capable of encapsulating and delivering drug, antibodies, or any therapeutic gene. The failure of conventional techniques to deliver drug with higher efficacy and reduced side effects has led to the use of nanomedicines including dendrimers. Dendrimers are novel drug carriers that are modified, complexed, and conjugated with different ligands and receptors to target the delivery of drug at the specific site without impacting any of the normal cells in surrounding. Moreover, the biocompatibility and safety of the dendrimers can be altered accordingly by the process of functionalization by PEGylation, acetylation, or amination. Various dendrimers have been designed to incorporate and deliver anticancer drug either in free form or as codelivery in conjugation with other drugs or therapeutic siRNA/DNA. Doxorubicin (DOX) is one such chemotherapeutic drug that acts by disrupting the process of DNA repair in tumor cells and hence is, since long been used for anticancer therapy. Certain adverse effects such as cardiotoxicity has limited the use of conventional DOX and has shifted the focus on use of safe nanodelivery systems viz dendrimers. DOX either in free or salt form can be loaded or encapsulated accordingly within the core of the dendrimers and linked with different receptors expressed over tumor cells to improve targeting in any cancerous organ site. Positive results obtained after cytotoxicity assay and in vivo/in vitro studies on different cancerous cell lines, and grafted models suggested the potential use of multifunctional DOX-dendrimers characterized with controlled release, better penetration, improved bioavailability, and reduced organ toxicity. This review consolidates studies on different types of DOX-loaded dendrimers that were synthesized, investigated, and are currently being explored for better cancer targeting. Foreseeing the prospects of dendrimers and their compatibility with DOX (free/salt), the article was updated with all current insights.
Collapse
Affiliation(s)
- Vanshikha Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
38
|
Wang X, Qi J, Zhang W, Pu Y, Yang R, Wang P, Liu S, Tan X, Chi B. 3D-printed antioxidant antibacterial carboxymethyl cellulose/ε-polylysine hydrogel promoted skin wound repair. Int J Biol Macromol 2021; 187:91-104. [PMID: 34298048 DOI: 10.1016/j.ijbiomac.2021.07.115] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023]
Abstract
Developing a wound dressing for the treatment of large and irregular-shaped wounds remains a great challenge. Herein we developed novel printable bionic hydrogels with antibacterial and antioxidant properties which could effectively overcome the challenge by inhibiting inflammation and accelerating wound healing. The CMC/PL (CP) hydrogels were customized with glycidyl methacrylate (GMA) modified carboxymethyl cellulose (CMC) and ε-polylysine (ε-PL) via ultraviolet (UV) light polymerization using a 3D printer. Except for the high compression modulus (238 kPa), stable rheological properties, and effective degradability, these CP hydrogels also had an excellent inhibitory effect (95%) on both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Remarkably, CP hydrogels could remove the excessive reactive oxygen species (ROS) and protect the fibroblasts from damage. Compared with the commercial dressing (Tegaderm ™ film), CP hydrogels showed a better ability to increase the expression of VEGF and CD31, accelerate granulation tissue regeneration, and promote wound healing. This work provides a new strategy to fabricate on-demand multi-functional hydrogels in the field of skin tissue engineering.
Collapse
Affiliation(s)
- Xiaoxue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Jingjie Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yajie Pu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
39
|
Bagheri B, Pooresmaeil M, Namazi H. Improve the performance of proton exchange membranes based on sulfopropylated amino polyethersulfone/poly [2,2ʹ-(m-pyrazolidene)-5,5ʹ-bibenzimidazole] blend through SiO2 nanoparticles importing. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Sorroza-Martínez K, González-Méndez I, Vonlanthen M, Cuétara-Guadarrama F, Illescas J, Zhu XX, Rivera E. Guest-Mediated Reversal of the Tumbling Process in Phosphorus-Dendritic Compounds Containing β-Cyclodextrin Units: An NMR Study. Pharmaceuticals (Basel) 2021; 14:556. [PMID: 34207945 PMCID: PMC8230630 DOI: 10.3390/ph14060556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/02/2022] Open
Abstract
The conformational study of dendritic platforms containing multiple β-cyclodextrin (βCD) units in the periphery is relevant to determine the availability of βCD cavities for the formation of inclusion complexes in aqueous biological systems. In this work, we performed a detailed conformational analysis in D2O, via 1D and 2D NMR spectroscopy of a novel class of phosphorus dendritic compounds of the type P3N3-[O-C6H4-O-(CH2)n-βCD]6 (where n = 3 or 4). We unambiguously demonstrated that a functionalized glucopyranose unit of at least one βCD unit undergoes a 360° tumbling process, resulting in a deep inclusion of the spacer that binds the cyclodextrin to the phosphorus core inside the cavity, consequently limiting the availability of the inner cavities. In addition, we confirmed through NMR titrations that this tumbling phenomenon can be reversed for all βCD host units using a high-affinity guest, namely 1-adamantanecarboxylic acid (AdCOOH). Our findings have demonstrated that it is possible to create a wide variety of multi-functional dendritic platforms.
Collapse
Affiliation(s)
- Kendra Sorroza-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City CP 04510, Mexico; (K.S.-M.); (M.V.); (F.C.-G.)
| | - Israel González-Méndez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City CP 04510, Mexico; (K.S.-M.); (M.V.); (F.C.-G.)
| | - Mireille Vonlanthen
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City CP 04510, Mexico; (K.S.-M.); (M.V.); (F.C.-G.)
| | - Fabián Cuétara-Guadarrama
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City CP 04510, Mexico; (K.S.-M.); (M.V.); (F.C.-G.)
| | - Javier Illescas
- Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Avenida Tecnológico S/N Col. Agrícola Bellavista, Metepec CP 52140, Mexico;
| | - Xiao Xia Zhu
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada;
| | - Ernesto Rivera
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City CP 04510, Mexico; (K.S.-M.); (M.V.); (F.C.-G.)
| |
Collapse
|
41
|
Sousa CFV, Fernandez-Megia E, Borges J, Mano JF. Supramolecular dendrimer-containing layer-by-layer nanoassemblies for bioapplications: current status and future prospects. Polym Chem 2021. [DOI: 10.1039/d1py00988e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review provides a comprehensive and critical overview of the supramolecular dendrimer-containing multifunctional layer-by-layer nanoassemblies driven by a multitude of intermolecular interactions for biological and biomedical applications.
Collapse
Affiliation(s)
- Cristiana F. V. Sousa
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Eduardo Fernandez-Megia
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - João Borges
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F. Mano
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|