1
|
Mames A, Gorski A, Jankowska J, Ratajczyk T, Pietrzak M. Light-induced selectivity in an exemplary photodimerization reaction of varied azaanthracenes. Phys Chem Chem Phys 2024; 26:28171-28181. [PMID: 39498520 DOI: 10.1039/d4cp03899a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Currently, there is intense interest in light-driven chemical reactions, including photocatalytic processes, photopolymerization and photodimerization. The need for regiocontrol in such reactions is obvious, especially in cases where many products can potentially be formed. Here, the photodimerization involving various azaanthracenes is presented for the first time. Specifically, 2-azaanthracene (A) and N-methyl-2-azaanthracene (M) are considered. Photoreactions of A, M and the A + M mixture under two irradiation wavelengths (365 and 420 nm) and in two solvents (methanol, dichloromethane) were carried out. In the case of A, four regiomers were obtained, in contrast to the available literature data, where only two products were reported. The relative ratio of these products is a function of the irradiation wavelength, the solvent used, and the irradiation time. In the case of M, we have identified two main products and a small amount of a third one, again contradicting the literature data. Irradiation of an equimolar A and M mixture at 365 nm led to a mixture of several products, where the yield of the AM dimers was about 40%. Importantly, the change of the irradiation wavelength to 420 nm significantly increased the AM yield (to about 80%). We demonstrated that only two AM dimers were formed (out of a possible four). The products were comprehensively characterized by NMR spectroscopy. We have determined the photophysical parameters of A and M and measured the quantum yield of photodimerization using UV-vis spectroscopy. The quantum-chemical calculations in the excited state allowed us to propose a plausible explanation for why only two AM dimers are formed upon irradiation. The presented results indicated that photodimerization among various molecules can have advantages and, in particular, does not need to give a complex mixture of multiple products. Importantly, it has been observed that the wavelength shift can significantly improve the photoreaction selectivity.
Collapse
Affiliation(s)
- Adam Mames
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01- 224 Warsaw, Poland.
| | - Aleksander Gorski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01- 224 Warsaw, Poland.
| | - Joanna Jankowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01- 224 Warsaw, Poland.
| | - Mariusz Pietrzak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01- 224 Warsaw, Poland.
| |
Collapse
|
2
|
Kim Y, Jung M, Kumar R, Choi JM, Lee EK, Lee J. n-Type Doping Effect of Anthracene-Based Cationic Dyes in Organic Electronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43774-43785. [PMID: 39115374 DOI: 10.1021/acsami.4c05952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
n-Type doping for improving the electrical characteristics and air stability of n-type organic semiconductors (OSCs) is important for realizing advanced future electronics. Herein, we report a selection method for an effective n-type dopant with an optimized structure and thickness based on anthracene cationic dyes with high miscibility induced by a molecular structure similar to that of OSCs. Among the doped OSCs evaluated, rhodamine B (RhoB)-doped OSC exhibits the highest density, a smallest roughness of 2.69 nm, a phase deviation of 0.85° according to atomic force microscopy measurements, and the highest electron mobility (μ), showing its high miscibility. Surface doping of RhoB affords the lowest contact resistance of 2.01 × 105 Ω cm compared to bulk and contact doping, resulting in an effective doping structure. The RhoB-doped OSC retains 81.63% of the original μ value of 6.13 × 10-2 cm2 V-1 s-1 after 15 days, whereas pristine OSC shows a lower μ of 2.33 × 10-2 cm2 V-1 s-1 and maintains only 4.41% of the original value after 15 days. Our findings demonstrate that this methodology is effective for the selection of a high-performance n-type dopant for OSCs toward the development of high-performance and air-stable n-type organic electronics.
Collapse
Affiliation(s)
- Yonghee Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
- Department of Chemical Engineering, Pukyong National University, Busan 48513, South Korea
| | - Minju Jung
- Department of Chemical Engineering, Pukyong National University, Busan 48513, South Korea
| | - Rajeev Kumar
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Jeong-Mo Choi
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Eun Kwang Lee
- Department of Chemical Engineering, Pukyong National University, Busan 48513, South Korea
| | - Jiyoul Lee
- Major of Semiconductor Engineering, Division of Nanotechnology and Semiconductor Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
3
|
Nguyen TTT, Breloy L, Rios De Anda A, Hayek H, Chiappone A, Malval JP, Grande D, Versace DL. Thioxanthone-Based Siloxane Photosensitizer for Cationic/Radical Photopolymerization and Photoinduced Sol-Gel Reactions. Molecules 2024; 29:255. [PMID: 38202842 PMCID: PMC10780806 DOI: 10.3390/molecules29010255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
In this investigation, a multifunctional visible-light TX-based photosensitizer containing a siloxane moiety (TXS) was designed with a good overall yield of 54%. The addition of a siloxane moiety enabled the incorporation of a TX photosensitizer into a siloxane network by photoinduced sol-gel chemistry, thus avoiding its release. Both liquid 1H and solid-state 29Si NMR measurements undeniably confirmed the formation of photoacids resulting from the photolysis of the TXS/electron acceptor molecule (Iodonium salt), which promoted the photoinduced hydrolysis/condensation of the trimethoxysilane groups of TXS, with a high degree of condensation of its inorganic network. Notably, the laser flash photolysis, fluorescence, and electron paramagnetic resonance spin-trapping (EPR ST) experiments demonstrated that TXS could react with Iod through an electron transfer reaction through its excited states, leading to the formation of radical initiating species. Interestingly, the TXS/Iod was demonstrated to be an efficient photoinitiating system for free-radical (FRP) and cationic (CP) polymerization under LEDs@385, 405, and 455 nm. In particular, whatever the epoxy monomer mixtures used, remarkable final epoxy conversions were achieved up to 100% under air. In this latter case, we demonstrated that both the photoinduced sol-gel process (hydrolysis of trimethoxysilane groups) and the cationic photopolymerization occurred simultaneously.
Collapse
Affiliation(s)
- Thi-Thanh-Tam Nguyen
- University Paris-Est Creteil, CNRS, ICMPE, UMR 7182, 94320 Thiais, France; (T.-T.-T.N.); (A.R.D.A.)
| | - Louise Breloy
- University Paris-Est Creteil, CNRS, ICMPE, UMR 7182, 94320 Thiais, France; (T.-T.-T.N.); (A.R.D.A.)
| | - Agustin Rios De Anda
- University Paris-Est Creteil, CNRS, ICMPE, UMR 7182, 94320 Thiais, France; (T.-T.-T.N.); (A.R.D.A.)
| | - Hassan Hayek
- University Paris-Est Creteil, CNRS, ICMPE, UMR 7182, 94320 Thiais, France; (T.-T.-T.N.); (A.R.D.A.)
| | - Annalisa Chiappone
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Via Università 40, 09124 Cagliari, Italy
| | - Jean-Pierre Malval
- Institut de Science des Matériaux de Mulhouse, UMR CNRS 7361, Université de Haute Alsace, 15 Rue Jean Starcky, 68057 Mulhouse, France
| | - Daniel Grande
- University Paris-Est Creteil, CNRS, ICMPE, UMR 7182, 94320 Thiais, France; (T.-T.-T.N.); (A.R.D.A.)
| | - Davy-Louis Versace
- University Paris-Est Creteil, CNRS, ICMPE, UMR 7182, 94320 Thiais, France; (T.-T.-T.N.); (A.R.D.A.)
| |
Collapse
|
4
|
Dumur F. Recent Advances in Monocomponent Visible Light Photoinitiating Systems Based on Sulfonium Salts. Polymers (Basel) 2023; 15:4202. [PMID: 37959882 PMCID: PMC10649563 DOI: 10.3390/polym15214202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
During the last decades, multicomponent photoinitiating systems have been the focus of intense research efforts, especially for the design of visible light photoinitiating systems. Although highly reactive three-component and even four-component photoinitiating systems have been designed, the complexity to elaborate such mixtures has incited researchers to design monocomponent Type II photoinitiators. Using this approach, the photosensitizer and the radical/cation generator can be combined within a unique molecule, greatly simplifying the elaboration of the photocurable resins. In this field, sulfonium salts are remarkable photoinitiators but these structures lack absorption in the visible range. Over the years, various structural modifications have been carried out in order to redshift their absorptions in the visible region. In this work, an overview of the different sulfonium salts activable under visible light and reported to date is proposed.
Collapse
Affiliation(s)
- Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| |
Collapse
|
5
|
Zhang L, Li L, Chen Y, Pi J, Liu R, Zhu Y. Recent Advances and Challenges in Long Wavelength Sensitive Cationic Photoinitiating Systems. Polymers (Basel) 2023; 15:2524. [PMID: 37299323 PMCID: PMC10255707 DOI: 10.3390/polym15112524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
With the advantages offered by cationic photopolymerization (CP) such as broad wavelength activation, tolerance to oxygen, low shrinkage and the possibility of "dark cure", it has attracted extensive attention in photoresist, deep curing and other fields in recent years. The applied photoinitiating systems (PIS) play a crucial role as they can affect the speed and type of the polymerization and properties of the materials formed. In the past few decades, much effort has been invested into developing cationic photoinitiating systems (CPISs) that can be activated at long wavelengths and overcome technical problems and challenges faced. In this article, the latest developments in the long wavelength sensitive CPIS under ultraviolet (UV)/visible light-emitting diodes (LED) lights are reviewed. The objective is, furthermore, to show differences as well as parallels between different PIS and future perspectives.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- International Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi 214122, China
| | - Lun Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Ying Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Junyi Pi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Ren Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- International Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi 214122, China
| | - Yi Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- International Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Dumur F. Recent Advances on Anthraquinone-based Photoinitiators of Polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Hayashi Y, Suzuki S, Suzuki T, Ishigaki Y. Dibenzotropylium-Capped Orthogonal Geometry Enabling Isolation and Examination of a Series of Hydrocarbons with Multiple 14π-Aromatic Units. J Am Chem Soc 2023; 145:2596-2608. [PMID: 36606368 PMCID: PMC9896550 DOI: 10.1021/jacs.2c12574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A series of six dications composed of pure hydrocarbons with one to six non-substituted 9,10-anthrylene units end-capped with two dibenzotropyliums were designed and synthesized to elucidate the electronic properties of huge oligo(9,10-anthrylene) backbones. Their structures were successfully determined by X-ray analyses even in the case of eight planar 14π-electron units, revealing that all dications adopt almost orthogonally twisted structures between neighboring units. Spectroscopic and voltammetric analyses show that neither the significant overlap of orbitals nor the delocalization of electrons between 14π-electron units occurs due to the orthogonally twisted geometry even in solution. As a result, sequential oxidation processes were observed with the reversible formation of multivalent cations with the release of the same number of electrons as the number of anthrylene units. Upon two-electron reduction, a closed-shell butterfly-shaped form was obtained from the dication containing one anthrylene unit, whereas open-shell twisted biradicals were isolated as stable entities in the cases of derivatives containing three to six anthrylene units. Notably, from the derivative with two anthrylene units, a metastable open-shell isomer was obtained quantitatively and underwent slow thermal conversion to the most stable closed-shell isomer (Ea = 23.1 kcal mol-1). There is a drastic change in oxidation potentials between two neutral species (ΔE = 1.32 V in CH2Cl2). Since the present dications were regenerated upon oxidation of the isolated reduction products, these systems may contribute to the development of advanced response systems capable of switching color, magnetic properties, and oxidative properties by using a "cation-capped orthogonal geometry".
Collapse
Affiliation(s)
- Yuki Hayashi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
| | - Shuichi Suzuki
- Graduate
School of Engineering Science, Osaka University, Osaka 560-8531, Japan
| | - Takanori Suzuki
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
| | - Yusuke Ishigaki
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan,
| |
Collapse
|
8
|
Dumur F. Recent advances on benzylidene cyclopentanones as visible light photoinitiators of polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
|
10
|
Liu Z, Dumur F. Recent Advances on Visible Light Coumarin-based Oxime Esters as Initiators of Polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Hammoud F, Hijazi A, Ibrahim-Ouali M, Lalevée J, Dumur F. Chemical engineering around the 5,12-dihydroindolo[3,2-a]carbazole scaffold : Fine tuning of the optical properties of visible light photoinitiators of polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|