1
|
Jiang Z, Luo W, Long Z, Chen J. The role of TRPV1 in chronic prostatitis: a review. Front Pharmacol 2024; 15:1459683. [PMID: 39364048 PMCID: PMC11446813 DOI: 10.3389/fphar.2024.1459683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024] Open
Abstract
Chronic prostatitis is a prevalent male urinary system disorder characterized by pelvic discomfort or pain, bladder dysfunction, sexual dysfunction, and infertility. Pain and lower urinary tract symptoms (LUTS) are the most common symptoms, significantly impacting patients' quality of life and driving them to seek medical attention. Transient receptor potential vanilloid subtype 1 (TRPV1) is a non-selective calcium ion-dependent cation channel in the TRPV channel family that is widely distributed in neural tissue and plays a role in signal transmission. In this review, we provide a comprehensive overview of the current understanding of the role of TRPV1 in chronic prostatitis. The discussion focuses on the connection between TRPV1 and prostatitis pain and LUTS, and highlights the potential for targeting this channel in the development of novel treatment strategies.
Collapse
Affiliation(s)
- Zhipeng Jiang
- Third Affiliated Hospital of Zunyi Medical University (First People's Hospital of Zunyi), Zunyi, China
| | - Wen Luo
- Third Affiliated Hospital of Zunyi Medical University (First People's Hospital of Zunyi), Zunyi, China
| | - Zongmin Long
- Third Affiliated Hospital of Zunyi Medical University (First People's Hospital of Zunyi), Zunyi, China
| | - Jie Chen
- Kweichow Moutai Hospital, Zunyi, China
| |
Collapse
|
2
|
Sharopov BR, Philyppov IB, Yeliashov SI, Sotkis GV, Danshyna AO, Falyush OA, Shuba YM. Contribution of transient receptor potential vanilloid 1 (TRPV1) channel to cholinergic contraction of rat bladder smooth muscle. J Physiol 2024; 602:3693-3713. [PMID: 38970617 DOI: 10.1113/jp285514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/13/2024] [Indexed: 07/08/2024] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a calcium-permeable ion channel that is gated by the pungent constituent of red chili pepper, capsaicin, and by related chemicals from the group of vanilloids, in addition to noxious heat. It is expressed mostly in sensory neurons to act as a detector of painful stimuli produced by pungent chemicals and high temperatures. Although TRPV1 is also found outside the sensory nervous system, its expression and function in the bladder detrusor smooth muscle (DSM) remain controversial. Here, by using Ca2+ imaging and patch clamp on isolated rat DSM cells, in addition to tensiometry on multicellular DSM strips, we show that TRPV1 is expressed functionally in only a fraction of DSM cells, in which it acts as an endoplasmic reticulum Ca2+-release channel responsible for the capsaicin-activated [Ca2+]i rise. Carbachol-stimulated contractions of multicellular DSM strips contain a TRPV1-dependent component, which is negligible in the circular DSM but reaches ≤50% in the longitudinal DSM. Activation of TRPV1 in rat DSM during muscarinic cholinergic stimulation is ensured by phospholipase A2-catalysed derivation of arachidonic acid and its conversion by lipoxygenases to eicosanoids, which act as endogenous TRPV1 agonists. Immunofluorescence detection of TRPV1 protein in bladder sections and isolated DSM cells confirmed both its preferential expression in the longitudinal DSM sublayer and its targeting to the endoplasmic reticulum. We conclude that TRPV1 is an essential contributor to the cholinergic contraction of bladder longitudinal DSM, which might be important for producing spatial and/or temporal anisotropy of bladder wall deformation in different regions during parasympathetic stimulation. KEY POINTS: The transient receptor potential vanilloid 1 (TRPV1) heat/capsaicin receptor/channel is localized in the endoplasmic reticulum membrane of detrusor smooth muscle (DSM) cells of the rat bladder, operating as a calcium-release channel. Isolated DSM cells are separated into two nearly equal groups, within which the cells either show or do not show TRPV1-dependent [Ca2+]i rise. Carbachol-stimulated, muscarinic ACh receptor-mediated contractions of multicellular DSM strips contain a TRPV1-dependent component. This component is negligible in the circular DSM but reaches ≤50% in longitudinal DSM. Activation of TRPV1 in rat DSM during cholinergic stimulation involves phospholipase A2-catalysed derivation of arachidonic acid and its conversion by lipoxygenases to eicosanoids, which act as endogenous TRPV1 agonists.
Collapse
Affiliation(s)
- Bizhan R Sharopov
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Igor B Philyppov
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Semen I Yeliashov
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ganna V Sotkis
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Anastasiia O Danshyna
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Oksana A Falyush
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yaroslav M Shuba
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
3
|
Mitrokhin V, Bilichenko A, Kazanski V, Schobik R, Shileiko S, Revkova V, Kalsin V, Kamkina O, Kamkin A, Mladenov M. Transcriptomic profile of the mechanosensitive ion channelome in human cardiac fibroblasts. Exp Biol Med (Maywood) 2023; 248:2341-2350. [PMID: 38158807 PMCID: PMC10903254 DOI: 10.1177/15353702231218488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/27/2023] [Indexed: 01/03/2024] Open
Abstract
Human cardiac fibroblasts (HCFs) have mRNA transcripts that encode different mechanosensitive ion channels and channel regulatory proteins whose functions are not known yet. The primary goal of this work was to define the mechanosensitive ion channelome of HCFs. The most common type of cationic channel is the transient receptor potential (TRP) family, which is followed by the TWIK-related K+ channel (TREK), transmembrane protein 63 (TMEM63), and PIEZO channel (PIEZO) families. In the sodium-dependent NON-voltage-gated channel (SCNN) subfamily, only SCNN1D was shown to be highly expressed. Particular members of the acid-sensing ion channel (ASIC) (ASIC1 and ASIC3) subfamilies were also significantly expressed. The transcripts per kilobase million (TPMs) for Piezo 2 were almost 100 times less abundant than those for Piezo 1. The tandem of P domains in a weak inward rectifying K+ channel (TWIK)-2 channel, TWIK-related acid-sensitive K+ channel (TASK)-5, TASK-1, and the TWIK-related K1 (TREK-1) channel were the four most prevalent types in the K2P subfamily. The highest expression in the TRPP subfamily was found for PKD2 and PKD1, while in the TRPM subfamily, it was found for TRPM4, TRPM7, and TRPM3. TRPV2, TRPV4, TRPV3, and TRPV6 (all members of the TRPV subfamily) were also substantially expressed. A strong expression of the TRPC1, TRPC4, TRPC6, and TRPC2 channels and all members of the TRPML subfamily (MCOLN1, MCOLN2, and MCOLN3) was also shown. In terms of the transmembrane protein 16 (TMEM16) family, the HCFs demonstrated significant expression of the TMEM16H, TMEM16F, TMEM16J, TMEM16A, and TMEM16G channels. TMC3 is the most expressed channel in HCFs of all known members of the transmembrane channel-like protein (TMC) family. This analysis of the mechanosensitive ionic channel transcriptome in HCFs: (1) agrees with previously documented findings that all currently identified mechanosensitive channels play a significant and well recognized physiological function in elucidating the mechanosensitive characteristics of HCFs; (2) supports earlier preliminary reports that point to the most common expression of the TRP mechanosensitive family in HCFs; and (3) points to other new mechanosensitive channels (TRPC1, TRPC2, TWIK-2, TMEM16A, ASIC1, and ASIC3).
Collapse
Affiliation(s)
- Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Andrei Bilichenko
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Viktor Kazanski
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Roman Schobik
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Stanislav Shileiko
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Veronika Revkova
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Vladimir Kalsin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Olga Kamkina
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Andre Kamkin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Mitko Mladenov
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia
| |
Collapse
|
4
|
Li X, Hu J, Yin P, Liu L, Chen Y. Mechanotransduction in the urothelium: ATP signalling and mechanoreceptors. Heliyon 2023; 9:e19427. [PMID: 37674847 PMCID: PMC10477517 DOI: 10.1016/j.heliyon.2023.e19427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
The urothelium, which covers the inner surface of the bladder, is continuously exposed to a complex physical environment where it is stimulated by, and responds to, a wide range of mechanical cues. Mechanically activated ion channels endow the urothelium with functioning in the conversion of mechanical stimuli into biochemical events that influence the surface of the urothelium itself as well as suburothelial tissues, including afferent nerve fibres, interstitial cells of Cajal and detrusor smooth muscle cells, to ensure normal urinary function during the cycle of filling and voiding. However, under prolonged and abnormal loading conditions, the urothelial sensory system can become maladaptive, leading to the development of bladder dysfunction. In this review, we summarize developments in the understanding of urothelial mechanotransduction from two perspectives: first, with regard to the functions of urothelial mechanotransduction, particularly stretch-mediated ATP signalling and the regulation of urothelial surface area; and secondly, with regard to the mechanoreceptors present in the urothelium, primarily transient receptor potential channels and mechanosensitive Piezo channels, and the potential pathophysiological role of these channels in the bladder. A more thorough understanding of urothelial mechanotransduction function may inspire the development of new therapeutic strategies for lower urinary tract diseases.
Collapse
Affiliation(s)
| | | | - Ping Yin
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lumin Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yuelai Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
5
|
Szallasi A. "ThermoTRP" Channel Expression in Cancers: Implications for Diagnosis and Prognosis (Practical Approach by a Pathologist). Int J Mol Sci 2023; 24:9098. [PMID: 37240443 PMCID: PMC10219044 DOI: 10.3390/ijms24109098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Temperature-sensitive transient receptor potential (TRP) channels (so-called "thermoTRPs") are multifunctional signaling molecules with important roles in cell growth and differentiation. Several "thermoTRP" channels show altered expression in cancers, though it is unclear if this is a cause or consequence of the disease. Regardless of the underlying pathology, this altered expression may potentially be used for cancer diagnosis and prognostication. "ThermoTRP" expression may distinguish between benign and malignant lesions. For example, TRPV1 is expressed in benign gastric mucosa, but is absent in gastric adenocarcinoma. TRPV1 is also expressed both in normal urothelia and non-invasive papillary urothelial carcinoma, but no TRPV1 expression has been seen in invasive urothelial carcinoma. "ThermoTRP" expression can also be used to predict clinical outcomes. For instance, in prostate cancer, TRPM8 expression predicts aggressive behavior with early metastatic disease. Furthermore, TRPV1 expression can dissect a subset of pulmonary adenocarcinoma patients with bad prognosis and resistance to a number of commonly used chemotherapeutic agents. This review will explore the current state of this rapidly evolving field with special emphasis on immunostains that can already be added to the armoire of diagnostic pathologists.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
6
|
Planta D, Gerwinn T, Salemi S, Horst M. Neurogenic Lower Urinary Tract Dysfunction in Spinal Dysraphism: Morphological and Molecular Evidence in Children. Int J Mol Sci 2023; 24:ijms24043692. [PMID: 36835106 PMCID: PMC9959703 DOI: 10.3390/ijms24043692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Spinal dysraphism, most commonly myelomeningocele, is the typical cause of a neurogenic lower urinary tract dysfunction (NLUTD) in childhood. The structural changes in the bladder wall in spinal dysraphism already occur in the fetal period and affect all bladder wall compartments. The progressive decrease in smooth muscle and the gradual increase in fibrosis in the detrusor, the impairment of the barrier function of the urothelium, and the global decrease in nerve density, lead to severe functional impairment characterized by reduced compliance and increased elastic modulus. Children present a particular challenge, as their diseases and capabilities evolve with age. An increased understanding of the signaling pathways involved in lower urinary tract development and function could also fill an important knowledge gap at the interface between basic science and clinical implications, leading to new opportunities for prenatal screening, diagnosis, and therapy. In this review, we aim to summarize the evidence on structural, functional, and molecular changes in the NLUTD bladder in children with spinal dysraphism and discuss possible strategies for improved management and for the development of new therapeutic approaches for affected children.
Collapse
Affiliation(s)
- Dafni Planta
- Division of Pediatric Urology, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Tim Gerwinn
- Division of Pediatric Urology, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Souzan Salemi
- Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Maya Horst
- Division of Pediatric Urology, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
7
|
Chiocchetti R, Salamanca G, De Silva M, Gobbo F, Aspidi F, Cunha RZ, Galiazzo G, Tagliavia C, Sarli G, Morini M. Cannabinoid receptors in the inflammatory cells of canine atopic dermatitis. Front Vet Sci 2022; 9:987132. [PMID: 36187821 PMCID: PMC9521433 DOI: 10.3389/fvets.2022.987132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Atopic dermatitis (AD) is one of the most common cutaneous inflammatory and pruritic diseases in dogs. Considering its multifactorial nature, AD can be a challenging disease to manage, and the therapeutic strategy must often be multimodal. In recent years, research has been moving toward the use of natural products which have beneficial effects on inflammation and itching, and no side effects. Cannabinoid receptors have been demonstrated to be expressed in healthy and diseased skin; therefore, one of the potential alternative therapeutic targets for investigating AD is the endocannabinoid system (ECS). Objective To immunohistochemically investigate the expression of the cannabinoid receptor type 2 (CB2R), and the cannabinoid-related receptors G protein-coupled receptor 55 (GPR55), transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) in mast cells (MCs), macrophages, dendritic cells (DCs), T cells, and neutrophils of the skin of dogs with AD. Animals Samples of skin tissues were collected from eight dogs with AD (AD-dogs). Materials and methods The immunofluorescent stained cryosections of the skins of 8 dogs with AD having antibodies against CB2R, GPR55, TRPV1, TRPA1 were semiquantitatively evaluated. The inflammatory cells were identified using antibodies against tryptase (mast cells), ionized calcium binding adaptor molecule 1 (IBA1) (macrophages/DCs), CD3 (T cells), and calprotectin (neutrophils). The proportions of MCs, macrophages/DCs, T cells, and neutrophils expressing CB2R, GPR55, TRPV1 and TRPA1 were evaluated. Results The cells of the inflammatory infiltrate showed immunoreactivity (IR) for all or for some of the cannabinoid and cannabinoid-related receptors studied. In particular, MCs and macrophages/DCs showed CB2R-, GPR55-, TRPA1-, and TRPV1-IR; T cells showed CB2R-, GPR55- and TRPA1-IR, and neutrophils expressed GPR55-IR. Co-localization studies indicated that CB2R-IR was co-expressed with TRPV1-, TRPA1-, and GPR55-IR in different cellular elements of the dermis of the AD-dogs. Conclusions and clinical importance Cannabinoid receptor 2, and cannabinoid-related receptors GPR55, TRPV1 and TRPA1 were widely expressed in the inflammatory infiltrate of the AD-dogs. Based on the present findings, the ECS could be considered to be a potential therapeutic target for dogs with AD, and may mitigate itch and inflammation.
Collapse
Affiliation(s)
- Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Giulia Salamanca
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Margherita De Silva
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Francesca Gobbo
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Francesca Aspidi
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Rodrigo Zamith Cunha
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Giorgia Galiazzo
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, Teramo, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Maria Morini
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Yamada S, Kato Y. Effects of saw palmetto extract on the vanilloid receptor TRPV1. Low Urin Tract Symptoms 2021; 14:117-121. [PMID: 34672430 DOI: 10.1111/luts.12413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Transient receptor potential vanilloid subtype 1 (TRPV1) may play a significant role in the pathophysiology of the bladder. The present study investigated the effects of the herbal product, saw palmetto extract (SPE) on TRPV1-mediated Ca2+ influx and specific [3 H]resiniferatoxin ([3 H]RTX) binding to TRPV1 in HEK293 cells expressing TRPV1 (HEK293VR11 cells). METHODS Ca2+ influx induced by and the direct binding activity of TRPV1 were measured using a method with Fura 2-AM, a cytoplasmic calcium indicator, and a radioligand binding assay using a [3 H]RTX, respectively. RESULTS SPE did not markedly affect Ca2+ influx in HEK293VR11 cells; however, it significantly inhibited capsaicin-induced increases in Ca2+ influx in these cells. The specific binding of [3 H]RTX in HEK293VR11 cells was saturable with Kd value of 120 ± 7 pM and Bmax of 1.07 ± 0.10 fmol/mg protein, and was inhibited by low concentrations of non-labeled RTX with Ki of 60.1 ± 7.6 nM. These results confirmed the pharmacological specificity of specific binding sites of [3 H]RTX to TRPV1 in HEK293VR11 cells. SPE inhibited the specific binding of [3 H]RTX in a concentration-dependent manner, with Ki of 24.2 ± 1.4 μg/mL. CONCLUSIONS The present study demonstrated for the first time, that SPE inhibited capsaicin-induced Ca2+ influx with binding to TRPV1 in HEL293VR11 cells. These results will contribute to a more detailed understanding of the pharmacological effects of SPE on urinary dysfunction.
Collapse
Affiliation(s)
- Shizuo Yamada
- Center for Pharma-Food Research (CPFR), Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yoshihisa Kato
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Japan
| |
Collapse
|
9
|
Stewart L, Turner NA. Channelling the Force to Reprogram the Matrix: Mechanosensitive Ion Channels in Cardiac Fibroblasts. Cells 2021; 10:990. [PMID: 33922466 PMCID: PMC8145896 DOI: 10.3390/cells10050990] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac fibroblasts (CF) play a pivotal role in preserving myocardial function and integrity of the heart tissue after injury, but also contribute to future susceptibility to heart failure. CF sense changes to the cardiac environment through chemical and mechanical cues that trigger changes in cellular function. In recent years, mechanosensitive ion channels have been implicated as key modulators of a range of CF functions that are important to fibrotic cardiac remodelling, including cell proliferation, myofibroblast differentiation, extracellular matrix turnover and paracrine signalling. To date, seven mechanosensitive ion channels are known to be functional in CF: the cation non-selective channels TRPC6, TRPM7, TRPV1, TRPV4 and Piezo1, and the potassium-selective channels TREK-1 and KATP. This review will outline current knowledge of these mechanosensitive ion channels in CF, discuss evidence of the mechanosensitivity of each channel, and detail the role that each channel plays in cardiac remodelling. By better understanding the role of mechanosensitive ion channels in CF, it is hoped that therapies may be developed for reducing pathological cardiac remodelling.
Collapse
Affiliation(s)
| | - Neil A. Turner
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
| |
Collapse
|
10
|
Zupančič D, Romih R. Immunohistochemistry as a paramount tool in research of normal urothelium, bladder cancer and bladder pain syndrome. Eur J Histochem 2021; 65. [PMID: 33764020 PMCID: PMC8033529 DOI: 10.4081/ejh.2021.3242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
The urothelium, an epithelium of the urinary bladder, primarily functions as blood-urine permeability barrier. The urothelium has a very slow turnover under normal conditions but is capable of extremely fast response to injury. During regeneration urothelium either restores normal function or undergoes altered differentiation pathways, the latter being the cause of several bladder diseases. In this review, we describe the structure of the apical plasma membrane that enables barrier function, the role of urothelium specific proteins uroplakins and the machinery for polarized membrane transports in terminally differentiated superficial umbrella cells. We address key markers, such as keratins, cancer stem cell markers, retinoic acid signalling pathway proteins and transient receptor potential channels and purinergic receptors that drive normal and altered differentiation in bladder cancer and bladder pain syndrome. Finally, we discuss uncertainties regarding research, diagnosis and treatment of bladder pain syndrome. Throughout the review, we emphasise the contribution of immunohistochemistry in advancing our understanding of processes in normal and diseased bladder as well as the most promising possibilities for improved bladder cancer and bladder pain syndrome management.
Collapse
Affiliation(s)
- Daša Zupančič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana.
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana.
| |
Collapse
|
11
|
Yang HH, Jhang JF, Hsu YH, Jiang YH, Zhai WJ, Kuo HC. Smaller bladder capacity and stronger bladder contractility in patients with ketamine cystitis are associated with elevated TRPV1 and TRPV4. Sci Rep 2021; 11:5200. [PMID: 33664402 PMCID: PMC7933333 DOI: 10.1038/s41598-021-84734-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/18/2021] [Indexed: 12/21/2022] Open
Abstract
Stronger contractility and smaller bladder capacity are common symptoms in ketamine cystitis (KC). This study investigates the association between expression levels of transient receptor potential cation channel subfamily V (TRPV) proteins and the clinical characteristics of KC. Bladder tissues were obtained from 24 patients with KC and four asymptomatic control subjects. Video urodynamic parameters were obtained before surgical procedures. The TRPV proteins were investigated by immunoblotting, immunofluorescence staining, and immunohistochemistry. The Pearson test was used to associate the expression levels of TRPV proteins with clinical characteristics of KC. The expression level of TRPV1 and TRPV4 was significantly higher in the severe KC bladders than in mild KC or control bladders. The TRPV1 proteins were localized in all urothelial cell layers, and TRPV4 was located in the basal cells and lamina propria. The expression of TRPV1 was negatively associated with maximal bladder capacity (r = − 0.66, P = 0.01). The expression of TRPV4 was positively associated with the velocity of detrusor pressure rise to the maximum flow rate (r = 0.53, P = 0.01). These observations suggest smaller bladder capacity and stronger contractility in KC are associated with an elevated expression of TRPV1 and TRPV4, respectively.
Collapse
Affiliation(s)
- Hsueh-Hui Yang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
| | - Jia-Fong Jhang
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, 707, Sec. 3, Chung Yang Rd., Hualien, 970, Taiwan
| | - Yung-Hsiang Hsu
- Department of Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, 970, Taiwan
| | - Yuan-Hong Jiang
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, 707, Sec. 3, Chung Yang Rd., Hualien, 970, Taiwan
| | - Wei-Jun Zhai
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
| | - Hann-Chorng Kuo
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, 707, Sec. 3, Chung Yang Rd., Hualien, 970, Taiwan.
| |
Collapse
|
12
|
Vanneste M, Segal A, Voets T, Everaerts W. Transient receptor potential channels in sensory mechanisms of the lower urinary tract. Nat Rev Urol 2021; 18:139-159. [PMID: 33536636 DOI: 10.1038/s41585-021-00428-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 01/30/2023]
Abstract
Disruptions to sensory pathways in the lower urinary tract commonly occur and can give rise to lower urinary tract symptoms (LUTS). The unmet clinical need for treatment of LUTS has stimulated research into the molecular mechanisms that underlie neuronal control of the bladder and transient receptor potential (TRP) channels have emerged as key regulators of the sensory processes that regulate bladder function. TRP channels function as molecular sensors in urothelial cells and afferent nerve fibres and can be considered the origin of bladder sensations. TRP channels in the lower urinary tract contribute to the generation of normal and abnormal bladder sensations through a variety of mechanisms, and have demonstrated potential as targets for the treatment of LUTS in functional disorders of the lower urinary tract.
Collapse
Affiliation(s)
- Matthias Vanneste
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Andrei Segal
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Wouter Everaerts
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Shuba YM. Beyond Neuronal Heat Sensing: Diversity of TRPV1 Heat-Capsaicin Receptor-Channel Functions. Front Cell Neurosci 2021; 14:612480. [PMID: 33613196 PMCID: PMC7892457 DOI: 10.3389/fncel.2020.612480] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a calcium-permeable ion channel best known for its ability to be gated by the pungent constituent of red chili pepper, capsaicin, and related chemicals from the group of vanilloids as well as by noxious heat. As such, it is mostly expressed in sensory neurons to act as a detector of painful stimuli produced by pungent chemicals and high temperatures. Its activation is also sensitized by the numerous endogenous inflammatory mediators and second messengers, making it an important determinant of nociceptive signaling. Except for such signaling, though, neuronal TRPV1 activation may influence various organ functions by promoting the release of bioactive neuropeptides from sensory fiber innervation organs. However, TRPV1 is also found outside the sensory nervous system in which its activation and function is not that straightforward. Thus, TRPV1 expression is detected in skeletal muscle; in some types of smooth muscle; in epithelial and immune cells; and in adipocytes, where it can be activated by the combination of dietary vanilloids, endovanilloids, and pro-inflammatory factors while the intracellular calcium signaling that this initiates can regulate processes as diverse as muscle constriction, cell differentiation, and carcinogenesis. The purpose of the present review is to provide a clear-cut distinction between neurogenic TRPV1 effects in various tissues consequent to its activation in sensory nerve endings and non-neurogenic TRPV1 effects due to its expression in cell types other than sensory neurons.
Collapse
Affiliation(s)
- Yaroslav M Shuba
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
14
|
Silverman HA, Chen A, Kravatz NL, Chavan SS, Chang EH. Involvement of Neural Transient Receptor Potential Channels in Peripheral Inflammation. Front Immunol 2020; 11:590261. [PMID: 33193423 PMCID: PMC7645044 DOI: 10.3389/fimmu.2020.590261] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential (TRP) channels are a superfamily of non-selective cation channels that act as polymodal sensors in many tissues throughout mammalian organisms. In the context of ion channels, they are unique for their broad diversity of activation mechanisms and their cation selectivity. TRP channels are involved in a diverse range of physiological processes including chemical sensing, nociception, and mediating cytokine release. They also play an important role in the regulation of inflammation through sensory function and the release of neuropeptides. In this review, we discuss the functional contribution of a subset of TRP channels (TRPV1, TRPV4, TRPM3, TRPM8, and TRPA1) that are involved in the body’s immune responses, particularly in relation to inflammation. We focus on these five TRP channels because, in addition to being expressed in many somatic cell types, these channels are also expressed on peripheral ganglia and nerves that innervate visceral organs and tissues throughout the body. Activation of these neural TRP channels enables crosstalk between neurons, immune cells, and epithelial cells to regulate a wide range of inflammatory actions. TRP channels act either through direct effects on cation levels or through indirect modulation of intracellular pathways to trigger pro- or anti-inflammatory mechanisms, depending on the inflammatory disease context. The expression of TRP channels on both neural and immune cells has made them an attractive drug target in diseases involving inflammation. Future work in this domain will likely yield important new pathways and therapies for the treatment of a broad range of disorders including colitis, dermatitis, sepsis, asthma, and pain.
Collapse
Affiliation(s)
- Harold A Silverman
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Adrian Chen
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Nigel L Kravatz
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| | - Eric H Chang
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| |
Collapse
|
15
|
Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. The Urothelium: Life in a Liquid Environment. Physiol Rev 2020; 100:1621-1705. [PMID: 32191559 PMCID: PMC7717127 DOI: 10.1152/physrev.00041.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023] Open
Abstract
The urothelium, which lines the renal pelvis, ureters, urinary bladder, and proximal urethra, forms a high-resistance but adaptable barrier that surveils its mechanochemical environment and communicates changes to underlying tissues including afferent nerve fibers and the smooth muscle. The goal of this review is to summarize new insights into urothelial biology and function that have occurred in the past decade. After familiarizing the reader with key aspects of urothelial histology, we describe new insights into urothelial development and regeneration. This is followed by an extended discussion of urothelial barrier function, including information about the roles of the glycocalyx, ion and water transport, tight junctions, and the cellular and tissue shape changes and other adaptations that accompany expansion and contraction of the lower urinary tract. We also explore evidence that the urothelium can alter the water and solute composition of urine during normal physiology and in response to overdistension. We complete the review by providing an overview of our current knowledge about the urothelial environment, discussing the sensor and transducer functions of the urothelium, exploring the role of circadian rhythms in urothelial gene expression, and describing novel research tools that are likely to further advance our understanding of urothelial biology.
Collapse
Affiliation(s)
- Marianela G Dalghi
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Roman K, Hall C, Schaeffer AJ, Thumbikat P. TRPV1 in experimental autoimmune prostatitis. Prostate 2020; 80:28-37. [PMID: 31573117 PMCID: PMC7313375 DOI: 10.1002/pros.23913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/18/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a disorder that is characterized by persistent pelvic pain in men of any age. Although several studies suggest that the transient receptor potential vanilloid 1 (TRPV1) channel is involved in various pathways of chronic pain, the TRPV1 channel has not been implicated in chronic pelvic pain associated with CP/CPPS. METHODS Male C57BL/6J (B6) and TRPV1 knockout (TRPV1 KO) mice (5-7 weeks old) were used to study the development of pelvic allodynia in a murine model of CP/CPPS called experimental autoimmune prostatitis (EAP). The prostate lobes, dorsal root ganglia (DRG), and spinal cord were excised at day 20. The prostate lobes were assessed for inflammation, TRPV1 expression, and mast cell activity. DRG and spinal cord, between the L6-S4 regions, were analyzed to determine the levels of phosphorylated ERK1/2 (p-ERK 1/2). To examine the therapeutic potential of TRPV1, B6 mice with EAP received intraurethral infusion of a TRPV1 antagonist at day 20 (repeated every 2 days) and pelvic pain was evaluated at days 20, 25, 30, and 35. RESULTS Our data showed that B6 mice with EAP developed pelvic tactile allodynia at days 7, 14, and 20. In contrast, TRPV1 KO mice with EAP do not develop pelvic tactile allodynia at any time point. Although we observed no change in the levels of TRPV1 protein expression in the prostate from B6 mice with EAP, there was evidence of significant inflammation and elevated mast cell activation. Interestingly, the prostate from TRPV1 KO mice with EAP showed a lack of mast cell activation despite evidence of prostate inflammation. Next, we observed a significant increase of p-ERK1/2 in the DRG and spinal cord from B6 mice with EAP; however, p-ERK1/2 expression was unaltered in TRPV1 KO mice with EAP. Finally, we confirmed that intraurethral administration of a TRPV1 antagonist peptide reduced pelvic tactile allodynia in B6 mice with EAP after day 20. CONCLUSIONS We demonstrated that in a murine model of CP/CPPS, the TRPV1 channel is key to persistent pelvic tactile allodynia and blocking TRPV1 in the prostate may be a promising strategy to quell chronic pelvic pain.
Collapse
Affiliation(s)
- Kenny Roman
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Christel Hall
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anthony J. Schaeffer
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Praveen Thumbikat
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
17
|
TRPV1 alterations in urinary bladder dysfunction in a rat model of STZ-induced diabetes. Life Sci 2018; 193:207-213. [DOI: 10.1016/j.lfs.2017.10.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/10/2017] [Accepted: 10/30/2017] [Indexed: 11/22/2022]
|
18
|
Solís-López A, Kriebs U, Marx A, Mannebach S, Liedtke WB, Caterina MJ, Freichel M, Tsvilovskyy VV. Analysis of TRPV channel activation by stimulation of FCεRI and MRGPR receptors in mouse peritoneal mast cells. PLoS One 2017; 12:e0171366. [PMID: 28158279 PMCID: PMC5291405 DOI: 10.1371/journal.pone.0171366] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/19/2017] [Indexed: 11/18/2022] Open
Abstract
The activation of mast cells (MC) is part of the innate and adaptive immune responses and depends on Ca2+ entry across the plasma membrane, leading to the release of preformed inflammatory mediators by degranulation or by de novo synthesis. The calcium conducting channels of the TRPV family, known by their thermo and osmotic sensitivity, have been proposed to be involved in the MC activation in murine, rat, and human mast cell models. So far, immortalized mast cell lines and nonspecific TRPV blockers have been employed to characterize the role of TRPV channels in MC. The aim of this work was to elucidate the physiological role of TRPV channels by using primary peritoneal mast cells (PMCs), a model of connective tissue type mast cells. Our RT-PCR and NanoString analysis identified the expression of TRPV1, TRPV2, and TRPV4 channels in PMCs. For determination of the functional role of the expressed TRPV channels we performed measurements of intracellular free Ca2+ concentrations and beta-hexosaminidase release in PMCs obtained from wild type and mice deficient for corresponding TRPV1, TRPV2 and TRPV4 in response to various receptor-mediated and physical stimuli. Furthermore, substances known as activators of corresponding TRPV-channels were also tested using these assays. Our results demonstrate that TRPV1, TRPV2, and TRPV4 do not participate in activation pathways triggered by activation of the high-affinity receptors for IgE (FcεRI), Mrgprb2 receptor, or Endothelin-1 receptor nor by heat or osmotic stimulation in mouse PMCs.
Collapse
Affiliation(s)
- A. Solís-López
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - U. Kriebs
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - A. Marx
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - S. Mannebach
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg, Saarland, Germany
| | - W. B. Liedtke
- Department of Neurology, School of Medicine Duke University, Durham, North Carolina, United States of America
| | - M. J. Caterina
- Departments of Neurosurgery, Biological Chemistry, and Neuroscience, Neurosurgery Pain Research Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - M. Freichel
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - V. V. Tsvilovskyy
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Baden-Württemberg, Germany
| |
Collapse
|
19
|
Kuncová J, Jirkovská A, Švíglerová J, Marková M, Meireles D, Čedíková M. Neonatal capsaicin administration impairs postnatal development of the cardiac chronotropy and inotropy in rats. Physiol Res 2016; 65:S633-S642. [PMID: 28006945 DOI: 10.33549/physiolres.933540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The present study evaluated the impact of neonatal administration of capsaicin (neurotoxin from red hot pepper used for sensory denervation) on postnatal development of the heart rate and ventricular contractility. In the rats subjected to capsaicin administration (100 mg/kg) on postnatal days 2 and 3 and their vehicle-treated controls at the ages of 10 to 90 days, function of the sympathetic innervation of the developing heart was characterized by evaluation of chronotropic responses to metipranolol and atropine, norepinephrine concentrations in the heart, and norepinephrine release from the heart atria. Sensory denervation was verified by determination of calcitonin gene-related peptide levels in the heart. Direct cytotoxic effects of capsaicin were assessed on cultured neonatal cardiomyocytes. Capsaicin-treated rats displayed higher resting heart rates, lower atropine effect, but no difference in the effect of metipranolol. Norepinephrine tissue levels and release did not differ from controls. Contraction force of the right ventricular papillary muscle was lower till the age of 60 days. Significantly reduced viability of neonatal cardiomyocytes was demonstrated at capsaicin concentration 100 micromol/l. Our study suggests that neonatal capsaicin treatment leads to impaired maturation of the developing cardiomyocytes. This effect cannot be attributed exclusively to sensory denervation of the rat heart since capsaicin acts also directly on the cardiac cells.
Collapse
Affiliation(s)
- J Kuncová
- Department of Physiology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| | | | | | | | | | | |
Collapse
|
20
|
Capsaicin, Nociception and Pain. Molecules 2016; 21:molecules21060797. [PMID: 27322240 PMCID: PMC6273518 DOI: 10.3390/molecules21060797] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/06/2016] [Accepted: 06/14/2016] [Indexed: 12/13/2022] Open
Abstract
Capsaicin, the pungent ingredient of the hot chili pepper, is known to act on the transient receptor potential cation channel vanilloid subfamily member 1 (TRPV1). TRPV1 is involved in somatic and visceral peripheral inflammation, in the modulation of nociceptive inputs to spinal cord and brain stem centers, as well as the integration of diverse painful stimuli. In this review, we first describe the chemical and pharmacological properties of capsaicin and its derivatives in relation to their analgesic properties. We then consider the biochemical and functional characteristics of TRPV1, focusing on its distribution and biological effects within the somatosensory and viscerosensory nociceptive systems. Finally, we discuss the use of capsaicin as an agonist of TRPV1 to model acute inflammation in slices and other ex vivo preparations.
Collapse
|
21
|
Merrill L, Gonzalez EJ, Girard BM, Vizzard MA. Receptors, channels, and signalling in the urothelial sensory system in the bladder. Nat Rev Urol 2016; 13:193-204. [PMID: 26926246 DOI: 10.1038/nrurol.2016.13] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The storage and periodic elimination of urine, termed micturition, requires a complex neural control system to coordinate the activities of the urinary bladder, urethra, and urethral sphincters. At the level of the lumbosacral spinal cord, lower urinary tract reflex mechanisms are modulated by supraspinal controls with mechanosensory input from the urothelium, resulting in regulation of bladder contractile activity. The specific identity of the mechanical sensor is not yet known, but considerable interest exists in the contribution of transient receptor potential (TRP) channels to the mechanosensory functions of the urothelium. The sensory, transduction, and signalling properties of the urothelium can influence adjacent urinary bladder tissues including the suburothelial nerve plexus, interstitial cells of Cajal, and detrusor smooth muscle cells. Diverse stimuli, including those that activate TRP channels expressed by the urothelium, can influence urothelial release of chemical mediators (such as ATP). Changes to the urothelium are associated with a number of bladder pathologies that underlie urinary bladder dysfunction. Urothelial receptor and/or ion channel expression and the release of signalling molecules (such as ATP and nitric oxide) can be altered with bladder disease, neural injury, target organ inflammation, or psychogenic stress. Urothelial receptors and channels represent novel targets for potential therapies that are intended to modulate micturition function or bladder sensation.
Collapse
Affiliation(s)
- Liana Merrill
- Department of Neurological Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405, USA
| | - Eric J Gonzalez
- Department of Neurological Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405, USA
| | - Beatrice M Girard
- Department of Neurological Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405, USA
| | - Margaret A Vizzard
- Department of Neurological Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405, USA
| |
Collapse
|
22
|
Parenti A, De Logu F, Geppetti P, Benemei S. What is the evidence for the role of TRP channels in inflammatory and immune cells? Br J Pharmacol 2016; 173:953-69. [PMID: 26603538 DOI: 10.1111/bph.13392] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/25/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022] Open
Abstract
A complex network of many interacting mechanisms orchestrates immune and inflammatory responses. Among these, the cation channels of the transient receptor potential (TRP) family expressed by resident tissue cells, inflammatory and immune cells and distinct subsets of primary sensory neurons, have emerged as a novel and interrelated system to detect and respond to harmful agents. TRP channels, by means of their direct effect on the intracellular levels of cations and/or through the indirect modulation of a large series of intracellular pathways, orchestrate a range of cellular processes, such as cytokine production, cell differentiation and cytotoxicity. The contribution of TRP channels to the transition of inflammation and immune responses from a defensive early response to a chronic and pathological condition is also emerging as a possible underlying mechanism in various diseases. This review discusses the roles of TRP channels in inflammatory and immune cell function and provides an overview of the effects of inflammatory and immune TRP channels on the pathogenesis of human diseases.
Collapse
Affiliation(s)
- A Parenti
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - F De Logu
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - P Geppetti
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - S Benemei
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
23
|
Abstract
Resiniferatoxin (RTX) is the most potent among all known endogenous and synthetic agonists for the transient receptor potential vanilloid 1 (TRPV1) receptor, which is a calcium-permeable nonselective cation channel, expressed on the peripheral and central terminals of small-diameter sensory neurons. Prolonged calcium influx induced by RTX causes cytotoxicity and death of only those sensory neurons that express the TRPV1 ion channel leading to selective targeting and permanent deletion of the TRPV1-expressing C-fiber neuronal cell bodies in the dorsal root ganglia. The goal of this project was to provide preclinical efficacy data, that intrathecal RTX could provide effective pain relief and improve function in dogs with bone cancer without significant long-term side effects. In a single-blind, controlled study, 72 companion dogs with bone cancer pain were randomized to standard of care analgesic therapy alone (control, n = 36) or 1.2 μg/kg intrathecal RTX in addition to standard of care analgesic therapy (treated, n = 36). Significantly more dogs in the control group (78%) required unblinding and adjustment in analgesic protocol or euthanasia within 6 weeks of randomization, than dogs that were treated with RTX (50%; P < 0.03); and overall, dogs in the control group required unblinding significantly sooner than dogs that had been treated with RTX (P < 0.02). The analgesic effect was documented in these dogs without any evidence of development of deafferentation pain syndrome that can be seen with neurolytic therapies.
Collapse
|
24
|
Charrua A, Cruz CD, Jansen D, Rozenberg B, Heesakkers J, Cruz F. Co-administration of transient receptor potential vanilloid 4 (TRPV4) and TRPV1 antagonists potentiate the effect of each drug in a rat model of cystitis. BJU Int 2015; 115:452-60. [DOI: 10.1111/bju.12861] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ana Charrua
- Department of Renal; Urologic and Infectious Disease; Porto Portugal
- Department of Experimental Biology; Faculty of Medicine of the University of Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular da Universidade do Porto; Porto Portugal
| | - Célia D. Cruz
- Department of Experimental Biology; Faculty of Medicine of the University of Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular da Universidade do Porto; Porto Portugal
| | - Dick Jansen
- Department of Urology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - Boy Rozenberg
- Department of Urology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - John Heesakkers
- Department of Urology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - Francisco Cruz
- Department of Urology; S. João Hospital; Porto Portugal
- Department of Renal; Urologic and Infectious Disease; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular da Universidade do Porto; Porto Portugal
| |
Collapse
|
25
|
Nash MS, Verkuyl JM, Bhalay G. TRPV1 Antagonism: From Research to Clinic. ION CHANNEL DRUG DISCOVERY 2014. [DOI: 10.1039/9781849735087-00186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The capsaicin receptor, TRPV1, has been one of the most extensively studied molecules in sensory research. Its contribution to the sensation of pain in numerous pre-clinical inflammatory and neuropathic paradigms has been well-established and expression analysis suggests a potential role clinically in pain and bladder conditions. The field has now reached an exciting point in time with the development of a number of high quality TRPV1 antagonist drug candidates and the release of clinical data. What has become apparent from this work is that inhibition of TRPV1 function brings with it the potential liabilities of increased body temperature and altered thermal perception. However, there is cause for optimism because it appears that not all antagonists have the same properties and compounds can be identified that lack significant on-target side-effects whilst retaining efficacy, at least pre-clinically. What is perhaps now more critical to address is the question of how effective the analgesia provided by a TRPV1 antagonist will be. Although tantalizing clinical data showing effects on experimentally-induced pain or pain following molar extraction have been reported, no clear efficacy in a chronic pain condition has yet been demonstrated making it difficult to perform an accurate risk-benefit analysis for TRPV1 antagonists. Here we provide an overview of some of the most advanced clinical candidates and discuss the approaches being taken to avoid the now well established on-target effects of TRPV1 antagonists.
Collapse
Affiliation(s)
- Mark S. Nash
- Novartis Institutes for Biomedical Research Forum 1, Novartis Campus CH - 4056 Basel Switzerland
| | - J. Martin Verkuyl
- Novartis Institutes for Biomedical Research Wimblehurst Road Horsham, West Sussex RH12 5AB UK
| | - Gurdip Bhalay
- Novartis Institutes for Biomedical Research Wimblehurst Road Horsham, West Sussex RH12 5AB UK
| |
Collapse
|
26
|
Gonzalez EJ, Merrill L, Vizzard MA. Bladder sensory physiology: neuroactive compounds and receptors, sensory transducers, and target-derived growth factors as targets to improve function. Am J Physiol Regul Integr Comp Physiol 2014; 306:R869-78. [PMID: 24760999 PMCID: PMC4159737 DOI: 10.1152/ajpregu.00030.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/19/2014] [Indexed: 01/19/2023]
Abstract
Urinary bladder dysfunction presents a major problem in the clinical management of patients suffering from pathological conditions and neurological injuries or disorders. Currently, the etiology underlying altered visceral sensations from the urinary bladder that accompany the chronic pain syndrome, bladder pain syndrome (BPS)/interstitial cystitis (IC), is not known. Bladder irritation and inflammation are histopathological features that may underlie BPS/IC that can change the properties of lower urinary tract sensory pathways (e.g., peripheral and central sensitization, neurochemical plasticity) and contribute to exaggerated responses of peripheral bladder sensory pathways. Among the potential mediators of peripheral nociceptor sensitization and urinary bladder dysfunction are neuroactive compounds (e.g., purinergic and neuropeptide and receptor pathways), sensory transducers (e.g., transient receptor potential channels) and target-derived growth factors (e.g., nerve growth factor). We review studies related to the organization of the afferent limb of the micturition reflex and discuss neuroplasticity in an animal model of urinary bladder inflammation to increase the understanding of functional bladder disorders and to identify potential novel targets for development of therapeutic interventions. Given the heterogeneity of BPS/IC and the lack of consistent treatment benefits, it is unlikely that a single treatment directed at a single target in micturition reflex pathways will have a mass benefit. Thus, the identification of multiple targets is a prudent approach, and use of cocktail treatments directed at multiple targets should be considered.
Collapse
Affiliation(s)
- Eric J Gonzalez
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| | - Liana Merrill
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| | - Margaret A Vizzard
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|
27
|
Bladder cancer and urothelial impairment: the role of TRPV1 as potential drug target. BIOMED RESEARCH INTERNATIONAL 2014; 2014:987149. [PMID: 24901005 PMCID: PMC4034493 DOI: 10.1155/2014/987149] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/23/2014] [Accepted: 04/19/2014] [Indexed: 12/19/2022]
Abstract
Urothelium, in addition to its primary function of barrier, is now understood to act as a complex system of cell communication that exhibits specialized sensory properties in the regulation of physiological or pathological stimuli. Furthermore, it has been hypothesized that bladder inflammation and neoplastic cell growth, the two most representative pathological conditions of the lower urinary tract, may arise from a primary defective urothelial lining. Transient receptor potential vanilloid channel 1 (TRPV1), a receptor widely distributed in lower urinary tract structures and involved in the physiological micturition reflex, was described to have a pathophysiological role in inflammatory conditions and in the genesis and development of urothelial cancer. In our opinion new compounds, such as curcumin, the major component of turmeric Curcuma longa, reported to potentiate the effects of the chemotherapeutic agents used in the management of recurrent urothelial cancer in vitro and also identified as one of several compounds to own the vanillyl structure required to work like a TRPV1 agonist, could be thought as complementary in the clinical management of both the recurrences and the inflammatory effects caused by the endoscopic resection or intravesical chemotherapy administration or could be combined with adjuvant agents to potentiate their antitumoral effect.
Collapse
|
28
|
Franken J, Uvin P, De Ridder D, Voets T. TRP channels in lower urinary tract dysfunction. Br J Pharmacol 2014; 171:2537-51. [PMID: 24895732 PMCID: PMC4008998 DOI: 10.1111/bph.12502] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/17/2013] [Accepted: 10/20/2013] [Indexed: 12/13/2022] Open
Abstract
Lower urinary tract dysfunction (LUTd) represents a major healthcare problem. Although it is mostly not lethal, associated social disturbance, medical costs, loss of productivity and especially diminished quality of life should not be underestimated. Although more than 15% of people suffer from a form of LUTd to some extent, pathophysiology often remains obscure. In the past 20 years, transient receptor potential (TRP) channels have become increasingly important in this field of research. These intriguing ion channels are believed to be the main molecular sensors that generate bladder sensation. Therefore, they are intensely pursued as new drug targets for both curative and symptomatic treatment of different forms of LUTd. TRPV1 was the first of its class to be investigated. Actually, even before this channel was cloned, it had already been targeted in the bladder, with clinical trials of intravesical capsaicin instillations. Several other polymodally gated TRP channels, particularly TRPM8, TRPA1 and TRPV4, also appear to play a prominent role in bladder (patho)physiology. With this review, we provide a brief overview of current knowledge on the role of these TRP channels in LUTd and their potential as molecular targets for treatment.
Collapse
Affiliation(s)
- J Franken
- Laboratory of Experimental Urology, KU LeuvenLeuven, Belgium
| | - P Uvin
- Laboratory of Experimental Urology, KU LeuvenLeuven, Belgium
| | - D De Ridder
- Laboratory of Experimental Urology, KU LeuvenLeuven, Belgium
| | - T Voets
- Laboratory of Ion Channel Research, KU LeuvenLeuven, Belgium
| |
Collapse
|
29
|
Bakali E, Elliott RA, Taylor AH, Lambert DG, Willets JM, Tincello DG. Human urothelial cell lines as potential models for studying cannabinoid and excitatory receptor interactions in the urinary bladder. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:581-9. [PMID: 24652077 DOI: 10.1007/s00210-014-0973-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/05/2014] [Indexed: 11/25/2022]
Abstract
To characterize human urothelial cell lines' cannabinoid receptor expression and evaluate their possible use for studying signalling interactions with purinergic and muscarinic receptor activation. PCR was used to detect cannabinoid (CB), muscarinic and purinergic receptor transcripts in HCV29 and UROtsa cells, whilst immunofluorescence evaluated protein expression and localization of cannabinoid receptors. The effect of CB1 agonist (ACEA) on carbachol- and ATP-induced changes in intracellular calcium ([Ca(2+)]i) levels was measured using fluorimetry. The ability of ACEA to reduce intracellular cAMP was investigated in HCV29 cells. CB1 and GPR55 receptor transcripts were detected in HCV29 and UROtsa cells, respectively. Immunofluorescence showed positive staining for CB1 in the HCV29 cells. Both cell lines expressed transcript levels for muscarinic receptors, but carbachol did not raise [Ca(2+)]i levels indicating a lack or low expression of G(q)-coupled muscarinic receptors. Transcripts for purinergic receptors were detected; ATP significantly increased [Ca(2+)]i in HCV29 and UROtsa cells by 395 ± 61 and 705 ± 100 nM (mean ± SEM, n = 6), respectively. ACEA did not alter ATP-induced [Ca(2+)]i or cAMP levels in HCV29 cells. Whilst HCV29 cells expressed CB1 and UROtsa cells expressed GPR55 receptors, these were not functionally coupled to the existing purinergic-driven increase in Ca2+ as such they do not represent a good model to study signalling interactions.
Collapse
Affiliation(s)
- Evangelia Bakali
- Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK,
| | | | | | | | | | | |
Collapse
|
30
|
McGarvey LP, Butler CA, Stokesberry S, Polley L, McQuaid S, Abdullah H, Ashraf S, McGahon MK, Curtis TM, Arron J, Choy D, Warke TJ, Bradding P, Ennis M, Zholos A, Costello RW, Heaney LG. Increased expression of bronchial epithelial transient receptor potential vanilloid 1 channels in patients with severe asthma. J Allergy Clin Immunol 2014; 133:704-12.e4. [DOI: 10.1016/j.jaci.2013.09.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/18/2013] [Accepted: 09/17/2013] [Indexed: 12/18/2022]
|
31
|
Differential effects of intravesical resiniferatoxin on excitability of bladder spinal neurons upon colon-bladder cross-sensitization. Brain Res 2012; 1491:213-24. [PMID: 23146715 DOI: 10.1016/j.brainres.2012.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 10/24/2012] [Accepted: 11/05/2012] [Indexed: 12/11/2022]
Abstract
Cross-sensitization in the pelvis may contribute to etiology of functional pelvic pain disorders such as interstitial cystitis/bladder pain syndrome (IC/BPS). Increasing evidence suggests the involvement of transient receptor potential vanilloid 1 (TRPV1) receptors in the development of neurogenic inflammation in the pelvis and pelvic organ cross-sensitization. The objective of this study was to test the hypothesis that desensitization of TRPV1 receptors in the urinary bladder can minimize the effects of cross-sensitization induced by experimental colitis on excitability of bladder spinal neurons. Extracellular activity of bladder neurons was recorded in response to graded urinary bladder distension (UBD) in rats pretreated with intravesical resiniferatoxin (RTX, 10(-7)M). Colonic inflammation was induced by intracolonic instillation of 2,4,6-trinitrobenzene sulfonic acid (TNBS). The duration of excitatory responses to noxious UBD during acute colonic inflammation (3 days post-TNBS) was significantly shortened in the group with RTX pretreatment (25.3±1.5s, n=49) when compared to the control group (35.1±4.2s, n=43, p<0.05). The duration of long-lasting excitatory responses, but not short-lasting responses of bladder spinal neurons during acute colitis was significantly reduced by RTX from 52.9±6.6s (n=21, vehicle group) to 34.4±2.1s (RTX group, n=21, p<0.05). However, activation of TRPV1 receptors in the urinary bladder prior to acute colitis increased the number of bladder neurons receiving input from large somatic fields from 22.7% to 58.2% (p<0.01). The results of our study provide evidence that intravesical RTX reduces the effects of viscerovisceral cross-talk induced by colonic inflammation on bladder spinal neurons. However, RTX enhances the responses of bladder neurons to somatic stimulation, thereby limiting its therapeutic potential.
Collapse
|
32
|
Bakali E, Elliott RA, Taylor AH, Willets J, Konje JC, Tincello DG. Distribution and function of the endocannabinoid system in the rat and human bladder. Int Urogynecol J 2012; 24:855-63. [DOI: 10.1007/s00192-012-1954-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/20/2012] [Indexed: 01/18/2023]
|
33
|
Freichel M, Almering J, Tsvilovskyy V. The Role of TRP Proteins in Mast Cells. Front Immunol 2012; 3:150. [PMID: 22701456 PMCID: PMC3372879 DOI: 10.3389/fimmu.2012.00150] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/22/2012] [Indexed: 01/16/2023] Open
Abstract
Transient receptor potential (TRP) proteins form cation channels that are regulated through strikingly diverse mechanisms including multiple cell surface receptors, changes in temperature, in pH and osmolarity, in cytosolic free Ca(2+) concentration ([Ca(2+)](i)), and by phosphoinositides which makes them polymodal sensors for fine tuning of many cellular and systemic processes in the body. The 28 TRP proteins identified in mammals are classified into six subfamilies: TRPC, TRPV, TRPM, TRPA, TRPML, and TRPP. When activated, they contribute to cell depolarization and Ca(2+) entry. In mast cells, the increase of [Ca(2+)](i) is fundamental for their biological activity, and several entry pathways for Ca(2+) and other cations were described including Ca(2+) release activated Ca(2+) (CRAC) channels. Like in other non-excitable cells, TRP channels could directly contribute to Ca(2+) influx via the plasma membrane as constituents of Ca(2+) conducting channel complexes or indirectly by shifting the membrane potential and regulation of the driving force for Ca(2+) entry through independent Ca(2+) entry channels. Here, we summarize the current knowledge about the expression of individual Trp genes with the majority of the 28 members being yet identified in different mast cell models, and we highlight mechanisms how they can regulate mast cell functions. Since specific agonists or blockers are still lacking for most members of the TRP family, studies to unravel their function and activation mode still rely on experiments using genetic approaches and transgenic animals. RNAi approaches suggest a functional role for TRPC1, TRPC5, and TRPM7 in mast cell derived cell lines or primary mast cells, and studies using Trp gene knock-out mice reveal a critical role for TRPM4 in mast cell activation and for mast cell mediated cutaneous anaphylaxis, whereas a direct role of cold- and menthol-activated TRPM8 channels seems to be unlikely for the development of cold urticaria at least in mice.
Collapse
Affiliation(s)
- Marc Freichel
- Pharmakologisches Institut, Universität HeidelbergHeidelberg, Germany
| | - Julia Almering
- Pharmakologisches Institut, Universität HeidelbergHeidelberg, Germany
| | | |
Collapse
|
34
|
Boudes M, De Ridder D. Urothelial TRPV1: TRPV1-Reporter Mice, a Way to Clarify the Debate? Front Physiol 2012; 3:130. [PMID: 22586410 PMCID: PMC3345947 DOI: 10.3389/fphys.2012.00130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/18/2012] [Indexed: 12/05/2022] Open
Affiliation(s)
- Mathieu Boudes
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven Leuven, Belgium
| | | |
Collapse
|
35
|
Effect of surgical and chemical sensory denervation on non-neural expression of the transient receptor potential vanilloid 1 (TRPV1) receptors in the rat. J Mol Neurosci 2012; 48:795-803. [PMID: 22528458 DOI: 10.1007/s12031-012-9766-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/30/2012] [Indexed: 12/14/2022]
Abstract
Pretreatment with the ultrapotent capsaicin analog resiniferatoxin (RTX) has been applied as a selective pharmacological tool in inflammation and pain studies to desensitize transient receptor potential vanilloid 1 (TRPV1) receptor-expressing sensory nerve endings. The discovery of TRPV1 receptor on non-neural cells challenges systemic RTX desensitization as a method acting exclusively on a population of sensory neurons, but not on non-neural cells. Systemic RTX desensitization was used for chemical denervation and transection of the sciatic and saphenous nerves for surgical denervation in rats. Quantitative real-time PCR and immunohistochemistry were applied to investigate the presence and alterations of the TRPV1 receptor mRNA and protein following chemical and surgical denervation. We provided the first evidence for non-neural TRPV1 immunopositivity and mRNA expression in the rat dorsal paw and plantar skin as well as the oral mucosa. Neither chemical nor surgical denervation influenced the level of TRPV1 receptor mRNA and protein expression in non-neural cells of either skin regions or mucosa. Therefore, RTX and consequently capsaicin remain to be considered as selective neurotoxins for a population of primary afferent neurons.
Collapse
|
36
|
Santoni G, Caprodossi S, Farfariello V, Liberati S, Gismondi A, Amantini C. Antioncogenic effects of transient receptor potential vanilloid 1 in the progression of transitional urothelial cancer of human bladder. ISRN UROLOGY 2012; 2012:458238. [PMID: 22523714 PMCID: PMC3302024 DOI: 10.5402/2012/458238] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/24/2011] [Indexed: 11/23/2022]
Abstract
The progression of normal cells to a tumorigenic and metastatic state involves the accumulation of mutations in multiple key signaling proteins, encoded by oncogenes and tumor suppressor genes. Recently, members of the TRP channel family have been included in the oncogenic and tumor suppressor protein family. TRPM1, TRPM8, and TRPV6 are considered to be tumor suppressors and oncogenes in localized melanoma and prostate cancer, respectively. Herein, we focus our attention on the antioncogenic properties of TRPV1. Changes in TRPV1 expression occur during the development of transitional cell carcinoma (TCC) of human bladder. A progressive decrease in TRPV1 expression as the TCC stage increases triggers the development of a more aggressive gene phenotype and invasiveness. Finally, downregulation of TRPV1 represents a negative prognostic factor in TCC patients. The knowledge of the mechanism controlling TRPV1 expression might improve the diagnosis and new therapeutic strategies in bladder cancer.
Collapse
Affiliation(s)
- Giorgio Santoni
- Section of Experimental Medicine, School of Pharmacy, University of Camerino, Madonna delle Carceri Street 9, 62032 Camerino, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
The members of transient receptor potential (TRP) superfamily of cationic ion channels represent universal sensors, which convert multiple exogenous and endogenous chemical and physical stimuli into electrical and functional cellular responses. TRPs are widely distributed in many different tissues, and expression of numerous TRP types has been reported in lower urinary tract (LUT) tissues, neuronal fibers innervating the bladder and urethra, and epithelial and muscular layers of the bladder and urethral walls, where they are mainly involved in nociception and mechanosensory transduction. As such, they represent attractive targets for treating LUT disorders. Although information on the functional significance of many of the TRP proteins in the LUT remains very limited, compelling evidence has accumulated for a pivotal role of TRPV1, TRPV2, TRPV4, TRPM8, and TRPA1 in normal and pathological LUT function, mainly as sensors of stretch and chemical irritation. Further studies into these and other TRPs in the LUT will facilitate the development of improved therapeutic strategies to target these channels in LUT disorders.
Collapse
|
38
|
Ding Q, Zhang Y, Cong X, Cai Z, Han J, Su Y, Wu LL, Yu GG. Confocal microscopy with double immunofluorescence staining reveals the functional transient receptor potential vanilloid subtype 1 expressed in myoepithelial cells of human submandibular glands. Microsc Res Tech 2011; 75:555-60. [DOI: 10.1002/jemt.21090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/11/2011] [Indexed: 11/05/2022]
|
39
|
Yu W, Hill WG. Defining protein expression in the urothelium: a problem of more than transitional interest. Am J Physiol Renal Physiol 2011; 301:F932-42. [PMID: 21880838 DOI: 10.1152/ajprenal.00334.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The transitional epithelium of the bladder, the urothelium, is a challenging tissue to study due to its fragility, complex cellular makeup, stratified composition, and intimate connections to both neural and connective tissue elements. With the increasing focus on the urothelium as a mechanosensory tissue with complex autocrine and paracrine signaling activities, there have arisen a number of unresolved controversies in the urothelial literature regarding whether certain important sensory and signaling proteins are expressed by the urothelium. Prominent examples of this include the transient receptor potential (TRP) family member TRPV1 and the purinergic receptor P2X(3). The problem is more than one of scientific bookkeeping since studies utilizing genetic models (primarily knockout mice) claim additional credibility for urothelial functions when phenotypes are discovered. Furthermore, both of the above-mentioned receptors are important therapeutic targets for various bladder disorders including inflammatory and neuropathic pain. The reasons for the confusion about urothelial expression are manifold, but they likely include low expression levels in some cases, poor specificity of antibodies (sometimes lacking adequate controls), the presence of nonurothelial cells resident within the urothelium, and the fact that the urothelium is particularly prone to aspecific adsorption of antibodies. In this review, we attempt to summarize some of the pitfalls with currently accepted practices in this regard, as well as to describe a set of guidelines which will improve the reliability of conclusions related to urothelial expression. It is hoped that this will be of value to investigators studying the urothelium, to those attempting to interpret conflicts in the literature, and hopefully also those charged with reviewing unpublished work. These recommendations will outline a set of "baseline" and "best practice" guidelines by which both researchers and reviewers will be able to evaluate the evidence presented.
Collapse
Affiliation(s)
- Weiqun Yu
- Laboratory of Voiding Dysfunction, Division of Renal Research, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
40
|
TRP channels in urinary bladder mechanosensation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:861-79. [PMID: 21290331 DOI: 10.1007/978-94-007-0265-3_45] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Devesa I, Planells-Cases R, Fernández-Ballester G, González-Ros JM, Ferrer-Montiel A, Fernández-Carvajal A. Role of the transient receptor potential vanilloid 1 in inflammation and sepsis. J Inflamm Res 2011; 4:67-81. [PMID: 22096371 PMCID: PMC3218746 DOI: 10.2147/jir.s12978] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) is a thermoreceptor that responds to noxious temperatures, as well as to chemical agonists, such as vanilloids and protons. In addition, its channel activity is notably potentiated by proinflammatory mediators released upon tissue damage. The TRPV1 contribution to sensory neuron sensitization by proalgesic agents has signaled this receptor as a prime target for analgesic and anti-inflammatory drug intervention. However, TRPV1 antagonists have notably failed in clinical and preclinical studies because of their unwanted side effects. Recent reports have unveiled previously unrecognized anti-inflammatory and protective functions of TRPV1 in several diseases. For instance, this channel has been suggested to play an anti-inflammatory role in sepsis. Therefore, the use of potent TRPV1 antagonists as a general strategy to treat inflammation must be cautiously considered, given the deleterious effects that may arise from inhibiting the population of channels that have a protective function. The use of TRPV1 antagonists may be limited to treating those pathologies where enhanced receptor activity contributes to the inflamed state. Alternatively, therapeutic paradigms, such as reduction of inflammatory-mediated increase of receptor expression in the cell surface, may be a better strategy to prevent abrogation of the TRPV1 subpopulation involved in anti-inflammatory and protective processes.
Collapse
Affiliation(s)
- Isabel Devesa
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante
| | | | | | | | | | | |
Collapse
|
42
|
Kalogris C, Caprodossi S, Amantini C, Lambertucci F, Nabissi M, Morelli MB, Farfariello V, Filosa A, Emiliozzi MC, Mammana G, Santoni G. Expression of transient receptor potential vanilloid-1 (TRPV1) in urothelial cancers of human bladder: relation to clinicopathological and molecular parameters. Histopathology 2011; 57:744-52. [PMID: 21083604 DOI: 10.1111/j.1365-2559.2010.03683.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS To evaluate the expression of transient receptor potential vanilloid type-1 channel protein (TRPV1) in normal and neoplastic urothelial tissues and to correlate TRPV1 expression with clinicopathological parameters and disease-specific survival. METHODS AND RESULTS TRPV1 expression was analysed in normal and neoplastic urothelial samples at both mRNA and protein levels by quantitative real time polymerase chain reaction (qPCR) and immunohistochemistry, respectively. TRPV1 downregulation was found in urothelial cancer (UC) specimens, which correlated with tumour progression. Moreover, TRPV1 mRNA levels were associated with clinicopathological parameters to assess the role of TRPV1 downregulation as a negative prognostic factor for survival. Kaplan-Meier survival analysis demonstrated a significantly shorter survival in patients showing TRPV1 mRNA downregulation. Multivariate Cox regression analysis indicated further that TRPV1 mRNA expression retained its significance as an independent risk factor. CONCLUSIONS The progression of UC of human bladder is associated with a marked decrease in TRPV1 expression, with a progressive loss in high-grade muscle invasive UC. Downregulation of TRPV1 mRNA expression may represent an independent negative prognostic factor for bladder cancer patients.
Collapse
|
43
|
Andrade EL, Forner S, Bento AF, Leite DFP, Dias MA, Leal PC, Koepp J, Calixto JB. TRPA1 receptor modulation attenuates bladder overactivity induced by spinal cord injury. Am J Physiol Renal Physiol 2011; 300:F1223-34. [PMID: 21367919 DOI: 10.1152/ajprenal.00535.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The ankyrin-repeat transient receptor potential 1 (TRPA1) has been implicated in pathological conditions of the bladder, but its role in overactive bladder (OAB) following spinal cord injury (SCI) remains unknown. In this study, using a rat SCI model, we assessed the relevance of TRPA1 in OAB induced by SCI. SCI resulted in tissue damage, inflammation, and changes in bladder contractility and in voiding behavior. Moreover, SCI caused upregulation of TRPA1 protein and mRNA levels, in bladder and in dorsal root ganglion (DRG; L6-S1), but not in corresponding segment of spinal cord. Alteration in bladder contractility following SCI was evidenced by enhancement in cinnamaldehyde-, capsaicin-, or carbachol-induced bladder contraction as well as in its spontaneous phasic activity. Of relevance to voiding behavior, SCI induced increase in the number of nonvoiding contractions (NVCs), an important parameter associated with the OAB etiology, besides alterations in other urodynamic parameters. HC-030031 (TRPA1 antagonist) treatment decreased the number and the amplitude of NVCs while the TRPA1 antisense oligodeoxynucleotide (AS-ODN) treatment normalized the spontaneous phasic activity, decreased the cinnamaldehyde-induced bladder contraction and the number of NVCs in SCI rats. In addition, the cinnamaldehyde-induced bladder contraction was reduced by exposure of the bladder preparations to HC-030031. The efficacy of TRPA1 AS-ODN treatment was confirmed by means of the reduction of TRPA1 expression in the DRG, in the corresponding segment of the spinal cord and in the bladder, specifically in detrusor muscle. The present data show that the TRPA1 activation and upregulation seem to exert an important role in OAB following SCI.
Collapse
Affiliation(s)
- Edinéia Lemos Andrade
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina SC, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Li M, Sun Y, Simard JM, Chai TC. Increased transient receptor potential vanilloid type 1 (TRPV1) signaling in idiopathic overactive bladder urothelial cells. Neurourol Urodyn 2011; 30:606-11. [PMID: 21351130 DOI: 10.1002/nau.21045] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 11/08/2010] [Indexed: 11/09/2022]
Abstract
AIMS To measure transient receptor potential vanilloid type 1 (TRPV1) signaling in human bladder urothelial cells (BUC) from non-neurogenic overactive bladder (OAB) patients and control subjects (NB) BUC. MATERIALS AND METHODS Primary BUC cell cultures were derived from cystoscopic biopsies from two OAB and two NB subjects. TRPV1 expression was detected by immunofluorescence, PCR and Western blot staining. TRPV1 function was assessed by capsaicin (CAP, 6 µM)-evoked intracellular calcium ([Ca(2+)](i)) changes measured by microfluorimetry imaging. CAP evoked changes in inward and outward currents were recorded electrophysiologically using excised outside-out patches and whole cell configurations using various protocols. RESULTS OAB BUC had significantly increased expression of TRPV1 compared to NB BUC on Western blot. CAP evoked significantly higher maximal [Ca(2+)](i) change over baseline in OAB (84.71 ± 8.96%) compared to NB BUC (60.32 ± 7.93%) (P < 0.05). CAP induced significantly greater percent change in single channel open probability (205.94 ± 20.53% OAB vs. 141.26 ± 16.53% NB, P < 0.05) and normalized inward currents (13.54 ± 1.6 4 pA/pF OAB vs. 8.28 ± 0.89 pA/pF NB, P < 0.05). CAP caused significantly higher percent increase from baseline of whole cell outward currents in OAB (177.12 ± 44.46%) compared to NB BUC (135.98 ± 44.28%) (P < 0.05). Similarly thermal stimulus (45°C solution) evoked significantly higher percent increase in whole cell outward currents in OAB (183.93 ± 14.07%) compared to NB (145.61 ± 10.12%) BUC (P < 0.05). These responses were blocked by 10 µM capsazepine (CPZ), a TRPV1 antagonist. CONCLUSIONS Because only a few subjects were studied, augmented TRPV1 signaling cannot be generalized to all OAB subjects. However, the findings are consistent with the hypothesis that BUC are involved in sensory signaling.
Collapse
Affiliation(s)
- Mingkai Li
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
45
|
Andersson KE, Gratzke C, Hedlund P. The role of the transient receptor potential (TRP) superfamily of cation-selective channels in the management of the overactive bladder. BJU Int 2011; 106:1114-27. [PMID: 21156013 DOI: 10.1111/j.1464-410x.2010.09650.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
• The pathophysiology of lower urinary tract symptoms (LUTS), detrusor overactivity (DO), and the overactive bladder (OAB) syndrome is multifactorial and remains poorly understood. • The transient receptor potential (TRP) channel superfamily has been shown to be involved in nociception and mechanosensory transduction in various organ systems, and studies of the LUT have indicated that several TRP channels, including TRPV1, TRPV2, TRPV4, TRPM8, and TRPA1, are expressed in the bladder, and may act as sensors of stretch and/or chemical irritation. • However, the roles of these individual channels for normal LUT function and in LUTS/DO/OAB, have not been established. • TRPV1 is the channel best investigated. It is widely distributed in LUT structures, but despite extensive information on morphology and function in animal models, the role of this channel in normal human bladder function is still controversial. Conversely, its role in the pathophysiology and treatment of particularly neurogenic DO is well established. • TRPV1 is co-expressed with TRPA1, and TRPA1 is known to be present on capsaicin-sensitive primary sensory neurones. Activation of this channel can induce DO in animal models. • TRPV4 is a Ca(2+)-permeable stretch-activated cation channel, involved in stretch-induced ATP release, and TRPV4-deficient mice exhibit abnormal frequencies of voiding and non-voiding contractions in cystometric experiments. • TRPM8 is a cool receptor expressed in the urothelium and suburothelial sensory fibres. It has been implicated in the bladder-cooling reflex and in idiopathic DO. • The occurrence of other members of the TRP superfamily in the LUT has been reported, but information on their effects on LUT functions is scarce. There seem to be several links between activation of different members of the TRP superfamily and LUTS/DO/OAB, and further exploration of the involvement of these channels in LUT function, normally and in dysfunction, may be rewarding.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA.
| | | | | |
Collapse
|
46
|
Charrua A, Avelino A, Cruz F. Modulation of urinary bladder innervation: TRPV1 and botulinum toxin A. Handb Exp Pharmacol 2011:345-374. [PMID: 21290235 DOI: 10.1007/978-3-642-16499-6_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The persisting interest around neurotoxins such as vanilloids and botulinum toxin (BoNT) derives from their marked effect on detrusor overactivity refractory to conventional antimuscarinic treatments. In addition, both are administered by intravesical route. This offers three potential advantages. First, intravesical therapy is an easy way to provide high concentrations of pharmacological agents in the bladder tissue without causing unsuitable levels in other organs. Second, drugs effective on the bladder, but inappropriate for systemic administration, can be safely used as it is the case of vanilloids and BoNT. Third, the effects of one single treatment might be extremely longlasting, contributing to render these therapies highly attractive to patients despite the fact that the reasons to the prolonged effect are still incompletely understood. Attractive as it may be, intravesical pharmacological therapy should still be considered as a second-line treatment in patients refractory to conventional oral antimuscarinic therapy or who do not tolerate its systemic side effects. However, the increasing off-label use of these neurotoxins justifies a reappraisal of their pharmacological properties.
Collapse
Affiliation(s)
- Ana Charrua
- Institute of Histology and Embryology, Porto, Portugal
| | | | | |
Collapse
|
47
|
Pungency of TRPV1 agonists is directly correlated with kinetics of receptor activation and lipophilicity. Eur J Pharmacol 2010; 641:114-22. [DOI: 10.1016/j.ejphar.2010.05.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 04/19/2010] [Accepted: 05/23/2010] [Indexed: 12/11/2022]
|
48
|
Araki I, Yoshiyama M, Kobayashi H, Mochizuki T, Du S, Okada Y, Takeda M. Emerging Families of Ion Channels Involved in Urinary Bladder Nociception. Pharmaceuticals (Basel) 2010; 3:2248-2267. [PMID: 27713353 PMCID: PMC4036652 DOI: 10.3390/ph3072248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/28/2010] [Accepted: 07/15/2010] [Indexed: 01/12/2023] Open
Abstract
The expression of multiple ion channels and receptors is essential for nociceptors to detect noxious stimuli of a thermal, mechanical or chemical nature. The peripheral sensory transduction systems of the urinary bladder include sensory nerve endings, urothelial cells and others whose location is suitable for transducing mechanical and chemical stimuli. There is an increasing body of evidence implicating the Deg/ENaC and TRP channel families in the control of bladder afferent excitability under physiological and pathological conditions. Pharmacological interventions targeting these ion channels may provide a new strategy for the treatment of pathological bladder sensation and pain.
Collapse
Affiliation(s)
- Isao Araki
- Department of Urology, University of Yamanashi Interdisciplinary Graduate School of Medicine and Engineering, Chuo, Yamanashi 409-3898, Japan.
- Department of Urology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| | - Mitsuharu Yoshiyama
- Department of Urology, University of Yamanashi Interdisciplinary Graduate School of Medicine and Engineering, Chuo, Yamanashi 409-3898, Japan.
| | - Hideki Kobayashi
- Department of Urology, University of Yamanashi Interdisciplinary Graduate School of Medicine and Engineering, Chuo, Yamanashi 409-3898, Japan.
| | - Tsutomu Mochizuki
- Department of Urology, University of Yamanashi Interdisciplinary Graduate School of Medicine and Engineering, Chuo, Yamanashi 409-3898, Japan.
| | - Shuqi Du
- Department of Urology, the 1st Affiliated Hospital, China Medical University, Shenyang, China.
| | - Yusaku Okada
- Department of Urology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| | - Masayuki Takeda
- Department of Urology, University of Yamanashi Interdisciplinary Graduate School of Medicine and Engineering, Chuo, Yamanashi 409-3898, Japan.
| |
Collapse
|
49
|
Premkumar LS, Sikand P. TRPV1: a target for next generation analgesics. Curr Neuropharmacol 2010; 6:151-63. [PMID: 19305794 PMCID: PMC2647151 DOI: 10.2174/157015908784533888] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 10/17/2007] [Accepted: 11/11/2007] [Indexed: 12/11/2022] Open
Abstract
Transient Receptor Potential Vanilloid 1 (TRPV1) is a Ca2+ permeant non-selective cation channel expressed in a subpopulation of primary afferent neurons. TRPV1 is activated by physical and chemical stimuli. It is critical for the detection of nociceptive and thermal inflammatory pain as revealed by the deletion of the TRPV1 gene. TRPV1 is distributed in the peripheral and central terminals of the sensory neurons and plays a role in initiating action potentials at the nerve terminals and modulating neurotransmitter release at the first sensory synapse, respectively. Distribution of TRPV1 in the nerve terminals innervating blood vessels and in parts of the CNS that are not subjected to temperature range that is required to activate TRPV1 suggests a role beyond a noxious thermal sensor. Presently, TRPV1 is being considered as a target for analgesics through evaluation of different antagonists. Here, we will discuss the distribution and the functions of TRPV1, potential use of its agonists and antagonists as analgesics and highlight the functions that are not related to nociceptive transmission that might lead to adverse effects.
Collapse
Affiliation(s)
- Louis S Premkumar
- Department of Pharmacology, Southern Illinois University School of Medicine Springfield, IL 62702, USA.
| | | |
Collapse
|
50
|
Schumacher MA, Eilers H. TRPV1 splice variants: structure and function. Front Biosci (Landmark Ed) 2010; 15:872-82. [PMID: 20515731 DOI: 10.2741/3651] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The capsaicin receptor (TRPV1) is a non-selective cation channel predominantly expressed in specialized sensory neurons that detect painful stimuli. Although its many functional roles continue to be revealed, it has been confirmed to play a critical role in the perception of peripheral inflammatory hyperalgesia and pain. TRPV1 not only is sensitized and/or activated under a wide range of conditions including inflammation and nerve injury but also undergoes changes in expressed levels in response to these same pathologic conditions. Just as our understanding of the structural requirements of TRPV1 activation has grown, there is evidence that TRPV1 forms heteromeric channel complexes. This review is focused on the structural and functional consequence of TRPV1 splice variants: VR.5'sv, TRPV1b/beta and TRPV1var. Through their co-expression and formation of heteromeric complexes with TRPV1, they have been shown to modulate TRPV1 activation. Moreover, TRPV1 splice variant subunits may also contribute unique properties of activation such as the detection of hypertonic conditions.
Collapse
Affiliation(s)
- Mark A Schumacher
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143-0427, USA.
| | | |
Collapse
|