1
|
Khan F, Akhtar S, Kamal MA. Nanoinformatics and Personalized Medicine: An Advanced Cumulative Approach for Cancer Management. Curr Med Chem 2023; 30:271-285. [PMID: 35692148 DOI: 10.2174/0929867329666220610090405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/10/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Even though the battle against one of the deadliest diseases, cancer, has advanced remarkably in the last few decades and the survival rate has improved significantly; the search for an ultimate cure remains a utopia. Nanoinformatics, which is bioinformatics coupled with nanotechnology, endows many novel research opportunities in the preclinical and clinical development of personalized nanosized drug carriers in cancer therapy. Personalized nanomedicines serve as a promising treatment option for cancer owing to their noninvasiveness and their novel approach. Explicitly, the field of personalized medicine is expected to have an enormous impact soon because of its many advantages, namely its versatility to adapt a drug to a cohort of patients. OBJECTIVE The current review explains the application of this newly emerging field called nanoinformatics to the field of precision medicine. This review also recapitulates how nanoinformatics could hasten the development of personalized nanomedicine for cancer, which is undoubtedly the need of the hour. CONCLUSION This approach has been facilitated by a humongous impending field named Nanoinformatics. These breakthroughs and advances have provided insight into the future of personalized medicine. Imperatively, they have been enabling landmark research to merge all advances, creating nanosized particles that contain drugs targeting cell surface receptors and other potent molecules designed to kill cancerous cells. Nanoparticle- based medicine has been developing and has become a center of attention in recent years, focusing primely on proficient delivery systems for various chemotherapy drugs.
Collapse
Affiliation(s)
- Fariya Khan
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow - 226026, UP, India
| | - Salman Akhtar
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow - 226026, UP, India.,Novel Global Community Educational Foundation, Hebersham, NSW2770, Australia
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontier Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,King Fahad Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh.,Enzymoics, 7, Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
2
|
Gakis G, Perner S, Stenzl A, Renninger M. The CAG-triplet in the androgen receptor gene and single-nucleotide polymorphisms in androgen pathway genes in patients with concomitant bladder and prostate cancer. Urol Oncol 2022; 40:198.e1-198.e8. [DOI: 10.1016/j.urolonc.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/20/2022] [Accepted: 03/19/2022] [Indexed: 10/18/2022]
|
3
|
Emond JP, Lacombe L, Caron P, Turcotte V, Simonyan D, Aprikian A, Saad F, Carmel M, Chevalier S, Guillemette C, Lévesque E. Urinary oestrogen steroidome as an indicator of the risk of localised prostate cancer progression. Br J Cancer 2021; 125:78-84. [PMID: 33828256 PMCID: PMC8257651 DOI: 10.1038/s41416-021-01376-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the most common cancer in North American men. Beyond the established contribution of androgens to disease progression, growing evidence suggest that oestrogen-related pathways might also be of clinical importance. The aim of this study was to explore the association of urinary oestrogen levels with clinical outcomes. METHODS Urine samples from the prospective multi-institutional PROCURE cohort were collected before RP for discovery (n = 259) and validation (n = 253). Urinary total oestrogens (unconjugated + conjugated), including oestrone and oestradiol, their bioactive and inactive catechol and methyl derivatives (n = 15), were measured using mass spectrometry (MS). RESULTS The median follow-up time for the discovery and replication cohorts was 7.6 and 6.5 years, respectively. Highly significant correlations between urinary oestrogens were observed; however, correlations with circulating oestrogens were modest. Our findings indicate that higher levels of urinary oestriol and 16-ketoestradiol were associated with lower risk of BCR. In contrast, higher levels of 2-methoxyestrone were associated with an increased risk of development of metastasis/deaths. CONCLUSIONS Our data suggest that urinary levels of oestriol and 16-ketoestradiol metabolites are associated with a more favourable outcome, whereas those of 2-methoxyestrone are associated with an elevated risk of metastasis after RP. Further studies are required to better understand the impact of oestrogens on disease biology and as easily accessible urine-based risk-stratification markers.
Collapse
Affiliation(s)
- Jean-Philippe Emond
- Centre Hospitalier Universitaire (CHU) de Québec Research Center and Faculty of Medicine, Laval University, Québec, Canada
| | - Louis Lacombe
- Centre Hospitalier Universitaire (CHU) de Québec Research Center and Faculty of Medicine, Laval University, Québec, Canada
| | - Patrick Caron
- CHU de Québec Research Center and Faculty of Pharmacy, Laval University, Québec, Canada
| | - Véronique Turcotte
- CHU de Québec Research Center and Faculty of Pharmacy, Laval University, Québec, Canada
| | - David Simonyan
- Statistical and Clinical Research Platform, CHU de Québec Research Center, Québec, Canada
| | - Armen Aprikian
- McGill University Health Center, McGill University, Faculty of Medicine, Québec, Canada
| | - Fred Saad
- Centre Hospitalier de l'Université de Montréal, Université de Montréal, Québec, Canada
| | - Michel Carmel
- Université de Sherbrooke, Faculty of Medicine, Québec, Canada
| | - Simone Chevalier
- McGill University Health Center, McGill University, Faculty of Medicine, Québec, Canada
| | - Chantal Guillemette
- CHU de Québec Research Center and Faculty of Pharmacy, Laval University, Québec, Canada.
| | - Eric Lévesque
- Centre Hospitalier Universitaire (CHU) de Québec Research Center and Faculty of Medicine, Laval University, Québec, Canada.
| |
Collapse
|
4
|
Prostate Cancer Mortality Associated with Aggregate Polymorphisms in Androgen-Regulating Genes: The Atherosclerosis Risk in the Communities (ARIC) Study. Cancers (Basel) 2021; 13:cancers13081958. [PMID: 33921650 PMCID: PMC8072683 DOI: 10.3390/cancers13081958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
Genetic variations in androgen metabolism may influence prostate cancer (PC) prognosis. Clinical studies consistently linked PC prognosis with four single nucleotide polymorphisms (SNPs) in the critical androgen-regulating genes: 3-beta-hydroxysteroid dehydrogenase (HSD3B1) rs1047303, 5-alpha-reductase 2 (SRD5A2) rs523349, and solute carrier organic ion (SLCO2B1) rs1789693 and rs12422149. We tested the association of four androgen-regulating SNPs, individually and combined, with PC-specific mortality in the ARIC population-based prospective cohort. Men diagnosed with PC (N = 622; 79% White, 21% Black) were followed for death (N = 350) including PC death (N = 74). Cox proportional hazards regression was used to estimate hazard ratios (HR) and 95%CI adjusting for center, age, stage, and grade at diagnosis using separate hazards for races. A priori genetic risk score (GRS) was created as the unweighted sum of risk alleles in the four pre-selected SNPs. The gain-of-function rs1047303C allele was associated PC-specific mortality among men with metastatic PC at diagnosis (HR = 4.89 per risk allele, p = 0.01). Higher GRS was associated with PC-specific mortality (per risk allele: HR = 1.26, p = 0.03). We confirmed that the gain-of-function allele in HSD3B1 rs1047303 is associated with greater PC mortality in men with metastatic disease. Additionally, our findings suggest a cumulative effect of androgen-regulating genes on PC-specific mortality; however, further validation is required.
Collapse
|
5
|
Wang Z, Deng T, Long X, Lin X, Wu S, Wang H, Ge R, Zhang Z, Wu CL, Taplin ME, Olumi AF. Methylation of SRD5A2 promoter predicts a better outcome for castration-resistant prostate cancer patients undergoing androgen deprivation therapy. PLoS One 2020; 15:e0229754. [PMID: 32134978 PMCID: PMC7058338 DOI: 10.1371/journal.pone.0229754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To determine whether SRD5A2 promoter methylation is associated with cancer progression during androgen deprivation therapy (ADT) in CRPC. PATIENTS AND METHODS In a Local CRPC cohort, 42 prostatic specimens were collected from patients who were diagnosed as CRPC and underwent transurethral resection of the prostate (TURP) at Massachusetts General Hospital (MGH). In a metastatic CRPC (Met CRPC) cohort, 12 metastatic biopsies were collected from CRPC patients who would be treated with abiraterone plus dutasteride (Clinical Trial NCT01393730). As controls, 36 benign prostatic specimens were collected from patients undergoing prostate reduction surgery for symptoms of bladder outlet obstruction secondary to benign prostatic hyperplasia (BPH). The methylation status of cytosine-phosphate-guanine (CpG) site(s) at SRD5A2 promoter regions was tested. RESULTS Compared with benign prostatic tissue, CRPC samples demonstrated higher SRD5A2 methylation in the whole promoter region (Local CRPC cohort: P < 0.001; Met CRPC cohort: P <0.05). In Local CRPC cohort, a higher ratio of methylation was correlated with better OS (R2 = 0.33, P = 0.013). Hypermethylation of specific regions (nucleotides -434 to -4 [CpG# -39 to CpG# -2]) was associated with a better OS (11.3±5.8 vs 6.4±4.4 years, P = 0.001) and PFS (8.4±5.4 vs 4.5±3.9 years, P = 0.003) with cutoff value of 37.9%. Multivariate analysis showed that SRD5A2 methylation was associated with OS independently (whole promoter region: P = 0.035; specific region: P = 0.02). CONCLUSION Our study demonstrate that SRD5A2 methylation in promoter regions, specifically at CpG# -39 to -2, is significantly associated with better survival for CRPC patients treated with ADT. Recognition of epigenetic modifications of SRD5A2 may affect the choices and sequence of available therapies for management of CRPC.
Collapse
Affiliation(s)
- Zongwei Wang
- Department of Surgery, Division of Urology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
- Department of Pathology and Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Tuo Deng
- Department of Surgery, Division of Urology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
- Department of Urology, Minimally Invasive Surgery center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, Guangdong, China
| | - Xingbo Long
- Department of Urology, Union Medical College, Beijing, China
| | - Xueming Lin
- Department of Pathology and Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shulin Wu
- Department of Pathology and Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Hongbo Wang
- Department of Pathology and Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Rongbin Ge
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Zhenwei Zhang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States of America
| | - Chin-Lee Wu
- Department of Pathology and Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Mary-Ellen Taplin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States of America
| | - Aria F. Olumi
- Department of Surgery, Division of Urology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
6
|
Lévesque E, Labriet A, Hovington H, Allain ÉP, Melo-Garcia L, Rouleau M, Brisson H, Turcotte V, Caron P, Villeneuve L, Leclercq M, Droit A, Audet-Walsh E, Simonyan D, Fradet Y, Lacombe L, Guillemette C. Alternative promoters control UGT2B17-dependent androgen catabolism in prostate cancer and its influence on progression. Br J Cancer 2020; 122:1068-1076. [PMID: 32047296 PMCID: PMC7109100 DOI: 10.1038/s41416-020-0749-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/18/2019] [Accepted: 01/23/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Perturbation of the major UGT2B17-dependent androgen catabolism pathway has the potential to affect prostate cancer (PCa) progression. The objective was to evaluate UGT2B17 protein expression in primary tumours in relation to hormone levels, disease characteristics and cancer evolution. METHODS We conducted an analysis of a high-density prostate tumour tissue microarray consisting of 239 localised PCa cases treated by radical prostatectomy (RP). Cox proportional hazard ratio analysis was used to evaluate biochemical recurrence (BCR), and a linear regression model evaluated variations in circulating hormone levels measured by mass spectrometry. The transcriptome of UGT2B17 in PCa was established by using RNA-sequencing data. RESULTS UGT2B17 expression in primary tumours was associated with node-positive disease at RP and linked to circulating levels of 3α-diol-17 glucuronide, a major circulating DHT metabolite produced by the UGT2B17 pathway. UGT2B17 was an independent prognostic factor linked to BCR after RP, and its overexpression was associated with development of metastasis. Finally, we demonstrated that distinctive alternative promoters dictate UGT2B17-dependent androgen catabolism in localised and metastatic PCa. CONCLUSIONS The androgen-inactivating gene UGT2B17 is controlled by overlooked regulatory regions in PCa. UGT2B17 expression in primary tumours influences the steroidome, and is associated with relevant clinical outcomes, such as BCR and metastasis.
Collapse
Affiliation(s)
- Eric Lévesque
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Université Laval and Faculty of Medicine, Québec, Canada.
| | - Adrien Labriet
- Pharmacogenomics laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Faculty of Pharmacy, Laval University, Québec, Canada
| | - Hélène Hovington
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Université Laval and Faculty of Medicine, Québec, Canada
| | - Éric P Allain
- Pharmacogenomics laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Faculty of Pharmacy, Laval University, Québec, Canada
| | - Luciana Melo-Garcia
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Université Laval and Faculty of Medicine, Québec, Canada
| | - Michèle Rouleau
- Pharmacogenomics laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Faculty of Pharmacy, Laval University, Québec, Canada
| | - Hervé Brisson
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Université Laval and Faculty of Medicine, Québec, Canada
| | - Véronique Turcotte
- Pharmacogenomics laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Faculty of Pharmacy, Laval University, Québec, Canada
| | - Patrick Caron
- Pharmacogenomics laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Faculty of Pharmacy, Laval University, Québec, Canada
| | - Lyne Villeneuve
- Pharmacogenomics laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Faculty of Pharmacy, Laval University, Québec, Canada
| | - Mickaël Leclercq
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Université Laval and Faculty of Medicine, Québec, Canada
| | - Arnaud Droit
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Université Laval and Faculty of Medicine, Québec, Canada
| | - Etienne Audet-Walsh
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Université Laval and Faculty of Medicine, Québec, Canada
| | - David Simonyan
- Statistical and Clinical Research Platform, CHU de Québec Research Center-Université Laval, Québec, Canada
| | - Yves Fradet
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Université Laval and Faculty of Medicine, Québec, Canada
| | - Louis Lacombe
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Université Laval and Faculty of Medicine, Québec, Canada
| | - Chantal Guillemette
- Pharmacogenomics laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Faculty of Pharmacy, Laval University, Québec, Canada
| |
Collapse
|
7
|
Gonthier K, Poluri RTK, Audet-Walsh É. Functional genomic studies reveal the androgen receptor as a master regulator of cellular energy metabolism in prostate cancer. J Steroid Biochem Mol Biol 2019; 191:105367. [PMID: 31051242 DOI: 10.1016/j.jsbmb.2019.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022]
Abstract
Sex-steroid hormones have been investigated for decades for their oncogenic properties in hormone-dependent cancers. The increasing body of knowledge on the biological actions of androgens in prostate cancer has led to the development of several targeted therapies that still represent the standard of care for cancer patients to this day. In the prostate, androgens promote cellular differentiation and proper tissue development. These hormones also promote the aberrant proliferation and survival of prostate cancer cells. Over the past few years, sequencing technologies for functional genomic analyses have rapidly expanded, revealing novel functions of sex-steroid hormone receptors other than their classic roles. In this article, we will focus on transcriptomic- and genomic-based evidence that demonstrates the importance of the androgen receptor signaling in the regulation of prostate cancer cell metabolism. This is significant because the reprogramming of cell metabolism is a hallmark of cancer. In fact, it is clear now that the androgen receptor contributes to the reprogramming of specific cellular metabolic pathways that promote tumor growth and disease progression, including aerobic glycolysis, mitochondrial respiration, fatty acid ß-oxidation, and de novo lipid synthesis. Overall, beyond regulating development, differentiation, and proliferation, the androgen receptor is also a master regulator of cellular energy metabolism.
Collapse
Affiliation(s)
- Kevin Gonthier
- Department of Molecular Medicine, Axe Endocrinologie - Néphrologie du Centre de recherche du CHU de Québec, Canada; Centre de recherche sur le cancer - Université Laval, Canada
| | - Raghavendra Tejo Karthik Poluri
- Department of Molecular Medicine, Axe Endocrinologie - Néphrologie du Centre de recherche du CHU de Québec, Canada; Centre de recherche sur le cancer - Université Laval, Canada
| | - Étienne Audet-Walsh
- Department of Molecular Medicine, Axe Endocrinologie - Néphrologie du Centre de recherche du CHU de Québec, Canada; Centre de recherche sur le cancer - Université Laval, Canada.
| |
Collapse
|
8
|
Lévesque E, Caron P, Lacombe L, Turcotte V, Simonyan D, Fradet Y, Aprikian A, Saad F, Carmel M, Chevalier S, Guillemette C. A Comprehensive Analysis of Steroid Hormones and Progression of Localized High-Risk Prostate Cancer. Cancer Epidemiol Biomarkers Prev 2019; 28:701-706. [PMID: 30733309 DOI: 10.1158/1055-9965.epi-18-1002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/01/2018] [Accepted: 02/02/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In men with localized prostate cancer who are undergoing radical prostatectomy (RP), it is uncertain whether their systemic hormonal environment is associated with outcomes. The objective of the study was to examine the association between the circulating steroid metabolome with prognostic factors and progression. METHODS The prospective PROCURE cohort was recruited from 2007 to 2012, and comprises 1,766 patients with localized prostate cancer who provided blood samples prior to RP. The levels of 15 steroids were measured in plasma using mass spectrometry, and their association with prognostic factors and disease-free survival (DFS) was established with logistic regression and multivariable Cox proportional hazard models. RESULTS The median follow-up time after surgery was 73.2 months. Overall, 524 patients experienced biochemical failure and 75 developed metastatic disease. Testosterone and androsterone levels were higher in low-risk disease. Associations were observed between adrenal precursors and risk of cancer progression. In high-risk patients, a one-unit increment in log-transformed androstenediol (A5diol) and dehydroepiandrosterone-sulfate (DHEA-S) levels were linked to DFS with HR of 1.47 (P = 0.0017; q = 0.026) and 1.24 (P = 0.043; q = 0.323), respectively. Although the number of metastatic events was limited, trends with metastasis-free survival were observed for A5diol (HR = 1.51; P = 0.057) and DHEA-S levels (HR = 1.43; P = 0.054). CONCLUSIONS In men with localized prostate cancer, our data suggest that the preoperative steroid metabolome is associated with the risk of recurrence of high-risk disease. IMPACT The associations of adrenal androgens with progression of localized high-risk disease could help refine hormonal strategies for these patients.
Collapse
Affiliation(s)
- Eric Lévesque
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and Faculty of Medicine, Laval University, Québec, Canada.
| | - Patrick Caron
- CHU de Québec Research Centre and Faculty of Pharmacy, Laval University, Québec, Canada
| | - Louis Lacombe
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and Faculty of Medicine, Laval University, Québec, Canada
| | - Véronique Turcotte
- CHU de Québec Research Centre and Faculty of Pharmacy, Laval University, Québec, Canada
| | - David Simonyan
- Statistical and Clinical Research Platform, CHU de Québec Research Centre, Québec, Canada
| | - Yves Fradet
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and Faculty of Medicine, Laval University, Québec, Canada
| | - Armen Aprikian
- McGill University Health Centre, McGill University, Faculty of Medicine, Québec, Canada
| | - Fred Saad
- Centre Hospitalier de l'Université de Montréal, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Michel Carmel
- Université de Sherbrooke, Faculty of Medicine, Québec, Canada
| | - Simone Chevalier
- McGill University Health Centre, McGill University, Faculty of Medicine, Québec, Canada
| | - Chantal Guillemette
- CHU de Québec Research Centre and Faculty of Pharmacy, Laval University, Québec, Canada.
| |
Collapse
|
9
|
Boibessot C, Toren P. Sex steroids in the tumor microenvironment and prostate cancer progression. Endocr Relat Cancer 2018; 25:R179-R196. [PMID: 29317479 DOI: 10.1530/erc-17-0493] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 12/30/2022]
Abstract
Prostate cancer is uniquely dependent on androgens. Despite years of research on the relationship between androgens and prostate cancer, many questions remain as to the biological effects of androgens and other sex steroids during prostate cancer progression. This article reviews the clinical and basic research on the influence of sex steroids such as androgens, estrogens and progesterone within the prostate tumor microenvironment on the progression of prostate cancer. We review clinical studies to date evaluating serum sex steroids as prognostic biomarkers and discuss their respective biological effects within the prostate tumor microenvironment. We also review the link between genomic alterations and sex steroid levels within prostate tumors. Finally, we highlight the links between sex steroid levels and the function of the immune system within the tumor microenvironment. As the context of treatment of lethal prostate cancer evolves over time, an understanding of this underlying biology remains central to developing optimal treatment approaches.
Collapse
Affiliation(s)
- Clovis Boibessot
- Department of SurgeryLaval University, Quebec City, Quebec, Canada
| | - Paul Toren
- Department of SurgeryLaval University, Quebec City, Quebec, Canada
| |
Collapse
|
10
|
Association between polymorphisms in sex hormones synthesis and metabolism and prostate cancer aggressiveness. PLoS One 2017; 12:e0185447. [PMID: 28981526 PMCID: PMC5628818 DOI: 10.1371/journal.pone.0185447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/12/2017] [Indexed: 12/31/2022] Open
Abstract
Novel biomarkers for prostate cancer (PCa) diagnosis and prognosis are necessary to improve the accuracy of current ones employed in clinic. We performed a retrospective study between the association of several polymorphisms in the main genes involved in the synthesis and metabolism of sex hormones and PCa risk and aggressiveness. A total of 311 Caucasian men (155 controls and 156 patients) were genotyped for 9 SNPs in AR, CYP17A1, LHCGR, ESR1 and ESR2 genes. Diagnostic PSA serum levels, Gleason score, tumor stage, D´Amico risk and data of clinical progression were obtained for patients at the moment of the diagnosis and after 54 months of follow-up. Chi-squared test were used for comparisons between clinical variables groups, logistic regression for clinical variables associations between SNPs; and Kaplan–Meier for the association between SNPs and time to biochemical progression. We found 5 variants (CYP17A1) rs743572, rs6162, rs6163; (LHCGR) rs2293275 and (ESR2) rs1256049 that were statistically significant according to clinical variables (PSA, D´Amico risk and T stage) on a case-case analysis. Moreover, the presence of A and G alleles in rs743572 and rs6162 respectively, increase the risk of higher PSA levels (>10 ng/μl). With respect to D´Amico risk rs743572 (AG-GG), rs6162 (AG-AA) and rs6163 (AC-AA) were associated with an increased risk; and last, AC and AA genotypes for rs6163 were associated with a shorter biochemical recurrence free survival (BRFS) in patients with radical prostatectomy. In multigene analysis, several variants in SNPs rs2293275, rs6152, rs1062577, rs6162, rs6163, rs1256049 and rs1004467 were described to be associated with a more aggressiveness in patients. However, none of the selected SNPs show significant values between patients and controls. In conclusion, this study identified inherited variants in genes CYP17A1, LHCGR and ESR2 related to more aggressiveness and/or a poor progression of the disease. According to this study, new promise PCa biomarkers for clinical management could be included in these previous SNPs.
Collapse
|
11
|
Liu K, Li X, Wang J, Wang Y, Dong H, Li J. Genetic variants in RhoA and ROCK1 genes are associated with the development, progression and prognosis of prostate cancer. Oncotarget 2017; 8:19298-19309. [PMID: 28184030 PMCID: PMC5386685 DOI: 10.18632/oncotarget.15197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/03/2017] [Indexed: 01/08/2023] Open
Abstract
The contribution of genetic variants in RhoA and ROCK1 genes towards prostate cancer risk has not been reported before. We genotyped six potentially functional genetic variants in a case-control study of 1699 subjects. Overall, we found rs2410 mutant allele and rs2269736 wild allele were risk factors for prostate cancer. Individuals carrying more than two risk alleles were exposed to hazard of prostate cancer. In addition, we demonstrated that the risk of biochemical recurrence might be linked with clinico-pathological characteristics and also genetic factors. Unfortunately, no associations were observed between all polymorphisms and clinico-pathological characteristics. Moreover, no genotype was found as significant independent prognostic predictor for biochemical recurrence survival in Multivariate Cox regression analysis after Bonferroni correction. Our study is the first to clarify the relations of genetic variants of RhoA and ROCK1 genes with development, progression and prognosis of prostate cancer. These variants may be promising novel biomarkers to facilitate clinical treatment decision-making.
Collapse
Affiliation(s)
- Kang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Li
- Department of Urology, The Affiliated Cancer Hospital of Jiangsu Province of Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yichun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiyu Dong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Pre-radiotherapy PSA progression is a negative prognostic factor in prostate cancer patients using 5‑alpha-reductase inhibitors. Strahlenther Onkol 2017; 194:17-22. [PMID: 28695317 DOI: 10.1007/s00066-017-1176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To investigate the impact of 5‑alpha-reductase inhibitor (5-ARI) use on radiotherapy outcomes for localized prostate cancer. PATIENTS AND METHODS We included 203 patients on a 5-ARI from our institutional database comprising over 2500 patients who had been treated with either external beam radiotherapy (EBRT) or brachytherapy for localized prostate cancer. Patients received a 5-ARI for urinary symptoms or active surveillance. Cancer progressions at the time of definitive treatment were analyzed according to the following criteria: (a) progression of Gleason score or increase in cancer volume on biopsy, (b) first biopsy positive for cancer after being treated for urinary symptoms with a 5-ARI, and (c) prostate-specific antigen (PSA) progression with or without a previous cancer diagnosis. Biochemical failure (BF) was defined by the Phoenix definition. Log-rank test was used for survival analysis. RESULTS At a median follow-up of 38.2 months (standard deviation 22.2 months), 10 (4.9%) patients experienced BF. Concerning prostate cancer progression criteria, 52% of men demonstrated none, 37% showed only one criterion, and 11% showed two. Using univariate analysis, PSA progression (p = 0.004) and appearance of a positive biopsy (p < 0.001) were significant predictive factors for BF, while Gleason progression (p = 0.3) was not. In multivariate analysis adjusted for cancer aggressiveness, rising PSA (hazard ratio, HR, 5.7; 95% confidence interval, CI, 1.1-28.8; p = 0.04) and the number of cancer progression factors (HR 2.9, 95% CI 1.2-7.0, p = 0.02) remained adverse risk factors. CONCLUSION PSA progression experienced during 5‑ARI treatment before radiotherapy is predictive of worse biochemical outcome. Such details should be considered when counseling men prior to radiation therapy.
Collapse
|
13
|
Audet-Walsh É, Yee T, Tam IS, Giguère V. Inverse Regulation of DHT Synthesis Enzymes 5α-Reductase Types 1 and 2 by the Androgen Receptor in Prostate Cancer. Endocrinology 2017; 158:1015-1021. [PMID: 28324044 DOI: 10.1210/en.2016-1926] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/18/2017] [Indexed: 12/20/2022]
Abstract
5α-Reductase types 1 and 2, encoded by SRD5A1 and SRD5A2, are the two enzymes that can catalyze the conversion of testosterone to dihydrotestosterone, the most potent androgen receptor (AR) agonist in prostate cells. 5α-Reductase type 2 is the predominant isoform expressed in the normal prostate. However, its expression decreases during prostate cancer (PCa) progression, whereas SRD5A1 increases, and the mechanism underlying this transcriptional regulatory switch is still unknown. Interrogation of SRD5A messenger RNA expression in three publicly available data sets confirmed that SRD5A1 is increased in primary and metastatic PCa compared with nontumoral prostate tissues, whereas SRD5A2 is decreased. Activation of AR, a major oncogenic driver of PCa, induced the expression of SRD5A1 from twofold to fourfold in three androgen-responsive PCa cell lines. In contrast, AR repressed SRD5A2 expression in this context. Chromatin-immunoprecipitation studies established that AR is recruited to both SRD5A1 and SRD5A2 genes following androgen stimulation but initiates transcriptional activation only at SRD5A1 as monitored by recruitment of RNA polymerase II and the presence of the H3K27Ac histone mark. Furthermore, we showed that the antiandrogens bicalutamide and enzalutamide block the AR-mediated regulation of both SRD5A1 and SRD5A2, highlighting an additional mechanism explaining their beneficial effects in patients. In summary, we identified an AR-dependent transcriptional regulation that explains the differential expression of 5α-reductase types 1 and 2 during PCa progression. Our work thus defines a mechanism by which androgens control their own synthesis via differential regulatory control of the expression of SRD5A1 and SRD5A2.
Collapse
Affiliation(s)
- Étienne Audet-Walsh
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Tracey Yee
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Ingrid S Tam
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
14
|
Price DK, Chau CH, Till C, Goodman PJ, Leach RJ, Johnson-Pais TL, Hsing AW, Hoque A, Parnes HL, Schenk JM, Tangen CM, Thompson IM, Reichardt JK, Figg WD. Association of androgen metabolism gene polymorphisms with prostate cancer risk and androgen concentrations: Results from the Prostate Cancer Prevention Trial. Cancer 2016; 122:2332-40. [PMID: 27164191 PMCID: PMC4956504 DOI: 10.1002/cncr.30071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND Prostate cancer is highly influenced by androgens and genes. The authors investigated whether genetic polymorphisms along the androgen biosynthesis and metabolism pathways are associated with androgen concentrations or with the risk of prostate cancer or high-grade disease from finasteride treatment. METHODS A nested case-control study from the Prostate Cancer Prevention Trial using data from men who had biopsy-proven prostate cancer (cases) and a group of biopsy-negative, frequency-matched controls was conducted to investigate the association of 51 single nucleotide polymorphisms (SNPs) in 12 genes of the androgen pathway with overall (total), low-grade, and high-grade prostate cancer incidence and serum hormone concentrations. RESULTS There were significant associations of genetic polymorphisms in steroid 5α-reductase 1 (SRD5A1) (reference SNPs: rs3736316, rs3822430, rs1560149, rs248797, and rs472402) and SRD5A2 (rs2300700) with the risk of high-grade prostate cancer in the placebo arm of the Prostate Cancer Prevention Trial; 2 SNPs were significantly associated with an increased risk (SRD5A1 rs472402 [odds ratio, 1.70; 95% confidence interval, 1.05-2.75; Ptrend = .03] and SRD5A2 rs2300700 [odds ratio, 1.94; 95% confidence interval, 1.19-3.18; Ptrend = .01]). Eleven SNPs in SRD5A1, SRD5A2, cytochrome P450 family 1, subfamily B, polypeptide 1 (CYP1B1), and CYP3A4 were associated with modifying the mean concentrations of serum androgen and sex hormone-binding globulin; and 2 SNPs (SRD5A1 rs824811 and CYP1B1 rs10012; Ptrend < .05) consistently and significantly altered all androgen concentrations. Several SNPs (SRD5A1 rs3822430, SRD5A2 rs2300700, CYP3A43 rs800672, and CYP19 rs700519; Ptrend < .05) were significantly associated with both circulating hormone levels and prostate cancer risk. CONCLUSIONS Germline genetic variations of androgen-related pathway genes are associated with serum androgen concentrations and the risk of prostate cancer. Further studies to examine the functional consequence of novel causal variants are warranted. Cancer 2016;122:2332-2340. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Douglas K. Price
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Cindy H. Chau
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Cathee Till
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Phyllis J. Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Robin J. Leach
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Teresa L. Johnson-Pais
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Ann W. Hsing
- Cancer Prevention Institute of California, Fremont, CA and Stanford Cancer Institute, Palo Alto, CA
| | - Ashraful Hoque
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Howard L. Parnes
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD
| | - Jeannette M. Schenk
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Catherine M. Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Ian M. Thompson
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Juergen K.V. Reichardt
- Division of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - William D. Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
15
|
Austin DC, Strand DW, Love HL, Franco OE, Grabowska MM, Miller NL, Hameed O, Clark PE, Matusik RJ, Jin RJ, Hayward SW. NF-κB and androgen receptor variant 7 induce expression of SRD5A isoforms and confer 5ARI resistance. Prostate 2016; 76:1004-18. [PMID: 27197599 PMCID: PMC4912960 DOI: 10.1002/pros.23195] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/18/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is treated with 5α-reductase inhibitors (5ARI). These drugs inhibit the conversion of testosterone to dihydrotestosterone resulting in apoptosis and prostate shrinkage. Most patients initially respond to 5ARIs; however, failure is common especially in inflamed prostates, and often results in surgery. This communication examines a link between activation of NF-κB and increased expression of SRD5A2 as a potential mechanism by which patients fail 5ARI therapy. METHODS Tissue was collected from "Surgical" patients, treated specifically for lower urinary tract symptoms secondary to advanced BPH; and, cancer free transition zone from "Incidental" patients treated for low grade, localized peripheral zone prostate cancer. Clinical, molecular and histopathological profiles were analyzed. Human prostatic stromal and epithelial cell lines were genetically modified to regulate NF-κB activity, androgen receptor (AR) full length (AR-FL), and AR variant 7 (AR-V7) expression. RESULTS SRD5A2 is upregulated in advanced BPH. SRD5A2 was significantly associated with prostate volume determined by Transrectal Ultrasound (TRUS), and with more severe lower urinary tract symptoms (LUTS) determined by American Urological Association Symptom Score (AUASS). Synthesis of androgens was seen in cells in which NF-κB was activated. AR-FL and AR-V7 expression increased SRD5A2 expression while forced activation of NF-κB increased all three SRD5A isoforms. Knockdown of SRD5A2 in the epithelial cells resulted in significant reduction in proliferation, AR target gene expression, and response to testosterone (T). In tissue recombinants, canonical NF-κB activation in prostatic epithelium elevated all three SRD5A isoforms and resulted in in vivo growth under castrated conditions. CONCLUSION Increased BPH severity in patients correlates with SRD5A2 expression. We demonstrate that NF-κB and AR-V7 upregulate SRD5A expression providing a mechanism to explain failure of 5ARI therapy in BPH patients. Prostate 76:1004-1018, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David C. Austin
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Douglas W. Strand
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Harold L. Love
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Omar E. Franco
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, Illinois
| | - Magdalena M. Grabowska
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nicole L. Miller
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Omar Hameed
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Peter E. Clark
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert J. Matusik
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ren J. Jin
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Simon W. Hayward
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, Illinois
| |
Collapse
|
16
|
Abstract
Although prostate cancer is the most common malignancy to affect men in the Western world, the molecular mechanisms underlying its development and progression remain poorly understood. Like all cancers, prostate cancer is a genetic disease that is characterized by multiple genomic alterations, including point mutations, microsatellite variations, and chromosomal alterations such as translocations, insertions, duplications, and deletions. In prostate cancer, but not other carcinomas, these chromosome alterations result in a high frequency of gene fusion events. The development and application of novel high-resolution technologies has significantly accelerated the detection of genomic alterations, revealing the complex nature and heterogeneity of the disease. The clinical heterogeneity of prostate cancer can be partly explained by this underlying genetic heterogeneity, which has been observed between patients from different geographical and ethnic populations, different individuals within these populations, different tumour foci within the same patient, and different cells within the same tumour focus. The highly heterogeneous nature of prostate cancer provides a real challenge for clinical disease management and a detailed understanding of the genetic alterations in all cells, including small subpopulations, would be highly advantageous.
Collapse
|
17
|
Ahmed M, Eeles R. Germline genetic profiling in prostate cancer: latest developments and potential clinical applications. Future Sci OA 2016; 2:FSO87. [PMID: 28031937 PMCID: PMC5137984 DOI: 10.4155/fso.15.87] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/10/2015] [Indexed: 12/16/2022] Open
Abstract
Familial and twin studies have demonstrated a significant inherited component to prostate cancer predisposition. Genome wide association studies have shown that there are 100 single nucleotide polymorphisms which have been associated with the development of prostate cancer. This review aims to discuss the scientific methods used to identify these susceptibility loci. It will also examine the current clinical utility of these loci, which include the development of risk models as well as predicting treatment efficacy and toxicity. In order to refine the clinical utility of the susceptibility loci, international consortia have been developed to combine statistical power as well as skills and knowledge to further develop models that could be used to predict risk and treatment outcomes.
Collapse
Affiliation(s)
- Mahbubl Ahmed
- The Institute of Cancer Research, London SM2 5NG, UK
| | | |
Collapse
|
18
|
|
19
|
Shiota M, Fujimoto N, Yokomizo A, Takeuchi A, Itsumi M, Inokuchi J, Tatsugami K, Uchiumi T, Naito S. SRD5A gene polymorphism in Japanese men predicts prognosis of metastatic prostate cancer with androgen-deprivation therapy. Eur J Cancer 2015; 51:1962-9. [DOI: 10.1016/j.ejca.2015.06.122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/24/2015] [Accepted: 06/17/2015] [Indexed: 11/26/2022]
|
20
|
Henríquez-Hernández LA, Valenciano A, Foro-Arnalot P, Álvarez-Cubero MJ, Cozar JM, Suárez-Novo JF, Castells-Esteve M, Fernández-Gonzalo P, De-Paula-Carranza B, Ferrer M, Guedea F, Sancho-Pardo G, Craven-Bartle J, Ortiz-Gordillo MJ, Cabrera-Roldán P, Rodríguez-Melcón JI, Herrera-Ramos E, Rodríguez-Gallego C, Lara PC. Genetic variations in genes involved in testosterone metabolism are associated with prostate cancer progression: A Spanish multicenter study. Urol Oncol 2015; 33:331.e1-7. [DOI: 10.1016/j.urolonc.2015.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/20/2015] [Accepted: 04/08/2015] [Indexed: 11/24/2022]
|
21
|
Bechis SK, Otsetov AG, Ge R, Wang Z, Vangel MG, Wu CL, Tabatabaei S, Olumi AF. Age and Obesity Promote Methylation and Suppression of 5α-Reductase 2: Implications for Personalized Therapy of Benign Prostatic Hyperplasia. J Urol 2015; 194:1031-7. [PMID: 25916673 DOI: 10.1016/j.juro.2015.04.079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2015] [Indexed: 01/24/2023]
Abstract
PURPOSE In men with symptomatic benign prostatic hyperplasia 5α-reductase inhibitors are a main modality of treatment. More than 30% of men do not respond to the therapeutic effects of 5α-reductase inhibitors. We have found that a third of adult prostate samples do not express 5α-reductase type 2 secondary to epigenetic modifications. We evaluated whether 5α-reductase type 2 expression in benign prostatic hyperplasia specimens from symptomatic men was linked to methylation of the 5α-reductase type 2 gene promoter. We also identified associations with age, obesity, cardiac risk factors and prostate specific antigen. MATERIALS AND METHODS Prostate samples from men undergoing transurethral prostate resection were used. We determined 5α-reductase type 2 protein expression and gene promoter methylation status by common assays. Clinical variables included age, body mass index, hypertension, hyperlipidemia, diabetes, prostate specific antigen and prostate volume. Univariate and multivariate statistical analyses were performed followed by stepwise logistic regression modeling. RESULTS Body mass index and age significantly correlated with methylation of the 5α-reductase type 2 gene promoter (p <0.05) whereas prostate volume, prostate specific antigen or benign prostatic hyperplasia medication did not correlate. Methylation highly correlated with 5α-reductase protein expression (p <0.0001). In a predictive model increasing age and body mass index significantly predicted methylation status and protein expression (p <0.01). CONCLUSIONS Increasing age and body mass index correlate with increased 5α-reductase type 2 gene promoter methylation and decreased protein expression in men with symptomatic benign prostatic hyperplasia. These results highlight the interplay among age, obesity and gene regulation. Our findings suggest an individualized epigenetic signature for symptomatic benign prostatic hyperplasia, which may be important to choose appropriate personalized treatment options.
Collapse
Affiliation(s)
- Seth K Bechis
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alexander G Otsetov
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rongbin Ge
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Zongwei Wang
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark G Vangel
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shahin Tabatabaei
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aria F Olumi
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
22
|
Cheng J, Ondracek RP, Mehedint DC, Kasza KA, Xu B, Gill S, Azabdaftari G, Yao S, Morrison CD, Mohler JL, Marshall JR. Association of fatty-acid synthase polymorphisms and expression with outcomes after radical prostatectomy. Prostate Cancer Prostatic Dis 2015; 18:182-9. [PMID: 25868764 DOI: 10.1038/pcan.2015.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/24/2015] [Accepted: 02/28/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND Fatty-acid synthase (FASN), selectively overexpressed in prostate cancer (PCa) cells, has been described as linked to the aggressiveness of PCa. Constitutional genetic variation of the FASN gene and the expression levels of FASN protein in cancer cells could thus be expected to predict outcome after radical prostatectomy (RP). This study evaluates the associations of malignant tissue status, neoadjuvant androgen deprivation therapy (NADT) and single-nucleotide polymorphisms (SNPs) of FASN with FASN protein expression in prostate tissue. The study then examines the associations of FASN SNPs and gene expression with three measures of post-prostatectomy outcome. METHODS Seven tagging FASN SNPs were genotyped in 659 European American men who underwent RP at Roswell Park Cancer Institute between 1993 and 2005. FASN protein expression was assessed using immunohistochemistry. The patients were followed for an average of 6.9 years (range: 0.1-20.6 years). Outcome was assessed using three end points: biochemical failure, treatment failure and development of distant metastatic PCa. Cox proportional hazards analyses were used to evaluate the associations of the tagging SNPs and FASN expression with these end points. Bivariate associations with outcomes were considered; the associations also were controlled for known aggressiveness indicators. RESULTS Overall, no SNPs were associated with any known aggressiveness indicators. FASN staining intensity was stronger in malignant than in benign tissue, and NADT was associated with decreased FASN staining in both benign and malignant tissue. The relationships of FASN SNPs and staining intensity with outcome were less clear. One SNP, rs4246444, showed a weak association with outcome. FASN staining intensity also showed a weak and seemingly contradictory relationship with outcome. CONCLUSIONS Additional study with longer follow-up and populations that include more metastatic patients is warranted.
Collapse
Affiliation(s)
- J Cheng
- 1] Department of Cancer Prevention and Population Science, Roswell Park Cancer Institute, Buffalo, NY, USA [2] Department of Pathology, University at Buffalo, Buffalo, NY, USA
| | - R P Ondracek
- Department of Cancer Prevention and Population Science, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - D C Mehedint
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - K A Kasza
- Department of Cancer Prevention and Population Science, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - B Xu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - S Gill
- Department of Pathology, University at Buffalo, Buffalo, NY, USA
| | - G Azabdaftari
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - S Yao
- Department of Cancer Prevention and Population Science, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - C D Morrison
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - J L Mohler
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - J R Marshall
- Department of Cancer Prevention and Population Science, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
23
|
Laverdière I, Flageole C, Audet-Walsh É, Caron P, Fradet Y, Lacombe L, Lévesque É, Guillemette C. The UGT1 locus is a determinant of prostate cancer recurrence after prostatectomy. Endocr Relat Cancer 2015; 22:77-85. [PMID: 25452636 DOI: 10.1530/erc-14-0423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The prognostic significance of common deletions in uridine diphospho-glucuronosyltransferase 2B (UGT2B) genes encoding sex steroid metabolic enzymes has been recently recognized in localized prostate cancer (PCa) after radical prostatectomy (RP). However, the role of germline variations at the UGT1 locus, encoding half of all human UGTs and primarily involved in estrogen metabolism, remains unexplored. We investigated whether variants of UGT1 are potential prognostic markers. We studied 526 Caucasian men who underwent RP for clinically localized PCa. Genotypes of patients for 34 haplotype-tagged single-nucleotide polymorphisms (htSNPs) and 11 additional SNPs across the UGT1 locus previously reported to mark common variants including functional polymorphisms were determined. The risk of biochemical recurrence (BCR) was estimated using adjusted Cox proportional hazards regression and Kaplan-Meier analysis. We further investigated whether variants are associated with plasma hormone levels by mass spectrometry. In multivariable models, seven htSNPs were found to be significantly associated with BCR. A greater risk was revealed for four UGT1 intronic variants with hazard ratios (HRs) of 1.59-1.88 (P<0.002) for htSNPs in UGT1A10, UGT1A9, and UGT1A6. Conversely, decreased BCR was associated with three htSNPs in introns of UGT1A10 and UGT1A9 (HR=0.56-058; P≤0.01). An unfavorable UGT1 haplotype comprising all risk alleles, with a frequency of 14%, had a HR of 1.68 (95% CI=1.13-2.50; P=0.011). Significant alteration in circulating androsterone levels was associated with this haplotype, consistent with changes in hormonal exposure. This study provides the first evidence, to our knowledge, that germline polymorphisms of UGT1 are potential predictors of recurrence of PCa after prostatectomy.
Collapse
Affiliation(s)
- Isabelle Laverdière
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| | - Christine Flageole
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| | - Étienne Audet-Walsh
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| | - Patrick Caron
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| | - Yves Fradet
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| | - Louis Lacombe
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| | - Éric Lévesque
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| | - Chantal Guillemette
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| |
Collapse
|
24
|
Choi SY, Kim HJ, Cheong HS, Myung SC. The association of 5-alpha reductase type 2 (SRD5A2) gene polymorphisms with prostate cancer in a Korean population. Korean J Urol 2015; 56:19-30. [PMID: 25598933 PMCID: PMC4294851 DOI: 10.4111/kju.2015.56.1.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/27/2014] [Indexed: 11/23/2022] Open
Abstract
Purpose Steroid 5-alpha reductase type 2 (SRD5A2) modifies testosterone to dihydrotestosterone (DHT) in the prostate. Single-nucleotide polymorphisms (SNPs) of the SRD5A2 gene might affect DHT. We sought to understand the relationship of SRD5A2 SNPs to prostate cancer in the Korean population. Materials and Methods Twenty-six common SNPs in the SRD5A2 gene were assessed in 272 prostate cancer cases and 173 controls. Single-locus analyses were conducted by using conditional logistic regression. Additionally, we performed a haplotype analysis for the SRD5A2 SNPs tested. Results Among the 20 SNPs and 4 haplotypes, there were no statistically significant results in the prostate cancer patients and the controls. In the logistic analysis of SRD5A2 polymorphisms with prostate-specific antigen (PSA) criteria, two SNPs (rs508562, rs11675297) and haplotype 1 displayed significant results (odds ratio [OR], 1.76; p=0.05; OR, 1.88-2.02; p=0.01-0.04; OR, 0.59; p=0.02, respectively). rs508562, rs11675297, rs2208532, and haplotype 1 (OR, 1.49; p=0.05; OR, 2.02; p=0.05; OR, 2.01; p=0.04; OR, 0.56-0.64, p=0.03-0.04, respectively) had significant associations with Gleason score. rs508562, rs11675297, and haplotype 1 (OR, 1.41-2.34; p=0.004-0.05; OR, 1.74-1.82; p=0.03-0.05; OR, 0.42-0.67; p=0.0005-0.03, respectively) were significantly associated with clinical stage. Conclusions We conclude that there was no significant association between SRD5A2 SNPs and the risk of prostate cancer in the Korean population. However, we found that some SNPs and 1 haplotype influenced PSA level, Gleason score, and clinical stage.
Collapse
Affiliation(s)
- Se Young Choi
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hae Jong Kim
- Future Fusion Research Division, Korea Institute of Science and Technology, Department of Genetic Epidemiology, Seoul, Korea
| | | | - Soon Chul Myung
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Sissung TM, Price DK, Del Re M, Ley AM, Giovannetti E, Figg WD, Danesi R. Genetic variation: effect on prostate cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1846:446-56. [PMID: 25199985 PMCID: PMC4260983 DOI: 10.1016/j.bbcan.2014.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 02/09/2023]
Abstract
The crucial role of androgens in the development of prostate cancer is well established. The aim of this review is to examine the role of constitutional (germline) and tumor-specific (somatic) polymorphisms within important regulatory genes of prostate cancer. These include genes encoding enzymes of the androgen biosynthetic pathway, the androgen receptor gene, genes that encode proteins of the signal transduction pathways that may have a role in disease progression and survival, and genes involved in prostate cancer angiogenesis. Characterization of deregulated pathways critical to cancer cell growth have lead to the development of new treatments, including the CYP17 inhibitor abiraterone and clinical trials using novel drugs that are ongoing or recently completed [1]. The pharmacogenetics of the drugs used to treat prostate cancer will also be addressed. This review will define how germline polymorphisms are known affect a multitude of pathways, and therefore phenotypes, in prostate cancer etiology, progression, and treatment.
Collapse
Affiliation(s)
- Tristan M Sissung
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Douglas K Price
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marzia Del Re
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Ariel M Ley
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elisa Giovannetti
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - William D Figg
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Romano Danesi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
26
|
Huang SP, Lévesque E, Guillemette C, Yu CC, Huang CY, Lin VC, Chung IC, Chen LC, Laverdière I, Lacombe L, Fradet Y, Chang TY, Lee HZ, Juang SH, Bao BY. Genetic variants in microRNAs and microRNA target sites predict biochemical recurrence after radical prostatectomy in localized prostate cancer. Int J Cancer 2014; 135:2661-7. [PMID: 24740842 DOI: 10.1002/ijc.28904] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 03/12/2014] [Accepted: 04/02/2014] [Indexed: 12/21/2022]
Abstract
Recent evidence indicates that microRNAs might participate in prostate cancer initiation, progression and treatment response. Germline variations in microRNAs might alter target gene expression and modify the efficacy of prostate cancer therapy. To determine whether genetic variants in microRNAs and microRNA target sites are associated with the risk of biochemical recurrence (BCR) after radical prostatectomy (RP). We retrospectively studied two independent cohorts composed of 320 Asian and 526 Caucasian men with pathologically organ-confined prostate cancer who had a median follow-up of 54.7 and 88.8 months after RP, respectively. Patients were systematically genotyped for 64 single-nucleotide polymorphisms (SNPs) in microRNAs and microRNA target sites, and their prognostic significance on BCR was assessed by Kaplan-Meier analysis and Cox regression model. After adjusting for known clinicopathologic risk factors, two SNPs (MIR605 rs2043556 and CDON rs3737336) remained associated with BCR. The numbers of risk alleles showed a cumulative effect on BCR [perallele hazard ratio (HR) 1.60, 95% confidence interval (CI) 1.16-2.21, p for trend = 0.005] in Asian cohort, and the risk was replicated in Caucasian cohort (HR 1.55, 95% CI 1.15-2.08, p for trend = 0.004) and in combined analysis (HR 1.57, 95% CI 1.26-1.96, p for trend <0.001). Results warrant replication in larger cohorts. This is the first study demonstrating that SNPs in microRNAs and microRNA target sites can be predictive biomarkers for BCR after RP.
Collapse
Affiliation(s)
- Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Van den Broeck T, Joniau S, Clinckemalie L, Helsen C, Prekovic S, Spans L, Tosco L, Van Poppel H, Claessens F. The role of single nucleotide polymorphisms in predicting prostate cancer risk and therapeutic decision making. BIOMED RESEARCH INTERNATIONAL 2014; 2014:627510. [PMID: 24701578 PMCID: PMC3950427 DOI: 10.1155/2014/627510] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/07/2014] [Indexed: 12/20/2022]
Abstract
Prostate cancer (PCa) is a major health care problem because of its high prevalence, health-related costs, and mortality. Epidemiological studies have suggested an important role of genetics in PCa development. Because of this, an increasing number of single nucleotide polymorphisms (SNPs) had been suggested to be implicated in the development and progression of PCa. While individual SNPs are only moderately associated with PCa risk, in combination, they have a stronger, dose-dependent association, currently explaining 30% of PCa familial risk. This review aims to give a brief overview of studies in which the possible role of genetic variants was investigated in clinical settings. We will highlight the major research questions in the translation of SNP identification into clinical practice.
Collapse
Affiliation(s)
- Thomas Van den Broeck
- Department of Urology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1, P.O. Box 901, Herestraat 49, 3000 Leuven, Belgium
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Liesbeth Clinckemalie
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1, P.O. Box 901, Herestraat 49, 3000 Leuven, Belgium
| | - Christine Helsen
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1, P.O. Box 901, Herestraat 49, 3000 Leuven, Belgium
| | - Stefan Prekovic
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1, P.O. Box 901, Herestraat 49, 3000 Leuven, Belgium
| | - Lien Spans
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1, P.O. Box 901, Herestraat 49, 3000 Leuven, Belgium
| | - Lorenzo Tosco
- Department of Urology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Hendrik Van Poppel
- Department of Urology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1, P.O. Box 901, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
28
|
Eeles R, Goh C, Castro E, Bancroft E, Guy M, Al Olama AA, Easton D, Kote-Jarai Z. The genetic epidemiology of prostate cancer and its clinical implications. Nat Rev Urol 2014; 11:18-31. [PMID: 24296704 DOI: 10.1038/nrurol.2013.266] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Worldwide, familial and epidemiological studies have generated considerable evidence of an inherited component to prostate cancer. Indeed, rare highly penetrant genetic mutations have been implicated. Genome-wide association studies (GWAS) have also identified 76 susceptibility loci associated with prostate cancer risk, which occur commonly but are of low penetrance. However, these mutations interact multiplicatively, which can result in substantially increased risk. Currently, approximately 30% of the familial risk is due to such variants. Evaluating the functional aspects of these variants would contribute to our understanding of prostate cancer aetiology and would enable population risk stratification for screening. Furthermore, understanding the genetic risks of prostate cancer might inform predictions of treatment responses and toxicities, with the goal of personalized therapy. However, risk modelling and clinical translational research are needed before we can translate risk profiles generated from these variants into use in the clinical setting for targeted screening and treatment.
Collapse
Affiliation(s)
- Rosalind Eeles
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Chee Goh
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Elena Castro
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Elizabeth Bancroft
- Clinical Academic Cancer Genetics Unit, The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, UK
| | - Michelle Guy
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Ali Amin Al Olama
- Cancer Research UK Centre for Cancer Genetic Epidemiology, Strangeways Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Douglas Easton
- Departments of Public Health & Primary Care and Oncology, Strangeways Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Zsofia Kote-Jarai
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| |
Collapse
|
29
|
Germline genetic variants associated with prostate cancer and potential relevance to clinical practice. Recent Results Cancer Res 2014; 202:9-26. [PMID: 24531773 DOI: 10.1007/978-3-642-45195-9_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The inherited link of prostate cancer predisposition has been supported using data from early epidemiological studies, as well as from familial and twin studies. Early linkage analyses and candidate gene approaches to identify these variants yielded mixed results. Since then, multiple genetic variants associated with prostate cancer susceptibility have now been found from genome-wide association studies (GWAS). Their clinical utility, however, remains unknown. It is recognised that collaborative efforts are needed to ensure adequate sample sizes are available to definitively investigate the genetic-clinical interactions. These could have important implications for public health as well as individualised prostate cancer management strategies. With the costs of genotyping decreasing and direct-to-consumer testing already offered for these common variants, it is envisaged that a lot of attention will be focussed in this area. These results will enable more refined risk stratification which will be important for targeting screening and prevention to higher risk groups. Ascertaining their clinical role remains an important goal for the GWAS community with international consortia now established, pooling efforts and resources to move this field forward.
Collapse
|
30
|
Lévesque É, Laverdière I, Lacombe L, Caron P, Rouleau M, Turcotte V, Têtu B, Fradet Y, Guillemette C. Importance of 5α-reductase gene polymorphisms on circulating and intraprostatic androgens in prostate cancer. Clin Cancer Res 2013; 20:576-84. [PMID: 24277450 DOI: 10.1158/1078-0432.ccr-13-1100] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Polymorphisms in the genes SRD5A1 and SRD5A2 encoding androgen biosynthetic 5α-reductase enzymes have been associated with an altered risk of biochemical recurrence after radical prostatectomy in localized prostate cancer. EXPERIMENTAL DESIGN To gain potential insights into SRD5A biologic effects, we examined the relationship between SRD5A prognostic markers and endogenous sex-steroid levels measured by mass spectrometry in plasma samples and corresponding prostatic tissues of patients with prostate cancer. RESULTS We report that five of the seven SRD5A markers differentially affect sex-steroid profiles of dihydrotestosterone and its metabolites in both the circulation and prostatic tissues of patients with prostate cancer. Remarkably, a 32% increase in intraprostatic testosterone levels was observed in the presence of the high-risk SRD5A rs2208532 polymorphism. Moreover, SRD5A2 markers were associated predominantly with circulating levels of inactive glucuronides. Indeed, the rs12470143 SRD5A2 protective allele was associated with high circulating androstane-3α, 17β-diol-17-glucuronide (3α-diol-17G) levels as opposed to lower levels of both 3α-diol-17G and androsterone-glucuronide observed with the rs2208532 SRD5A2 risk allele. Moreover, SRD5A2 rs676033 and rs523349 (V89L) risk variants, in strong linkage disequilibrium, were associated with higher circulating levels of 3α-diol-3G. The SRD5A2 rs676033 variant further correlated with enhanced intraprostatic exposure to 5α-reduced steroids (dihydrotestosterone and its metabolite 3β-diol). Similarly, the SRD5A1 rs166050C risk variant was associated with greater prostatic exposure to androsterone, whereas no association was noted with circulating steroids. CONCLUSIONS Our data support the association of 5α-reductase germline polymorphisms with the hormonal milieu in patients with prostate cancer. Further studies are needed to evaluate if these variants influence 5α-reductase inhibitor efficacy.
Collapse
Affiliation(s)
- Éric Lévesque
- Authors' Affiliations: Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy; and Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Medicine, Laval University, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lévesque É, Huang SP, Audet-Walsh É, Lacombe L, Bao BY, Fradet Y, Laverdière I, Rouleau M, Huang CY, Yu CC, Caron P, Guillemette C. Molecular markers in key steroidogenic pathways, circulating steroid levels, and prostate cancer progression. Clin Cancer Res 2012. [PMID: 23186779 DOI: 10.1158/1078-0432.ccr-12-2812] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Prostate cancer is a heterogeneous genetic disease, and molecular methods for predicting prognosis in patients with aggressive form of the disease are urgently needed to better personalize treatment approaches. The objective was to identify host genetic variations in candidate steroidogenic genes affecting hormone levels and prostate cancer progression. EXPERIMENTAL DESIGN The study examined two independent cohorts composed of 526 Caucasian men with organ-confined prostate cancer and 601 Taiwanese men on androgen-deprivation therapy. Caucasians were genotyped for 109 haplotype-tagging single-nucleotide polymorphisms (SNP) in CYP17A1, ESR1, CYP19A1, and HSD3B1, and their prognostic significance on disease progression was assessed using Kaplan-Meier survival curves and Cox regression models. Positive findings, including previously identified SRD5A1, SRD5A2, HSD17B2, HSD17B3, and HSD17B12 polymorphisms, were then explored in Taiwanese men (n = 32 SNPs). The influence of positive markers on the circulating hormonal levels was then appraised in Caucasians using specific and sensitive mass spectrometry-based methods. RESULTS After adjusting for known risk factors, variants of CYP17A1 (rs6162), HSD17B2 (rs4243229 and rs7201637), and ESR1 (rs1062577) were associated with progressive disease in both cohorts. Indeed, the presence of these variations was significantly associated with progression in Caucasians (HR, 2.29-4.10; P = 0.0014-2 × 10(-7)) and survival in Taiwanese patients [HR = 3.74; 95% confidence interval (CI): 1.71-8.19, P = 0.009]. Remarkably, the CYP17A1 rs6162 polymorphism was linked to plasma dehydroepiandrosterone-sulfate (DHEA-S) levels (P = 0.03), HSD17B2 rs7201637 with levels of dihydrotestosterone (P = 0.03), and ESR1 rs1062577 with levels of estrone-S and androsterone-glucuronide (P ≤ 0.05). CONCLUSION This study identifies, in different ethnic groups and at different disease stages, CYP17A1, HSD17B2, and ESR1 as attractive prognostic molecular markers of prostate cancer progression.
Collapse
Affiliation(s)
- Éric Lévesque
- Pharmacogenomics Laboratory and L'Hôtel-Dieu de Québec, Centre Hospitalier Universitaire de Québec (CHUQ) Research Center, Faculty of Medicine, Laval University, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Effectiveness of the Combined Evaluation of
KLK3
Genetics and Free-to-Total Prostate Specific Antigen Ratio for Prostate Cancer Diagnosis. J Urol 2012; 188:1124-30. [DOI: 10.1016/j.juro.2012.06.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Indexed: 11/24/2022]
|
33
|
Todenhöfer T, Schwentner C, Stenzl A. Personalized Treatment of Prostate Cancer Based on Inherited Variations of Steroid Pathway–Related Genes. Eur Urol 2012; 62:97-9. [DOI: 10.1016/j.eururo.2011.12.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 12/28/2011] [Indexed: 10/14/2022]
|
34
|
Audet-Walsh É, Bellemare J, Lacombe L, Fradet Y, Fradet V, Douville P, Guillemette C, Lévesque É. The Impact of Germline Genetic Variations in Hydroxysteroid (17-Beta) Dehydrogenases on Prostate Cancer Outcomes After Prostatectomy. Eur Urol 2012; 62:88-96. [DOI: 10.1016/j.eururo.2011.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
|
35
|
Verma M. Personalized medicine and cancer. J Pers Med 2012; 2:1-14. [PMID: 25562699 PMCID: PMC4251363 DOI: 10.3390/jpm2010001] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 01/18/2012] [Accepted: 01/21/2012] [Indexed: 12/31/2022] Open
Abstract
Cancer is one of the leading causes of death in the United States, and more than 1.5 million new cases and more than 0.5 million deaths were reported during 2010 in the United States alone. Following completion of the sequencing of the human genome, substantial progress has been made in characterizing the human epigenome, proteome, and metabolome; a better understanding of pharmacogenomics has been developed, and the potential for customizing health care for the individual has grown tremendously. Recently, personalized medicine has mainly involved the systematic use of genetic or other information about an individual patient to select or optimize that patient’s preventative and therapeutic care. Molecular profiling in healthy and cancer patient samples may allow for a greater degree of personalized medicine than is currently available. Information about a patient’s proteinaceous, genetic, and metabolic profile could be used to tailor medical care to that individual’s needs. A key attribute of this medical model is the development of companion diagnostics, whereby molecular assays that measure levels of proteins, genes, or specific mutations are used to provide a specific therapy for an individual’s condition by stratifying disease status, selecting the proper medication, and tailoring dosages to that patient’s specific needs. Additionally, such methods can be used to assess a patient’s risk factors for a number of conditions and to tailor individual preventative treatments. Recent advances, challenges, and future perspectives of personalized medicine in cancer are discussed.
Collapse
Affiliation(s)
- Mukesh Verma
- Epidemiology and Genetics Research Program (EGRP), Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), 6130 Executive Boulevard, Rockville, MD 20852, USA.
| |
Collapse
|