1
|
Diossy M, Tisza V, Li H, Sahgal P, Zhou J, Sztupinszki Z, Young D, Nousome D, Kuo C, Jiang J, Chen Y, Ebner R, Sesterhenn IA, Moncur JT, Chesnut GT, Petrovics G, Klus GT, Valcz G, Nuzzo PV, Ribli D, Börcsök J, Prosz A, Krzystanek M, Ried T, Szuts D, Rizwan K, Kaochar S, Pathania S, D'Andrea AD, Csabai I, Srivastava S, Freedman ML, Dobi A, Spisak S, Szallasi Z. Frequent CHD1 deletions in prostate cancers of African American men is associated with rapid disease progression. NPJ Precis Oncol 2024; 8:208. [PMID: 39294262 PMCID: PMC11411125 DOI: 10.1038/s41698-024-00705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
We analyzed genomic data from the prostate cancer of African- and European American men to identify differences contributing to racial disparity of outcome. We also performed FISH-based studies of Chromodomain helicase DNA-binding protein 1 (CHD1) loss on prostate cancer tissue microarrays. We created CHD1-deficient prostate cancer cell lines for genomic, drug sensitivity and functional homologous recombination (HR) activity analysis. Subclonal deletion of CHD1 was nearly three times as frequent in prostate tumors of African American than in European American men and it associates with rapid disease progression. CHD1 deletion was not associated with HR deficiency associated mutational signatures or HR deficiency as detected by RAD51 foci formation. This was consistent with the moderate increase of olaparib and talazoparib sensitivity with several CHD1 deficient cell lines showing talazoparib sensitivity in the clinically relevant concentration range. CHD1 loss may contribute to worse disease outcome in African American men.
Collapse
Affiliation(s)
- Miklos Diossy
- Danish Cancer Institute, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Viktoria Tisza
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hua Li
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Pranshu Sahgal
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - Jia Zhou
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Zsofia Sztupinszki
- Danish Cancer Institute, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Denise Young
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Darryl Nousome
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Claire Kuo
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Jiji Jiang
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Yongmei Chen
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | | | | | | | - Gregory T Chesnut
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Gregory T Klus
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Gabor Valcz
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, 1051, Hungary
| | - Pier Vitale Nuzzo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Dezso Ribli
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary
| | | | - Aurel Prosz
- Danish Cancer Institute, Copenhagen, Denmark
| | | | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - David Szuts
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Kinza Rizwan
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Salma Kaochar
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Shailja Pathania
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA, USA
- Department of Biology, University of Massachusetts, Boston, MA, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Istvan Csabai
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary
| | - Shiv Srivastava
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Biochemistry and Molecular & Cell Biology, Georgetown University School of Medicine, Washington, DC, USA
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA.
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA.
| | - Sandor Spisak
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| | - Zoltan Szallasi
- Danish Cancer Institute, Copenhagen, Denmark.
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- 2nd Department of Pathology and Department of Bioinformatics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Kulasegaran T, Oliveira N. Metastatic Castration-Resistant Prostate Cancer: Advances in Treatment and Symptom Management. Curr Treat Options Oncol 2024; 25:914-931. [PMID: 38913213 PMCID: PMC11236885 DOI: 10.1007/s11864-024-01215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 06/25/2024]
Abstract
OPINION STATEMENT The management of metastatic castrate-resistant prostate cancer (mCRPC) has evolved in the past decade due to substantial advances in understanding the genomic landscape and biology underpinning this form of prostate cancer. The implementation of various therapeutic agents has improved overall survival but despite the promising advances in therapeutic options, mCRPC remains incurable. The focus of treatment should be not only to improve survival but also to preserve the patient's quality of life (QoL) and ameliorate cancer-related symptoms such as pain. The choice and sequence of therapy for mCRPC patients are complex and influenced by various factors, such as side effects, disease burden, treatment history, comorbidities, patient preference and, more recently, the presence of actionable genomic alterations or biomarkers. Docetaxel is the first-line treatment for chemo-naïve patients with good performance status and those who have yet to progress on docetaxel in the castration-sensitive setting. Novel androgen agents (NHAs), such as abiraterone and enzalutamide, are effective treatment options that are utilized as second-line options. These medications can be considered upfront in frail patients or patients who are NHA naïve. Current guidelines recommend genetic testing in mCRPC for mutations in DNA repair deficiency genes to inform treatment decisions, as for example in breast cancer gene mutation testing. Other potential biomarkers being investigated include phosphatase and tensin homologues and homologous recombination repair genes. Despite a growing number of studies incorporating biomarkers in their trial designs, to date, only olaparib in the PROFOUND study and lutetium-177 in the VISION trial have improved survival. This is an unmet need, and future trials should focus on biomarker-guided treatment strategies. The advent of novel noncytotoxic agents has enhanced targeted drug delivery and improved treatment responses with favourable toxicity profiling. Trials should continue to incorporate and report health-related QoL scores and functional assessments into their trial designs.
Collapse
Affiliation(s)
- Tivya Kulasegaran
- Mater Hospital Brisbane, Cancer Centre, Raymond Terrace, South Brisbane, QLD, 4104, Australia.
- School of Clinical Medicine, Mater Clinical Unit, The University of Queensland, Brisbane, Queensland, Australia, Raymond Terrace, South Brisbane, QLD, 4101, Australia.
| | - Niara Oliveira
- Mater Hospital Brisbane, Cancer Centre, Raymond Terrace, South Brisbane, QLD, 4104, Australia
- School of Clinical Medicine, Mater Clinical Unit, The University of Queensland, Brisbane, Queensland, Australia, Raymond Terrace, South Brisbane, QLD, 4101, Australia
| |
Collapse
|
3
|
Wang JM, Zhang FH, Liu ZX, Tang YJ, Li JF, Xie LP. Cancer on motors: How kinesins drive prostate cancer progression? Biochem Pharmacol 2024; 224:116229. [PMID: 38643904 DOI: 10.1016/j.bcp.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Prostate cancer causes numerous male deaths annually. Although great progress has been made in the diagnosis and treatment of prostate cancer during the past several decades, much about this disease remains unknown, especially its pathobiology. The kinesin superfamily is a pivotal group of motor proteins, that contains a microtubule-based motor domain and features an adenosine triphosphatase activity and motility characteristics. Large-scale sequencing analyses based on clinical samples and animal models have shown that several members of the kinesin family are dysregulated in prostate cancer. Abnormal expression of kinesins could be linked to uncontrolled cell growth, inhibited apoptosis and increased metastasis ability. Additionally, kinesins may be implicated in chemotherapy resistance and escape immunologic cytotoxicity, which creates a barrier to cancer treatment. Here we cover the recent advances in understanding how kinesins may drive prostate cancer progression and how targeting their function may be a therapeutic strategy. A better understanding of kinesins in prostate cancer tumorigenesis may be pivotal for improving disease outcomes in prostate cancer patients.
Collapse
Affiliation(s)
- Jia-Ming Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Feng-Hao Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zi-Xiang Liu
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, People's Republic of China
| | - Yi-Jie Tang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jiang-Feng Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - Li-Ping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
4
|
Szallasi Z, Diossy M, Tisza V, Li H, Sahgal P, Zhou J, Sztupinszki Z, Young D, Nuosome D, Kuo C, Jiang J, Chen Y, Ebner R, Sesterhenn I, Moncur J, Chesnut G, Petrovics G, T Klus G, Valcz G, Nuzzo P, Ribli D, Börcsök J, Prósz A, Krzystanek M, Ried T, Szüts D, Rizwan K, Kaochar S, Pathania S, D'Andrea A, Csabai I, Srivastava S, Freedman M, Dobi A, Spisak S. Increased frequency of CHD1 deletions in prostate cancers of African American men is associated with rapid disease progression without inducing homologous recombination deficiency. RESEARCH SQUARE 2024:rs.3.rs-3995251. [PMID: 38645014 PMCID: PMC11030533 DOI: 10.21203/rs.3.rs-3995251/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
We analyzed genomic data derived from the prostate cancer of African and European American men in order to identify differences that may contribute to racial disparity of outcome and that could also define novel therapeutic strategies. In addition to analyzing patient derived next generation sequencing data, we performed FISH based confirmatory studies of Chromodomain helicase DNA-binding protein 1 (CHD1) loss on prostate cancer tissue microarrays. We created CRISPR edited, CHD1 deficient prostate cancer cell lines for genomic, drug sensitivity and functional homologous recombination (HR) activity analysis. We found that subclonal deletion of CHD1 is nearly three times as frequent in prostate tumors of African American men than in men of European ancestry and it associates with rapid disease progression. We further showed that CHD1 deletion is not associated with homologous recombination deficiency associated mutational signatures in prostate cancer. In prostate cancer cell line models CHD1 deletion did not induce HR deficiency as detected by RAD51 foci formation assay or mutational signatures, which was consistent with the moderate increase of olaparib sensitivity. CHD1 deficient prostate cancer cells, however, showed higher sensitivity to talazoparib. CHD1 loss may contribute to worse outcome of prostate cancer in African American men. A deeper understanding of the interaction between CHD1 loss and PARP inhibitor sensitivity will be needed to determine the optimal use of targeted agents such as talazoparib in the context of castration resistant prostate cancer.
Collapse
Affiliation(s)
| | | | - Viktoria Tisza
- Institute of Enzymology, Research Centre for Natural Sciences
| | - Hua Li
- Center for Prostate Cancer Research
| | | | - Jia Zhou
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Denise Young
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Darryl Nuosome
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Claire Kuo
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Jiji Jiang
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Yongmei Chen
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department Uniformed Services University of the Health Sciences, Bethesda, MD
| | | | | | - Joel Moncur
- Joint Pathology Center, Silver Spring, Maryland, USA
| | - Gregory Chesnut
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Gyorgy Petrovics
- Computational Health Informatics Program, Boston Children's Hospital, USA, Harvard Medical School, Boston, USA
| | | | - Gábor Valcz
- ELKH Translational Extracellular Vesicle Research Group, Budapest, Hungary
| | - Pier Nuzzo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Dezso Ribli
- Department of Physics of Complex Systems, Eotvos Lorand University, Budapest, Hungary
| | | | | | | | | | - Dávid Szüts
- HUN-REN Research Centre for Natural Sciences
| | - Kinza Rizwan
- Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Salma Kaochar
- Department of Medicine, Baylor College of Medicine, Houston, USA
| | | | | | | | - Shib Srivastava
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Matthew Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Sandor Spisak
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network
| |
Collapse
|
5
|
Wang R, Ma S, Xu N, Gan Y, Li P, Zhang J, Zhang Z, Gu Q, Xiang J. Developing a Novel Enzalutamide-Resistant Prostate Cancer Model via AR F877L Mutation in LNCaP Cells. Curr Protoc 2024; 4:e1033. [PMID: 38652202 DOI: 10.1002/cpz1.1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Prostate cancer is a leading diagnosis and major cause of cancer-related deaths in men worldwide. As a typical hormone-responsive disease, prostate cancer is commonly managed with androgen deprivation therapy (ADT) to curb its progression and potential metastasis. Unfortunately, progression to castration-resistant prostate cancer (CRPC), a notably more aggressive phase of the disease, occurs within a timeframe of 2-3 years following ADT. Enzalutamide, a recognized androgen receptor (AR) antagonist, has been employed as a standard of care for men with metastatic castration-resistant prostate cancer (mCRPC) since it was first approved in 2012, due to its ability to prolong survival. However, scientific evidence suggests that sustained treatment with AR antagonists may induce acquired AR mutations or splice variants, such as AR F877L, T878A, and H875Y, leading to drug resistance and thereby diminishing the therapeutic efficacy of these agents. Thus, the establishment of prostate cancer models incorporating these particular mutations is essential for developing new therapeutic strategies to overcome such resistance and evaluate the efficacy of next-generation AR-targeting drugs. We have developed a CRISPR (clustered regularly interspaced short palindromic repeats)-based knock-in technology to introduce an additional F877L mutation in AR into the human prostate cell line LNCaP. This article provides comprehensive descriptions of the methodologies for cellular gene editing and establishment of an in vivo model. Using these methods, we successfully identified an enzalutamide-resistant phenotype in both in vitro and in vivo models. We also assessed the efficacy of target protein degraders (TPDs), such as ARV-110 and ARV-667, in both models, and the corresponding validation data are also included here. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Generation of AR F877L-mutated LNCaP cell line using CRISPR technology Basic Protocol 2: Validation of drug resistance in AR F877L-mutated LNCaP cell line using the 2D CTG assay Support Protocol: Testing of sgRNA efficiency in HEK 293 cells Basic Protocol 3: Validation of drug resistance in AR F877L-mutated LNCaP cell line in vivo.
Collapse
Affiliation(s)
- Ruifeng Wang
- Oncology and Immunology Unit (OIU), WuXi Biology, WuXi AppTec, China
- Organ Transplant Center & Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Shuhua Ma
- Oncology and Immunology Unit (OIU), WuXi Biology, WuXi AppTec, China
| | - Nengwei Xu
- Oncology and Immunology Unit (OIU), WuXi Biology, WuXi AppTec, China
| | - Yumiao Gan
- Oncology and Immunology Unit (OIU), WuXi Biology, WuXi AppTec, China
| | - Pengya Li
- Oncology and Immunology Unit (OIU), WuXi Biology, WuXi AppTec, China
| | - Jingying Zhang
- Oncology and Immunology Unit (OIU), WuXi Biology, WuXi AppTec, China
| | - Zhixiang Zhang
- Oncology and Immunology Unit (OIU), WuXi Biology, WuXi AppTec, China
| | - Qingyang Gu
- Oncology and Immunology Unit (OIU), WuXi Biology, WuXi AppTec, China
| | - Jian Xiang
- Oncology and Immunology Unit (OIU), WuXi Biology, WuXi AppTec, China
| |
Collapse
|
6
|
Eryilmaz IE, Vuruskan BA, Kaygisiz O, Cecener G, Egeli U, Vuruskan H. The Mutational and Transcriptional Landscapes of Speckle-Type POZ Protein (SPOP) and Androgen Receptor (AR) in a Single-Center pT3 Prostatectomy Cohort. J Environ Pathol Toxicol Oncol 2024; 43:15-29. [PMID: 37824367 DOI: 10.1615/jenvironpatholtoxicoloncol.2023048095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Prostate cancer (PCa) is a heterogeneous disease both clinically and genetically. According to The Cancer Genome Atlas (TCGA), the speckle‑type POZ protein (SPOP) mutant form is one of the significant core subtypes of PCa. However, the prognostic value of SPOP variations remains unknown. As a critical PCa driver and an SPOP-targeted protein, androgen receptor (AR) also plays a role in PCa initiation and progression. Thus, we aimed to analyze the mutational status of SPOP and AR with their transcriptional levels in a pathological stage 3 (pT3) prostatectomy cohort consisting of 89 Turkish PCa patients. Targeted sequence analysis and RT-qPCR were performed for SPOP and AR in the benign and malign prostate tissue samples. Our results introduced the two novel pathogenic SPOP variations, C203Y and S236R, in the BTB/POZ domain and a novel pathogenic variant in the ligand-binding domain of AR, R789W. Their predicted pathogenicities and effects on protein features were evaluated by web-based in silico analysis. The overall frequency of SPOP and AR variations for pT3 patients in our population was 3.4% (3/89) and 4.5% (4/89), respectively. The mutational results represented a possible subgroup characterized by carrying the novel variants in SPOP and AR in pT3 PCa patients. In addition to the significant clinicopathological parameters, the mutational results provide a better understanding of the molecular structure of pathologically advanced PCa in the SPOP and AR aspects.
Collapse
Affiliation(s)
- Isil Ezgi Eryilmaz
- Bursa Uludag University, Faculty of Medicine, Medical Biology Department, Gorukle, Bursa, Turkey
| | - Berna Aytac Vuruskan
- Bursa Uludag University, Faculty of Medicine, Medical Pathology Department, Gorukle, Bursa, Turkey
| | - Onur Kaygisiz
- Bursa Uludag University, Faculty of Medicine, Urology Department, Gorukle, Bursa, Turkey
| | - Gulsah Cecener
- Bursa Uludag University, Faculty of Medicine, Medical Biology Department, Gorukle, Bursa, Turkey
| | - Unal Egeli
- Bursa Uludag University, Faculty of Medicine, Medical Biology Department, Gorukle, Bursa, Turkey
| | - Hakan Vuruskan
- Ceylan International Hospital, Urology Department, Bursa, Turkey
| |
Collapse
|
7
|
Alataş E, Tanyıldızı Kökkülünk H, Tanyıldızı H, Alcın G. Treatment prediction with machine learning in prostate cancer patients. Comput Methods Biomech Biomed Engin 2023:1-9. [PMID: 38148626 DOI: 10.1080/10255842.2023.2298364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/16/2023] [Indexed: 12/28/2023]
Abstract
There are various treatment modalities for prostate cancer, which has a high incidence. In this study, it is aimed to make predictions with machine learning in order to determine the optimal treatment option for prostate cancer patients. The study included 88 male patients diagnosed with prostate cancer. Independent variables were determined as Gleason scores, biopsy, PSA, SUVmax, and age. Prostate cancer treatments, which are dependent variables, were determined as hormone therapy(n = 30), radiotherapy(n = 28) and radiotherapy + hormone therapy(n = 30). Machine learning was carried out in the Python with SVM, RF, DT, ETC and XGBoost. Metrics such as accuracy, ROC curve, and AUC were used to evaluate the performance of multi-class predictions. The model with the highest number of successful predictions was the XGBoost. False negative rates for hormone therapy, radiotherapy, and radiotherapy + hormone therapy treatments were, respectively, 12.5, 33.3, and 0%. The accuracy values were computed as 0.61, 0.83, 0.83, 0.72 and 0.89 for SVM, RF, DT, ETC and XGBoost, respectively. The three features that had the greatest influence on the treatment model prediction for prostate cancer with XGBoost were biopsy, Gleason score (3 + 3), and PSA level, respectively. According to the AUC, ROC and accuracy, it was determined that the XGBoost was the model that made the best estimation of prostate cancer treatment. Among the variables biopsy, Gleason score, and PSA level are identified as key variables in prediction of treatment.
Collapse
Affiliation(s)
- Emre Alataş
- Management Information Systems, Faculty of Economics and Administrative Sciences, Beykent University, Istanbul, Turkey
- Management Information Systems, Institute of Science and Technology, Kadir Has University, Istanbul, Turkey
| | | | - Hilal Tanyıldızı
- International Trade and Finance, Faculty of Economics and Administrative Sciences, Beykent University, Istanbul, Turkey
- Business Administration, Institute of Social Sciences, Istanbul University, Istanbul, Turkey
| | - Goksel Alcın
- Department of Nuclear Medicine, Istanbul Education and Research Hospital, Istanbul, Turkey
| |
Collapse
|
8
|
Kim HS, Noh YK, Min KW, Kim DH. Low CDKN1B Expression Associated with Reduced CD8+ T Lymphocytes Predicts Poor Outcome in Breast Cancer in a Machine Learning Analysis. J Pers Med 2023; 14:30. [PMID: 38248731 PMCID: PMC10817603 DOI: 10.3390/jpm14010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
The cyclin-dependent kinase inhibitor 1B (CDKN1B) gene, which encodes the p27Kip1 protein, is important in regulating the cell cycle process and cell proliferation. Its role in breast cancer prognosis is controversial. We evaluated the significance and predictive role of CDKN1B expression in breast cancer prognosis. We investigated the clinicopathologic factors, survival rates, immune cells, gene sets, and prognostic models according to CDKN1B expression in 3794 breast cancer patients. We performed gene set enrichment analysis (GSEA), in silico cytometry, pathway network analyses, gradient boosting machine (GBM) learning, and in vitro drug screening. High CDKN1B expression levels in breast cancer correlated with high lymphocyte infiltration signature scores and increased CD8+ T cells, both of which were associated with improved prognosis in breast cancer. which were associated with a better prognosis. CDKN1B expression was associated with gene sets for the upregulation of T-cell receptor signaling pathways and downregulation of CD8+ T cells. Pathway network analysis revealed a direct link between CDKN1B and the pathway involved in the positive regulation of the protein catabolic process pathway. In addition, an indirect link was identified between CDKN1B and the T-cell receptor signaling pathway. In in vitro drug screening, BMS-345541 demonstrated efficacy as a therapeutic targeting of CDKN1B, effectively impeding the growth of breast cancer cells characterized by low CDKN1B expression. The inclusion of CDKN1B expression in GBM models increased the accuracy of survival predictions. CDKN1B expression plays a significant role in breast cancer progression, implying that targeting CDKN1B might be a promising strategy for treating breast cancer.
Collapse
Affiliation(s)
- Hyung-Suk Kim
- Division of Breast Surgery, Department of Surgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri 15588, Republic of Korea;
| | - Yung-Kyun Noh
- Department of Computer Science, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea;
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Kyueng-Whan Min
- Department of Pathology, Uijeongbu Eulji Medical Center, School of Medicine, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Dong-Hoon Kim
- Department of Pathology, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, 29 Saemunanro, Seoul 03181, Republic of Korea
| |
Collapse
|
9
|
Ruggeri RM, Benevento E, De Cicco F, Grossrubatscher EM, Hasballa I, Tarsitano MG, Centello R, Isidori AM, Colao A, Pellegata NS, Faggiano A. Multiple endocrine neoplasia type 4 (MEN4): a thorough update on the latest and least known men syndrome. Endocrine 2023; 82:480-490. [PMID: 37632635 DOI: 10.1007/s12020-023-03497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
PURPOSE Multiple endocrine neoplasia type 4 (MEN4) is a rare multiglandular endocrine neoplasia syndrome, associated with a wide tumor spectrum but hallmarked by primary hyperparathyroidism, which represents the most common clinical feature, followed by pituitary (functional and non-functional) adenomas, and neuroendocrine tumors. MEN4 clinically overlaps MEN type 1 (MEN1) but differs from it for milder clinical features and an older patient's age at onset. The underlying mutated gene, CDKN1B, encodes the cell cycle regulator p27, implicated in cellular proliferation, motility and apoptosis. Given the paucity of MEN4 cases described in the literature, possible genotype-phenotype correlations have not been thoroughly assessed, and specific clinical recommendations are lacking. The present review provides an extensive overview of molecular genetics and clinical features of MEN4, with the aim of contributing to delineate peculiar strategies for clinical management, screening and follow-up of the last and least known MEN syndrome. METHODS A literature search was performed through online databases like MEDLINE and Scopus. CONCLUSIONS MEN4 is much less common that MEN1, tend to present later in life with a more indolent course, although involving the same primary organs as MEN1. As a consequence, MEN4 patients might need specific diagnostic and therapeutic approaches and a different strategy for screening and follow-up. Further studies are needed to assess the real oncological risk of MEN4 carriers, and to establish a standardized screening protocol. Furthermore, a deeper understanding of molecular genetics of MEN4 is needed in order to explore p27 as a novel therapeutic target.
Collapse
Affiliation(s)
- Rosaria M Ruggeri
- Endocrinology Unit, Department of Human Pathology of Adulthood and Childhood DETEV, University of Messina, 98125, Messina, Italy.
| | - Elio Benevento
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | | | | | - Iderina Hasballa
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genova, Italy
| | | | - Roberta Centello
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Annamaria Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
- UNESCO Chair "Education for Health and Sustainable Development", Federico II University, Naples, Italy
| | | | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of excellence, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Liu J, Gu X, Guan Z, Huang D, Xing H, Zheng L. Role of m6A modification in regulating the PI3K/AKT signaling pathway in cancer. J Transl Med 2023; 21:774. [PMID: 37915034 PMCID: PMC10619263 DOI: 10.1186/s12967-023-04651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway plays a crucial role in the pathogenesis of cancer. The dysregulation of this pathway has been linked to the development and initiation of various types of cancer. Recently, epigenetic modifications, particularly N6-methyladenosine (m6A), have been recognized as essential contributors to mRNA-related biological processes and translation. The abnormal expression of m6A modification enzymes has been associated with oncogenesis, tumor progression, and drug resistance. Here, we review the role of m6A modification in regulating the PI3K/AKT pathway in cancer and its implications in the development of novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Jie Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Zhenjie Guan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Huiwu Xing
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Lian Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
11
|
Feng T, Zhao R, Zhang H, Sun F, Hu J, Wang M, Qi M, Liu L, Gao L, Xiao Y, Zhen J, Chen W, Wang L, Han B. Reciprocal negative feedback regulation of ATF6α and PTEN promotes prostate cancer progression. Cell Mol Life Sci 2023; 80:292. [PMID: 37715829 PMCID: PMC11073217 DOI: 10.1007/s00018-023-04940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 09/18/2023]
Abstract
Phosphatase and tensin homolog (PTEN) loss tightly correlates with prostate cancer (PCa) progression and metastasis. Inactivation of PTEN leads to abnormal activation of PI3K/AKT pathway. However, results from clinical trials with AKT inhibitors in PCa have been largely disappointing. Identification of novel regulators of PTEN in PTEN-dysfunctional PCa is urgently needed. Here we demonstrated that the expression level of PTEN is inversely correlated with the signature score of unfolded protein response (UPR) in PCa. Importantly, PTEN suppresses the activity of ATF6α, via interacting to de-phosphorylate ATF6α and consequently inhibiting its nuclear translocation. Conversely, ATF6α promotes the ubiquitination and degradation of PTEN by inducing CHIP expression. Thus, ATF6α and PTEN forms a negative feedback loop during PCa progression. Combination of ATF6α inhibitor with AKT inhibitor suppresses tumor cell proliferation and xenograft growth. Importantly, this study highlighted ATF6α as a therapeutic vulnerability in PTEN dysfunctional PCa.
Collapse
Affiliation(s)
- Tingting Feng
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Ru Zhao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Hanwen Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Feifei Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jing Hu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Meng Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Mei Qi
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Ling Liu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lin Gao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yabo Xiao
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Junhui Zhen
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Weiwen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Lin Wang
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, NHC Key Laboratory of Biotechnology Drugs, Key Lab for Rare and Uncommon Diseases of Shandong Province, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China.
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
12
|
Silvestri R, Nicolì V, Gangadharannambiar P, Crea F, Bootman MD. Calcium signalling pathways in prostate cancer initiation and progression. Nat Rev Urol 2023; 20:524-543. [PMID: 36964408 DOI: 10.1038/s41585-023-00738-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/26/2023]
Abstract
Cancer cells proliferate, differentiate and migrate by repurposing physiological signalling mechanisms. In particular, altered calcium signalling is emerging as one of the most widespread adaptations in cancer cells. Remodelling of calcium signalling promotes the development of several malignancies, including prostate cancer. Gene expression data from in vitro, in vivo and bioinformatics studies using patient samples and xenografts have shown considerable changes in the expression of various components of the calcium signalling toolkit during the development of prostate cancer. Moreover, preclinical and clinical evidence suggests that altered calcium signalling is a crucial component of the molecular re-programming that drives prostate cancer progression. Evidence points to calcium signalling re-modelling, commonly involving crosstalk between calcium and other cellular signalling pathways, underpinning the onset and temporal progression of this disease. Discrete alterations in calcium signalling have been implicated in hormone-sensitive, castration-resistant and aggressive variant forms of prostate cancer. Hence, modulation of calcium signals and downstream effector molecules is a plausible therapeutic strategy for both early and late stages of prostate cancer. Based on this premise, clinical trials have been undertaken to establish the feasibility of targeting calcium signalling specifically for prostate cancer.
Collapse
Affiliation(s)
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | - Francesco Crea
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Martin D Bootman
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| |
Collapse
|
13
|
Logotheti S, Papadaki E, Zolota V, Logothetis C, Vrahatis AG, Soundararajan R, Tzelepi V. Lineage Plasticity and Stemness Phenotypes in Prostate Cancer: Harnessing the Power of Integrated "Omics" Approaches to Explore Measurable Metrics. Cancers (Basel) 2023; 15:4357. [PMID: 37686633 PMCID: PMC10486655 DOI: 10.3390/cancers15174357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Prostate cancer (PCa), the most frequent and second most lethal cancer type in men in developed countries, is a highly heterogeneous disease. PCa heterogeneity, therapy resistance, stemness, and lethal progression have been attributed to lineage plasticity, which refers to the ability of neoplastic cells to undergo phenotypic changes under microenvironmental pressures by switching between developmental cell states. What remains to be elucidated is how to identify measurements of lineage plasticity, how to implement them to inform preclinical and clinical research, and, further, how to classify patients and inform therapeutic strategies in the clinic. Recent research has highlighted the crucial role of next-generation sequencing technologies in identifying potential biomarkers associated with lineage plasticity. Here, we review the genomic, transcriptomic, and epigenetic events that have been described in PCa and highlight those with significance for lineage plasticity. We further focus on their relevance in PCa research and their benefits in PCa patient classification. Finally, we explore ways in which bioinformatic analyses can be used to determine lineage plasticity based on large omics analyses and algorithms that can shed light on upstream and downstream events. Most importantly, an integrated multiomics approach may soon allow for the identification of a lineage plasticity signature, which would revolutionize the molecular classification of PCa patients.
Collapse
Affiliation(s)
- Souzana Logotheti
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| | - Eugenia Papadaki
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
- Department of Informatics, Ionian University, 49100 Corfu, Greece;
| | - Vasiliki Zolota
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | | | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vasiliki Tzelepi
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| |
Collapse
|
14
|
Chang X, Wang H, Yang Z, Wang Y, Li J, Han Z. ESR2 polymorphisms on prostate cancer risk: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e33937. [PMID: 37335680 DOI: 10.1097/md.0000000000033937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND This meta-analysis was performed to address the association of 2 ESR2 gene polymorphisms (rs1256049 and rs4986938) with susceptibility to cancer. METHODS An extensive literature search for eligible candidate gene studies published before May 10, 2022, was conducted in PubMed, Medline, and Web of Science. The search strategy was as follows: (ESR2 OR ERβ OR ER beta OR estrogen receptor beta) AND (polymorphism OR mutation OR variation OR SNP OR genotype) AND (PCa OR PC OR prostate cancer). Potential sources of heterogeneity were sought out via trial sequential analysis, subgroup, and sensitivity analysis. RESULTS Overall, a total of 10 articles involving 18,064 cases and 19,556 controls for 2 polymorphisms of the ESR2 gene were enrolled. In the stratified analysis of rs1256049, we found that Caucasians might be correlated with an increased risk of prostate cancer (PCa), while less susceptibility was found in Asians. We observed that rs4986938 was not associated with PCa risk. CONCLUSION ESR2 rs1256049 polymorphism is associated with a higher risk of PCa in the Caucasian population and a lower risk of PCa in the Asian population.
Collapse
Affiliation(s)
- Xueliang Chang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | |
Collapse
|
15
|
Chervenkov L, Sirakov N, Kostov G, Velikova T, Hadjidekov G. Future of prostate imaging: Artificial intelligence in assessing prostatic magnetic resonance imaging. World J Radiol 2023; 15:136-145. [PMID: 37275303 PMCID: PMC10236970 DOI: 10.4329/wjr.v15.i5.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023] Open
Abstract
Prostate cancer (Pca; adenocarcinoma) is one of the most common cancers in adult males and one of the leading causes of death in both men and women. The diagnosis of Pca requires substantial experience, and even then the lesions can be difficult to detect. Moreover, although the diagnostic approach for this disease has improved significantly with the advent of multiparametric magnetic resonance, that technology has certain unresolved limitations. In recent years artificial intelligence (AI) has been introduced to the field of radiology, providing new software solutions for prostate diagnostics. Precise mapping of the prostate has become possible through AI and this has greatly improved the accuracy of biopsy. AI has also allowed for certain suspicious lesions to be attributed to a given group according to the Prostate Imaging-Reporting & Data System classification. Finally, AI has facilitated the combination of data obtained from clinical, laboratory (prostate-specific antigen), imaging (magnetic resonance), and biopsy examinations, and in this way new regularities can be found which at the moment remain hidden. Further evolution of AI in this field is inevitable and it is almost certain to significantly expand the efficacy, accuracy and efficiency of diagnosis and treatment of Pca.
Collapse
Affiliation(s)
- Lyubomir Chervenkov
- Department of Diagnostic Imaging, Medical University Plovdiv, Plovdiv 4000, Bulgaria
- Research Complex for Translational Neuroscience, Medical University of Plovdiv, Bul. Vasil Aprilov 15A, Plovdiv 4002, Bulgaria
| | - Nikolay Sirakov
- Research Complex for Translational Neuroscience, Medical University of Plovdiv, Bul. Vasil Aprilov 15A, Plovdiv 4002, Bulgaria
- Department of Diagnostic Imaging, Dental Allergology and Physiotherapy, Faculty of Dental Medicine, Medical University Plovdiv, Plovdiv 4000, Bulgaria
| | - Gancho Kostov
- Department of Special Surgery, Medical University Plovdiv, Plovdiv 4000, Bulgaria
| | - Tsvetelina Velikova
- Department of Clinical Immunology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Department of Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - George Hadjidekov
- Department of Radiology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Department of Physics, Biophysics and Radiology, Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
16
|
Kobelyatskaya AA, Pudova EA, Katunina IV, Snezhkina AV, Fedorova MS, Pavlov VS, Kotelnikova AO, Nyushko KM, Alekseev BY, Krasnov GS, Kudryavtseva AV. Transcriptome Profiling of Prostate Cancer, Considering Risk Groups and the TMPRSS2-ERG Molecular Subtype. Int J Mol Sci 2023; 24:ijms24119282. [PMID: 37298233 DOI: 10.3390/ijms24119282] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Molecular heterogeneity in prostate cancer (PCa) is one of the key reasons underlying the differing likelihoods of recurrence after surgical treatment in individual patients of the same clinical category. In this study, we performed RNA-Seq profiling of 58 localized PCa and 43 locally advanced PCa tissue samples obtained as a result of radical prostatectomy on a cohort of Russian patients. Based on bioinformatics analysis, we examined features of the transcriptome profiles within the high-risk group, including within the most commonly represented molecular subtype, TMPRSS2-ERG. The most significantly affected biological processes in the samples were also identified, so that they may be further studied in the search for new potential therapeutic targets for the categories of PCa under consideration. The highest predictive potential was found with the EEF1A1P5, RPLP0P6, ZNF483, CIBAR1, HECTD2, OGN, and CLIC4 genes. We also reviewed the main transcriptome changes in the groups at intermediate risk of PCa-Gleason Score 7 (groups 2 and 3 according to the ISUP classification)-on the basis of which the LPL, MYC, and TWIST1 genes were identified as promising additional prognostic markers, the statistical significance of which was confirmed using qPCR validation.
Collapse
Affiliation(s)
| | - Elena A Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Irina V Katunina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya V Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria S Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladislav S Pavlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Kirill M Nyushko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Boris Y Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
17
|
Lymphatic Dissemination in Prostate Cancer: Features of the Transcriptomic Profile and Prognostic Models. Int J Mol Sci 2023; 24:ijms24032418. [PMID: 36768739 PMCID: PMC9916851 DOI: 10.3390/ijms24032418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Radical prostatectomy is the gold standard treatment for prostate cancer (PCa); however, it does not always completely cure PCa, and patients often experience a recurrence of the disease. In addition, the clinical and pathological parameters used to assess the prognosis and choose further tactics for treating a patient are insufficiently informative and need to be supplemented with new markers. In this study, we performed RNA-Seq of PCa tissue samples, aimed at identifying potential prognostic markers at the level of gene expression and miRNAs associated with one of the key signs of cancer aggressiveness-lymphatic dissemination. The relative expression of candidate markers was validated by quantitative PCR, including an independent sample of patients based on archival material. Statistically significant results, derived from an independent set of samples, were confirmed for miR-148a-3p and miR-615-3p, as well as for the CST2, OCLN, and PCAT4 genes. Considering the obtained validation data, we also analyzed the predictive value of models based on various combinations of identified markers using algorithms based on machine learning. The highest predictive potential was shown for the "CST2 + OCLN + pT" model (AUC = 0.863) based on the CatBoost Classifier algorithm.
Collapse
|
18
|
Gao Y, Gaither J, Chifman J, Kubatko L. A phylogenetic approach to inferring the order in which mutations arise during cancer progression. PLoS Comput Biol 2022; 18:e1010560. [PMID: 36459515 DOI: 10.1371/journal.pcbi.1010560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 12/14/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
Although the role of evolutionary process in cancer progression is widely accepted, increasing attention is being given to the evolutionary mechanisms that can lead to differences in clinical outcome. Recent studies suggest that the temporal order in which somatic mutations accumulate during cancer progression is important. Single-cell sequencing (SCS) provides a unique opportunity to examine the effect that the mutation order has on cancer progression and treatment effect. However, the error rates associated with single-cell sequencing are known to be high, which greatly complicates the task. We propose a novel method for inferring the order in which somatic mutations arise within an individual tumor using noisy data from single-cell sequencing. Our method incorporates models at two levels in that the evolutionary process of somatic mutation within the tumor is modeled along with the technical errors that arise from the single-cell sequencing data collection process. Through analyses of simulations across a wide range of realistic scenarios, we show that our method substantially outperforms existing approaches for identifying mutation order. Most importantly, our method provides a unique means to capture and quantify the uncertainty in the inferred mutation order along a given phylogeny. We illustrate our method by analyzing data from colorectal and prostate cancer patients, in which our method strengthens previously reported mutation orders. Our work is an important step towards producing meaningful prediction of mutation order with high accuracy and measuring the uncertainty of predicted mutation order in cancer patients, with the potential to lead to new insights about the evolutionary trajectories of cancer.
Collapse
Affiliation(s)
- Yuan Gao
- Division of Biostatistics, The Ohio State University, Columbus, Ohio, United States of America
| | - Jeff Gaither
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Julia Chifman
- Dept of Mathematics and Statistics, American University, Washington D. C., United States of America
| | - Laura Kubatko
- Dept of Statistics, The Ohio State University, Columbus, Ohio, United States of America
- Dept of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
19
|
Samtal C, El Jaddaoui I, Hamdi S, Bouguenouch L, Ouldim K, Nejjari C, Ghazal H, Bekkari H. Review of prostate cancer genomic studies in Africa. Front Genet 2022; 13:911101. [PMID: 36303548 PMCID: PMC9593051 DOI: 10.3389/fgene.2022.911101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/28/2022] [Indexed: 09/07/2024] Open
Abstract
Prostate cancer (PCa) is the second most commonly diagnosed in men worldwide and one of the most frequent cancers in men in Africa. The heterogeneity of this cancer fosters the need to identify potential genetic risk factors/biomarkers. Omics variations may significantly contribute to early diagnosis and personalized treatment. However, there are few genomic studies of this disease in African populations. This review sheds light on the status of genomics research on PCa in Africa and outlines the common variants identified thus far. The allele frequencies of the most significant SNPs in Afro-native, Afro-descendants, and European populations were compared. We advocate how these few but promising data will aid in understanding, better diagnosing, and precisely treating this cancer and the need for further collaborative research on the genomics of PCa in the African continent.
Collapse
Affiliation(s)
- Chaimae Samtal
- Laboratory of Biotechnology, Environment, Agri-food and Health, Faculty of Sciences Dhar El Mahraz–Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Islam El Jaddaoui
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Salsabil Hamdi
- Laboratory of Environmental Health, Institut Pasteur Maroc, Casablanca, Morocco
| | - Laila Bouguenouch
- Faculty of Medicine, Pharmacy and Dentistry‒Sidi Mohammed Ben Abdellah University, University Hospital Hassan II, Fez, Morocco
| | - Karim Ouldim
- Faculty of Medicine, Pharmacy and Dentistry‒Sidi Mohammed Ben Abdellah University, University Hospital Hassan II, Fez, Morocco
| | - Chakib Nejjari
- Department of Medicine, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
- School of Medicine and Pharmacy, Fes, Morocco
| | - Hassan Ghazal
- Laboratory of Biotechnology, Environment, Agri-food and Health, Faculty of Sciences Dhar El Mahraz–Sidi Mohammed Ben Abdellah University, Fez, Morocco
- Laboratory of Genomics and Bioinformatics, School of Pharmacy, Mohammed VI University of Health Sciences, Casablanca, Morocco
- National Center for Scientific and Technical Research, Rabat, Morocco
| | - Hicham Bekkari
- Laboratory of Biotechnology, Environment, Agri-food and Health, Faculty of Sciences Dhar El Mahraz–Sidi Mohammed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
20
|
Sekhoacha M, Riet K, Motloung P, Gumenku L, Adegoke A, Mashele S. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules 2022; 27:5730. [PMID: 36080493 PMCID: PMC9457814 DOI: 10.3390/molecules27175730] [Citation(s) in RCA: 207] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023] Open
Abstract
Prostate cancer is one of the malignancies that affects men and significantly contributes to increased mortality rates in men globally. Patients affected with prostate cancer present with either a localized or advanced disease. In this review, we aim to provide a holistic overview of prostate cancer, including the diagnosis of the disease, mutations leading to the onset and progression of the disease, and treatment options. Prostate cancer diagnoses include a digital rectal examination, prostate-specific antigen analysis, and prostate biopsies. Mutations in certain genes are linked to the onset, progression, and metastasis of the cancer. Treatment for localized prostate cancer encompasses active surveillance, ablative radiotherapy, and radical prostatectomy. Men who relapse or present metastatic prostate cancer receive androgen deprivation therapy (ADT), salvage radiotherapy, and chemotherapy. Currently, available treatment options are more effective when used as combination therapy; however, despite available treatment options, prostate cancer remains to be incurable. There has been ongoing research on finding and identifying other treatment approaches such as the use of traditional medicine, the application of nanotechnologies, and gene therapy to combat prostate cancer, drug resistance, as well as to reduce the adverse effects that come with current treatment options. In this article, we summarize the genes involved in prostate cancer, available treatment options, and current research on alternative treatment options.
Collapse
Affiliation(s)
- Mamello Sekhoacha
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa
| | - Keamogetswe Riet
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Paballo Motloung
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Lemohang Gumenku
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Ayodeji Adegoke
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Samson Mashele
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| |
Collapse
|
21
|
Felgueiras J, Lobo J, Camilo V, Carneiro I, Matos B, Henrique R, Jerónimo C, Fardilha M. PP1 catalytic isoforms are differentially expressed and regulated in human prostate cancer. Exp Cell Res 2022; 418:113282. [PMID: 35841980 DOI: 10.1016/j.yexcr.2022.113282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/21/2022] [Accepted: 07/10/2022] [Indexed: 11/29/2022]
Abstract
The Ser/Thr-protein phosphatase PP1 (PP1) is a positive regulator of the androgen receptor (AR), which suggests major roles for PP1 in prostate carcinogenesis. However, studies dedicated to the characterization of PP1 in PCa are currently scarce. Here we analyzed the expression and localization of the PP1 catalytic (PP1c) isoforms in formalin-fixed, paraffin-embedded prostate tissue samples, as well as in PCa cell lines. We also analyzed well-characterized PCa cohorts to determine their transcript levels, identify genetic alterations, and assess promoter methylation of PP1c-coding genes. We found that PP-1A was upregulated and relocalized towards the nucleus in PCa and that PPP1CA was frequently amplified in PCa, particularly in advanced stages. PP-1B was downregulated in PCa but upregulated in a subset of tumors with AR amplification. PP-1G transcript levels were found to be associated with Gleason score. PP1c-coding genes were rarely mutated in PCa and were not prone to regulation by promoter methylation. Protein phosphorylation, on the other hand, might be an important regulatory mechanism of PP1c isoforms' activity. Altogether, our results suggest differential expression, localization, and regulation of PP1c isoforms in PCa and support the need for investigating isoform-specific roles in prostate carcinogenesis in future studies.
Collapse
Affiliation(s)
- Juliana Felgueiras
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal; Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal & Porto Comprehensive Cancer Center (P.CCC), Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal & Porto Comprehensive Cancer Center (P.CCC), Portugal; Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Vânia Camilo
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal & Porto Comprehensive Cancer Center (P.CCC), Portugal
| | - Isa Carneiro
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal & Porto Comprehensive Cancer Center (P.CCC), Portugal; Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Bárbara Matos
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal; Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal & Porto Comprehensive Cancer Center (P.CCC), Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal & Porto Comprehensive Cancer Center (P.CCC), Portugal; Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal & Porto Comprehensive Cancer Center (P.CCC), Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
22
|
Nunes-Xavier CE, Mingo J, Emaldi M, Flem-Karlsen K, Mælandsmo GM, Fodstad Ø, Llarena R, López JI, Pulido R. Heterogeneous Expression and Subcellular Localization of Pyruvate Dehydrogenase Complex in Prostate Cancer. Front Oncol 2022; 12:873516. [PMID: 35692804 PMCID: PMC9174590 DOI: 10.3389/fonc.2022.873516] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/31/2022] [Indexed: 12/02/2022] Open
Abstract
Background Pyruvate dehydrogenase (PDH) complex converts pyruvate into acetyl-CoA by pyruvate decarboxylation, which drives energy metabolism during cell growth, including prostate cancer (PCa) cell growth. The major catalytic subunit of PDH, PDHA1, is regulated by phosphorylation/dephosphorylation by pyruvate dehydrogenase kinases (PDKs) and pyruvate dehydrogenase phosphatases (PDPs). There are four kinases, PDK1, PDK2, PDK3 and PDK4, which can phosphorylate and inactivate PDH; and two phosphatases, PDP1 and PDP2, that dephosphorylate and activate PDH. Methods We have analyzed by immunohistochemistry the expression and clinicopathological correlations of PDHA1, PDP1, PDP2, PDK1, PDK2, PDK3, and PDK4, as well as of androgen receptor (AR), in a retrospective PCa cohort of patients. A total of 120 PCa samples of representative tumor areas from all patients were included in tissue microarray (TMA) blocks for analysis. In addition, we studied the subcellular localization of PDK2 and PDK3, and the effects of the PDK inhibitor dichloroacetate (DCA) in the growth, proliferation, and mitochondrial respiration of PCa cells. Results We found heterogeneous expression of the PDH complex components in PCa tumors. PDHA1, PDP1, PDK1, PDK2, and PDK4 expression correlated positively with AR expression. A significant correlation of PDK2 immunostaining with biochemical recurrence and disease-free survival was revealed. In PCa tissue specimens, PDK2 displayed cytoplasmic and nuclear immunostaining, whereas PDK1, PDK3 and PDK4 showed mostly cytoplasmic staining. In cells, ectopically expressed PDK2 and PDK3 were mainly localized in mitochondria compartments. An increase in maximal mitochondrial respiration was observed in PCa cells upon PDK inhibition by DCA, in parallel with less proliferative capacity. Conclusion Our findings support the notion that expression of specific PDH complex components is related with AR signaling in PCa tumors. Furthermore, PDK2 expression associated with poor PCa prognosis. This highlights a potential for PDH complex components as targets for intervention in PCa.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- Biomarkers in Cancer, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Janire Mingo
- Biomarkers in Cancer, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Maite Emaldi
- Biomarkers in Cancer, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Karine Flem-Karlsen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Gunhild M Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Øystein Fodstad
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Roberto Llarena
- Department of Urology, Cruces University Hospital, Barakaldo, Spain
| | - José I López
- Biomarkers in Cancer, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | - Rafael Pulido
- Biomarkers in Cancer, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
23
|
Özturan D, Morova T, Lack NA. Androgen Receptor-Mediated Transcription in Prostate Cancer. Cells 2022; 11:898. [PMID: 35269520 PMCID: PMC8909478 DOI: 10.3390/cells11050898] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Androgen receptor (AR)-mediated transcription is critical in almost all stages of prostate cancer (PCa) growth and differentiation. This process involves a complex interplay of coregulatory proteins, chromatin remodeling complexes, and other transcription factors that work with AR at cis-regulatory enhancer regions to induce the spatiotemporal transcription of target genes. This enhancer-driven mechanism is remarkably dynamic and undergoes significant alterations during PCa progression. In this review, we discuss the AR mechanism of action in PCa with a focus on how cis-regulatory elements modulate gene expression. We explore emerging evidence of genetic variants that can impact AR regulatory regions and alter gene transcription in PCa. Finally, we highlight several outstanding questions and discuss potential mechanisms of this critical transcription factor.
Collapse
Affiliation(s)
- Doğancan Özturan
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Tunç Morova
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada;
| | - Nathan A. Lack
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada;
| |
Collapse
|
24
|
HRM method for identification of TP53 exon 5 and 8 mutations in human prostate cancer patients. Meta Gene 2022. [DOI: 10.1016/j.mgene.2022.101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Use of RNA-Seq and a Transgenic Mouse Model to Identify Genes Which May Contribute to Mutant p53-Driven Prostate Cancer Initiation. BIOLOGY 2022; 11:biology11020218. [PMID: 35205085 PMCID: PMC8869245 DOI: 10.3390/biology11020218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary We use RNA-seq analysis to identify genes that may contribute to mutant p53-mediated prostate cancer initiation in a genetically engineered mouse model (B6.129S4-Trp53tm3.1Tyj/J). A total of 1378 differentially expressed genes, including wildtype p53 target genes (e.g. Cdkn1a, Bax, Bcl2, Kras, Mdm2), p53 gain-of-function-related genes (Mgmt, Id4), and prostate cancer-related genes (Cav-1, Raf1, Kras), were identified. Mice that were homozygous or heterozygous for the Trp53 R270H mutation developed grade one PIN lesions at 3 months and 5 months, respectively, whereas wildtype mice did not develop PIN. Immunohistochemical analysis revealed decreased levels of irradiation-mediated apoptosis in homozygous and heterozygous mice when compared to wildtype counterparts, and this aligned with observed differences in apoptosis-related gene expression. Abstract We previously demonstrated that the Trp53-R270H mutation can drive prostate cancer (CaP) initiation using the FVB.129S4 (Trp53tm3Tyj/wt); FVB.129S (Nkx3-1tm3(cre)Mmswt) genetically engineered mouse model (GEM). We now validate this finding in a different model (B6.129S4-Trp53tm3.1Tyj/J mice) and use RNA-sequencing (RNA-Seq) to identify genes which may contribute to Trp53 R270H-mediated prostate carcinogenesis. Wildtype (Trp53WT/WT), heterozygous (Trp53R270H/WT), and homozygous mice (Trp53R270H/R270H) were exposed to 5 Gy irradiation to activate and stabilize p53, and thereby enhance our ability to identify differences in transcriptional activity between the three groups of mice. Mouse prostates were harvested 6 h post-irradiation and processed for histological/immunohistochemistry (IHC) analysis or were snap-frozen for RNA extraction and transcriptome profiling. IHC analyses determined that presence of the Trp53-R270H mutation impacts apoptosis (lower caspase 3 activity) but not cell proliferation (Ki67). RNA-Seq analysis identified 1378 differentially expressed genes, including wildtype p53 target genes (E.g., Cdkn1a, Bax, Bcl2, Kras, Mdm2), p53 gain-of-function (GOF)-related genes (Mgmt, Id4), and CaP-related genes (Cav-1, Raf1, Kras). Further understanding the mechanisms which contribute to prostate carcinogenesis could allow for the development of improved preventive methods, diagnostics, and treatments for CaP.
Collapse
|
26
|
Song H, Weinstein HNW, Allegakoen P, Wadsworth MH, Xie J, Yang H, Castro EA, Lu KL, Stohr BA, Feng FY, Carroll PR, Wang B, Cooperberg MR, Shalek AK, Huang FW. Single-cell analysis of human primary prostate cancer reveals the heterogeneity of tumor-associated epithelial cell states. Nat Commun 2022; 13:141. [PMID: 35013146 PMCID: PMC8748675 DOI: 10.1038/s41467-021-27322-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 10/29/2021] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer is the second most common malignancy in men worldwide and consists of a mixture of tumor and non-tumor cell types. To characterize the prostate cancer tumor microenvironment, we perform single-cell RNA-sequencing on prostate biopsies, prostatectomy specimens, and patient-derived organoids from localized prostate cancer patients. We uncover heterogeneous cellular states in prostate epithelial cells marked by high androgen signaling states that are enriched in prostate cancer and identify a population of tumor-associated club cells that may be associated with prostate carcinogenesis. ERG-negative tumor cells, compared to ERG-positive cells, demonstrate shared heterogeneity with surrounding luminal epithelial cells and appear to give rise to common tumor microenvironment responses. Finally, we show that prostate epithelial organoids harbor tumor-associated epithelial cell states and are enriched with distinct cell types and states from their parent tissues. Our results provide diagnostically relevant insights and advance our understanding of the cellular states associated with prostate carcinogenesis.
Collapse
Affiliation(s)
- Hanbing Song
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Hannah N. W. Weinstein
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Paul Allegakoen
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Marc H. Wadsworth
- grid.116068.80000 0001 2341 2786The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.66859.340000 0004 0546 1623Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142 USA
| | - Jamie Xie
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Heiko Yang
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Ethan A. Castro
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Kevin L. Lu
- grid.266102.10000 0001 2297 6811Department of Pathology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Bradley A. Stohr
- grid.266102.10000 0001 2297 6811Department of Pathology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Felix Y. Feng
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Departments of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Peter R. Carroll
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Bruce Wang
- grid.266102.10000 0001 2297 6811Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA 94143 USA
| | - Matthew R. Cooperberg
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.410372.30000 0004 0419 2775Division of Hematology and Oncology, Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121 USA
| | - Alex K. Shalek
- grid.116068.80000 0001 2341 2786The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.66859.340000 0004 0546 1623Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142 USA
| | - Franklin W. Huang
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.410372.30000 0004 0419 2775Division of Hematology and Oncology, Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121 USA
| |
Collapse
|
27
|
Cheaito K, Bahmad HF, Hadadeh O, Msheik H, Monzer A, Ballout F, Dagher C, Telvizian T, Saheb N, Tawil A, El-Sabban M, El-Hajj A, Mukherji D, Al-Sayegh M, Abou-Kheir W. Establishment and characterization of prostate organoids from treatment-naïve patients with prostate cancer. Oncol Lett 2022; 23:6. [PMID: 34820005 PMCID: PMC8607232 DOI: 10.3892/ol.2021.13124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional (3D) organoid culture systems are emerging as potential reliable tools to investigate basic developmental processes of human disease, especially cancer. The present study used established and modified culture conditions to report successful generation and characterization of patient-derived organoids from fresh primary tissue specimens of patients with treatment-naïve prostate cancer (PCa). Fresh tissue specimens were collected, digested enzymatically and the resulting cell suspensions were plated in a 3D environment using Matrigel as an extracellular matrix. Previously established 12-factor medium for organoid culturing was modified to create a minimal 5-factor medium. Organoids and corresponding tissue specimens were characterized using transcriptomic analysis, immunofluorescent analysis, and immunohistochemistry. Furthermore, patient-derived organoids were used to assess the drug response. Treatment-naïve patient-derived PCa organoids were obtained from fresh radical prostatectomy specimens. These PCa organoids mimicked the heterogeneity of corresponding parental tumor tissue. Histopathological analysis demonstrated similar tissue architecture and cellular morphology, as well as consistent immunohistochemical marker expression. Also, the results confirmed the potential of organoids as an in vitro model to assess potential personalized treatment responses as there was a differential drug response between different patient samples. In conclusion, the present study investigated patient-derived organoids from a cohort of treatment-naïve patients. Derived organoids mimicked the histological features and prostate lineage profiles of their corresponding parental tissue and may present a potential model to predict patient-specific treatment response in a pre-clinical setting.
Collapse
Affiliation(s)
- Katia Cheaito
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hisham F. Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Ola Hadadeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hiba Msheik
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Alissar Monzer
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Farah Ballout
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Christelle Dagher
- Department of Internal Medicine, Division of Hematology/Oncology, Faculty of Medicine, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Talar Telvizian
- Department of Internal Medicine, Division of Hematology/Oncology, Faculty of Medicine, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Nour Saheb
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Ayman Tawil
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Albert El-Hajj
- Department of Surgery, Division of Urology, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Deborah Mukherji
- Department of Internal Medicine, Division of Hematology/Oncology, Faculty of Medicine, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
28
|
Lavezzi E, Brunetti A, Smiroldo V, Nappo G, Pedicini V, Vitali E, Trivellin G, Mazziotti G, Lania A. Case Report: New CDKN1B Mutation in Multiple Endocrine Neoplasia Type 4 and Brief Literature Review on Clinical Management. Front Endocrinol (Lausanne) 2022; 13:773143. [PMID: 35355569 PMCID: PMC8959648 DOI: 10.3389/fendo.2022.773143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/25/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The fourth type of multiple endocrine neoplasia (MEN) is known as a rare variant of MEN presenting a MEN1-like phenotype and originating from a germline mutation in CDKN1B. However, due to the small number of cases documented in the literature, the peculiar clinical features of MEN4 are still largely unknown, and clear indications about the clinical management of these patients are currently lacking. In order to widen our knowledge on MEN4 and to better typify the clinical features of this syndrome, we present two more cases of subjects with MEN4, and through a review of the current literature, we provide some possible indications on these patients' management. CASE PRESENTATION The first report is about a man who was diagnosed with a metastatic ileal G2-NET at the age of 34. Genetic analysis revealed the mutation p.I119T (c.356T>C) of exon 1 of CDKN1B, a mutation already reported in the literature in association with early-onset pituitary adenomas. The second report is about a 76-year-old woman with a multifocal pancreatic G1-NET. Genetic analysis identified the CDKN1B mutation c.482C>G (p.S161C), described here for the first time in association with MEN4 and currently classified as a variant of uncertain significance. Both patients underwent biochemical and imaging screening for MEN1-related diseases without any pathological findings. CONCLUSIONS According to the cases reported in the literature, hyperparathyroidism is the most common clinical feature of MEN4, followed by pituitary adenoma and neuroendocrine tumors. However, MEN4 appears to be a variant of MEN with milder clinical features and later onset. Therefore, these patients might need a different and personalized approach in clinical management and a peculiar screening and follow-up strategy.
Collapse
Affiliation(s)
- Elisabetta Lavezzi
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- *Correspondence: Elisabetta Lavezzi,
| | - Alessandro Brunetti
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Valeria Smiroldo
- Oncology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Gennaro Nappo
- Pancreatic Surgery Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | | | - Eleonora Vitali
- Endocrinology Unit and Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Giampaolo Trivellin
- Endocrinology Unit and Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Gherardo Mazziotti
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Andrea Lania
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
29
|
Fernandez PW. Prostate Cancer Genomics Research Disparities in Africa: Advancing Knowledge in Resource Constrained Settings. Cancer Control 2022; 29:10732748221095952. [PMID: 35475404 PMCID: PMC9087236 DOI: 10.1177/10732748221095952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/02/2022] [Accepted: 03/24/2022] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer disproportionately affects men of African descent and it is estimated that Africa will bear the highest disease burden in the next decade. Underlying genomic factors may contribute to prostate cancer disparities; however, it is unclear whether Africa has prioritised genomics research toward addressing these disparities. A Pubmed review was performed of publications spanning a 15-year period, with specific focus on prostate cancer genomics research that included samples from Africa and investigators in Africa. Data are presented on research publications from Africa relative to similar publications from different geographical regions, and more specifically, the extent of disparities and the contributions to prostate cancer knowledge as a result of genomics research that included African samples and African institutions. Limited publication output may reflect the infrastructure and funding challenges in Africa. Widespread cooperation should be fostered by sharing capacity and leveraging existing expertise to address the growing cancer burden facing the continent.
Collapse
|
30
|
Mata LA, Retamero JA, Gupta RT, García Figueras R, Luna A. Artificial Intelligence-assisted Prostate Cancer Diagnosis: Radiologic-Pathologic Correlation. Radiographics 2021; 41:1676-1697. [PMID: 34597215 DOI: 10.1148/rg.2021210020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The classic prostate cancer (PCa) diagnostic pathway that is based on prostate-specific antigen (PSA) levels and the findings of digital rectal examination followed by systematic biopsy has shown multiple limitations. The use of multiparametric MRI (mpMRI) is now widely accepted in men with clinical suspicion for PCa. In addition, clinical information, PSA density, risk calculators, and genomic and other "omics" biomarkers are being used to improve risk stratification. On the basis of mpMRI and MRI-targeted biopsies (MRI-TBx), new diagnostic pathways have been established, aiming to improve the limitations of the classic diagnostic approach. However, these pathways still show limitations associated with mpMRI and MRI-TBx. Definitive PCa diagnosis is made on the basis of histopathologic Gleason grading, which has demonstrated an excellent correlation with clinical outcomes. However, Gleason grading is done subjectively by pathologists and involves poor reproducibility, and PCa may have a heterogeneous distribution of histologic patterns. Thus, important discrepancies persist between biopsy tumor grading and final whole-organ pathologic assessment after radical prostatectomy. PCa offers a unique opportunity to establish a real radiologic-pathologic correlation, as whole-mount radical prostatectomy specimens permit a complete spatial relationship with mpMRI. Artificial intelligence is increasingly being applied to radiologic and pathologic images to improve clinical accuracy and efficiency in PCa diagnosis. This review delineates current PCa diagnostic pathways, with a focus on the role of mpMRI, MRI-TBx, and pathologic analysis. An overview of the expected improvements in PCa diagnosis derived from the use of artificial intelligence, integrated radiologic-pathologic systems, and decision support tools for multidisciplinary teams is provided. An invited commentary by Purysko is available online. Online supplemental material is available for this article. ©RSNA, 2021.
Collapse
Affiliation(s)
- Lidia Alcalá Mata
- From the Department of Radiology, Clínica Las Nieves, HT Médica, Calle Carmelo Torres Núm 2, 23007 Jaén, Spain (L.A.M., A.L.); Paige.AI, New York, NY (J.A.R.); Department of Radiology, Duke University Medical Center, Durham, NC (R.T.G.); and Department of Radiology, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain (R.G.F.)
| | - Juan Antonio Retamero
- From the Department of Radiology, Clínica Las Nieves, HT Médica, Calle Carmelo Torres Núm 2, 23007 Jaén, Spain (L.A.M., A.L.); Paige.AI, New York, NY (J.A.R.); Department of Radiology, Duke University Medical Center, Durham, NC (R.T.G.); and Department of Radiology, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain (R.G.F.)
| | - Rajan T Gupta
- From the Department of Radiology, Clínica Las Nieves, HT Médica, Calle Carmelo Torres Núm 2, 23007 Jaén, Spain (L.A.M., A.L.); Paige.AI, New York, NY (J.A.R.); Department of Radiology, Duke University Medical Center, Durham, NC (R.T.G.); and Department of Radiology, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain (R.G.F.)
| | - Roberto García Figueras
- From the Department of Radiology, Clínica Las Nieves, HT Médica, Calle Carmelo Torres Núm 2, 23007 Jaén, Spain (L.A.M., A.L.); Paige.AI, New York, NY (J.A.R.); Department of Radiology, Duke University Medical Center, Durham, NC (R.T.G.); and Department of Radiology, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain (R.G.F.)
| | - Antonio Luna
- From the Department of Radiology, Clínica Las Nieves, HT Médica, Calle Carmelo Torres Núm 2, 23007 Jaén, Spain (L.A.M., A.L.); Paige.AI, New York, NY (J.A.R.); Department of Radiology, Duke University Medical Center, Durham, NC (R.T.G.); and Department of Radiology, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain (R.G.F.)
| |
Collapse
|
31
|
Grypari IM, Logotheti S, Zolota V, Troncoso P, Efstathiou E, Bravou V, Melachrinou M, Logothetis C, Tzelepi V. The protein arginine methyltransferases (PRMTs) PRMT1 and CARM1 as candidate epigenetic drivers in prostate cancer progression. Medicine (Baltimore) 2021; 100:e27094. [PMID: 34516499 PMCID: PMC8428700 DOI: 10.1097/md.0000000000027094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/13/2021] [Indexed: 01/05/2023] Open
Abstract
Epigenetic changes are implicated in prostate cancer (PCa) progression and resistance to therapy. Arginine residue methylation is an understudied histone post-translational modification that is increasingly associated with cancer progression and is catalyzed by enzymes called protein arginine methyltransferases (PRMTs). The molecular consequences of aberrant expression of PRMTs in PCa and the relationship between PRMTs and PCa progression are largely unknown. Using immunohistochemistry, we examined the expression of PRMT1 and CARM1, two of the best-studied PRMTs, in 288 patients across the spectrum of PCa and correlated them with markers of androgen receptor (AR) signaling, and milestones of carcinogenesis. Our findings indicate that PRMT1 and CARM1 are upregulated early in PCa progression, and that CARM1 is further upregulated after therapy. In addition, a correlation of CARM1 with AR post-translational modifications was noted in the setting of therapy resistance, highlighting CARM1 as one of the adaptation mechanisms of PCa cells in an androgen-depleted environment. Finally, CARM1 correlated with markers of cell cycle regulation, and both CARM1 and PRMT1 correlated with markers of epithelial-to-mesenchymal transition signaling. Taken together these findings indicate that an epigenetic network drives PCa progression through enhancement of milestone pathways including AR signaling, the cell cycle, and epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Ioanna Maria Grypari
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | - Souzana Logotheti
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | - Vasiliki Zolota
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Eleni Efstathiou
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center
| | - Vasiliki Bravou
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, Patras, Greece
| | - Maria Melachrinou
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center
| | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
32
|
Nizialek E, Lim SJ, Wang H, Isaacsson Velho P, Yegnasubramanian S, Antonarakis ES. Genomic profiles and clinical outcomes in primary versus secondary metastatic hormone-sensitive prostate cancer. Prostate 2021; 81:572-579. [PMID: 33955569 DOI: 10.1002/pros.24135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Clinical outcomes may differ among patients presenting with primary (de novo) metastatic hormone-sensitive prostate cancer (mHSPC) versus secondary (metachronous) mHSPC occurring after local therapy. It is unknown what molecular features distinguish these potentially distinct presentations. METHODS A single-center retrospective study of mHSPC patients classified as primary mHSPC (n = 121) or secondary mHSPC (n = 106). A targeted set of genes was analyzed: BRCA2, PTEN, RB1, TP53, SPOP, CDK12, any two out of PTEN/RB1/TP53 alterations, and homologous recombination deficiency mutations. TP53 mutations were categorized as loss-of-function (LOF) versus dominant-negative (DN). The impacts of genetic features on progression-free survival (PFS) and overall survival (OS) were assessed using univariate and multivariate Cox proportional hazards regression. RESULTS Median PFS was 15 and 30 months for men with primary and secondary mHSPC, respectively (hazard ratio: 0.57, 95% confidence interval: 0.41-0.78; p < .01). OS did not show a significant difference between groups. There were more men with Gleason 8-10 disease in the primary versus secondary mHSPC groups (83% vs. 68%; p < .01). In univariate and multivariate analyses, TP53 DN mutations showed a statistically significant association with OS for the entire mHSPC population. Conversely, SPOP mutations were associated with improved OS. Additionally, TP53 mutations (DN and LOF) were associated with worse OS for secondary mHSPC. A combination of PTEN/RB1/TP53 mutations was associated with worse OS and PFS for secondary mHSPC, while no genomic alteration affected outcomes for primary mHSPC. CONCLUSIONS TP53 DN mutations, but not all TP53 alterations, were the strongest predictor of negative outcomes in men with mHSPC, while SPOP mutations were associated with improved outcomes. In subgroup analyses, specific alterations were prognostic of outcomes in secondary, but not primary, mHSPC.
Collapse
Affiliation(s)
- Emily Nizialek
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Su Jin Lim
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hao Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pedro Isaacsson Velho
- Department of Medical Oncology, Moinhos de Vento Hospital, Porto Alegre, Rio Grande do Sul, Brazil
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emmanuel S Antonarakis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Kim U, Shin C, Kim CY, Ryu B, Kim J, Bang J, Park JH. Albendazole exerts antiproliferative effects on prostate cancer cells by inducing reactive oxygen species generation. Oncol Lett 2021; 21:395. [PMID: 33777218 PMCID: PMC7988661 DOI: 10.3892/ol.2021.12656] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
Benzimidazole derivatives are used for their antihelmintic properties, but have also been reported to exert anticancer effects. In the present study, the anticancer effects of albendazole on prostate cancer cells were assessed using proliferation, clonogenic and migration assays. To investigate the anticancer mechanisms of albendazole, reactive oxygen species (ROS) levels were measured, and the expression of genes associated with oxidative stress and Wnt/β-catenin signaling was confirmed by reverse transcription-quantitative PCR and western blotting. Albendazole selectively inhibited the proliferation of the PC3, DU145, LNCaP and AT2 prostate cancer cell lines at concentrations that did not affect the proliferation of a normal prostate cell line (RWPE-1). Albendazole also inhibited the colony formation and migration of PC3 and DU145 cells, as well as inducing ROS production. Diphenyleneiodonium chloride, an inhibitor of NADPH oxidase (NOX), one of the sources of ROS, decreased basal ROS levels in the PC3 and DU145 cells, but did not reduce albendazole-associated ROS production, suggesting that ROS production following albendazole treatment was NOX-independent. The anticancer effect was decreased when albendazole-induced ROS was reduced by treatment with antioxidants (glutathione and N-acetylcysteine). Furthermore, albendazole decreased the mRNA expression of CDGSH iron sulfur domain 2, which regulates antioxidant activity against ROS, as well as the antioxidant enzymes catalase, and glutathione peroxidase 1 and 3. Albendazole also decreased the mRNA expression of catenin β1 and transcription factor 4, which regulate Wnt/β-catenin signaling and its associated targets, Twist family BHLH transcription factor 1 and BCL2. The albendazole-related decrease in the expression levels of oxidative stress-related genes and Wnt/β-catenin signaling proteins was thought to be associated with ROS production. These results suggest that the antihelmintic drug, albendazole, has inhibitory effects against prostate cancer cells in vitro. Therefore, albendazole may potentially be used as a novel anticancer agent for prostate cancer.
Collapse
Affiliation(s)
- Ukjin Kim
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Changsoo Shin
- Department of Energy Resources Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Bokyeong Ryu
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Kim
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Junpil Bang
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
34
|
Zhang L, Li Y, Wang X, Ping Y, Wang D, Cao Y, Dai Y, Liu W, Tao Z. Five-gene signature associating with Gleason score serve as novel biomarkers for identifying early recurring events and contributing to early diagnosis for Prostate Adenocarcinoma. J Cancer 2021; 12:3626-3647. [PMID: 33995639 PMCID: PMC8120165 DOI: 10.7150/jca.52170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Compared to non-recurrent type, recurrent prostate adenocarcinoma (PCa) is highly fatal, and significantly shortens the survival time of affected patients. Early and accurate laboratory diagnosis is particularly important in identifying patients at high risk of recurrence, necessary for additional systemic intervention. We aimed to develop efficient and accurate diagnostic and prognostic biomarkers for new PCa following radical therapy. Methods: We identified differentially expressed genes (DEGs) and clinicopathological data of PCa patients from Gene Expression Omnibus (GEO) datasets and The Cancer Genome Atlas (TCGA) repositories. We then uncovered the most relevant clinical traits and genes modules associated with PCa prognosis using the Weighted gene correlation network analysis (WGCNA). Univariate Cox regression analysis and multivariate Cox proportional hazards (Cox-PH) models were performed to identify candidate gene signatures related to Disease-Free Interval (DFI). Data for internal and external cohorts were utilized to test and validate the accuracy and clinical utility of the prognostic models. Results: We constructed and validated an accurate and reliable model for predicting the prognosis of PCa using 5 Gleason score-associated gene signatures (ZNF695, CENPA, TROAP, BIRC5 and KIF20A). The ROC and Kaplan-Meier analysis revealed the model was highly accurate in diagnosing and predicting the recurrence and metastases of PCa. The accuracy of the model was validated using the calibration curves based on internal TCGA cohort and external GEO cohort. Using the model, patients could be prognostically stratified in to various groups including TNM classification and Gleason score. Multivariate analysis revealed the model could independently predict the prognosis of PCa patients and its utility was superior to that of clinicopathological characteristics. In addition, we fund the expression of the 5 gene signatures strongly and positively correlated with tumor purity but negatively correlated with infiltration CD8+ T cells to the tumor microenvironment. Conclusions: A 5 gene signatures can accurately be used in the diagnosis and prediction of PCa prognosis. Thus this can guide the treatment and management prostate adenocarcinoma.
Collapse
Affiliation(s)
- Lingyu Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yu Li
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui 233030, China
| | - Xuchu Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ying Ping
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Danhua Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ying Cao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yibei Dai
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Weiwei Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| |
Collapse
|
35
|
Costa DN. Multiparametric MRI of the Prostate: Beyond Cancer Detection and Staging. Radiology 2021; 299:624-625. [PMID: 33851884 DOI: 10.1148/radiol.2021204506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Daniel N Costa
- From the Department of Radiology, UT Southwestern Medical Center, 2201 Inwood Rd, Dallas, TX 75390
| |
Collapse
|
36
|
Park S, Lee HY, Kim J, Park H, Ju YS, Kim EG, Kim J. Cerebral Cavernous Malformation 1 Determines YAP/TAZ Signaling-Dependent Metastatic Hallmarks of Prostate Cancer Cells. Cancers (Basel) 2021; 13:cancers13051125. [PMID: 33807895 PMCID: PMC7961486 DOI: 10.3390/cancers13051125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
Enhanced Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) signaling is correlated with the extraprostatic extension of prostate cancer. However, the mechanism by which YAP/TAZ signaling becomes hyperactive and drives prostate cancer progression is currently unclear. In this study, we revealed that higher expression of CCM1, which is uniquely found in advanced prostate cancer, is inversely correlated with metastasis-free and overall survival in patients with prostate cancer. We also demonstrated that CCM1 induces the metastasis of multiple types of prostate cancer cells by regulating YAP/TAZ signaling. Mechanistically, CCM1, a gene mutated in cerebral cavernous malformation, suppresses DDX5, which regulates the suppression of YAP/TAZ signaling, indicating that CCM1 and DDX5 are novel upstream regulators of YAP/TAZ signaling. Our findings highlight the importance of CCM1-DDX5-YAP/TAZ signaling in the metastasis of prostate cancer cells.
Collapse
Affiliation(s)
- Sangryong Park
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea; (S.P.); (H.-Y.L.)
| | - Ho-Young Lee
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea; (S.P.); (H.-Y.L.)
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Incheon 21999, Korea
| | - Jayoung Kim
- Division of Cancer Biology and Therapeutics, Departments of Surgery & Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Hansol Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (H.P.); (Y.S.J.)
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (H.P.); (Y.S.J.)
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju 28644, Korea;
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea; (S.P.); (H.-Y.L.)
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Incheon 21999, Korea
- Correspondence: ; Tel.: +82-32-899-6441
| |
Collapse
|
37
|
Lv SD, Wang HY, Yu XP, Zhai QL, Wu YB, Wei Q, Huang WH. Integrative molecular characterization of Chinese prostate cancer specimens. Asian J Androl 2021; 22:162-168. [PMID: 31134918 PMCID: PMC7155802 DOI: 10.4103/aja.aja_36_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) exhibits epidemiological and molecular heterogeneity. Despite extensive studies of its phenotypic and genetic properties in Western populations, its molecular basis is not clear in Chinese patients. To determine critical molecular characteristics and explore correlations between genomic markers and clinical parameters in Chinese populations, we applied an integrative genetic/transcriptomic assay that combines targeted next-generation sequencing and quantitative real-time PCR (qRT-PCR) on samples from 46 Chinese patients with PCa. Lysine (K)-specific methyltransferase 2D (KMT2D), zinc finger homeobox 3 (ZFHX3), A-kinase anchoring protein 9 (AKAP9), and GLI family zinc finger 1 (GLI1) were frequently mutated in our cohort. Moreover, a clinicopathological analysis showed that RB transcriptional corepressor 1 (RB1) deletion was common in patients with a high risk of disease progression. Remarkably, four genomic events, MYC proto-oncogene (MYC) amplification, RB1 deletion, APC regulator of WNT signaling pathway (APC) mutation or deletion, and cyclin-dependent kinase 12 (CDK12) mutation, were correlated with poor disease-free survival. In addition, a close link between KMT2D expression and the androgen receptor (AR) signaling pathway was observed both in our cohort and in The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) data. In summary, our results demonstrate the feasibility and benefits of integrative molecular characterization of PCa samples in disease pathology research and personalized medicine.
Collapse
Affiliation(s)
- Shi-Dong Lv
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangzhou 510515, China.,Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hong-Yi Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xin-Pei Yu
- Department of Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Qi-Liang Zhai
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yao-Bin Wu
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangzhou 510515, China
| | - Qiang Wei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wen-Hua Huang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangzhou 510515, China
| |
Collapse
|
38
|
Bencivenga D, Stampone E, Aulitto A, Tramontano A, Barone C, Negri A, Roberti D, Perrotta S, Della Ragione F, Borriello A. A cancer-associated CDKN1B mutation induces p27 phosphorylation on a novel residue: a new mechanism for tumor suppressor loss-of-function. Mol Oncol 2021; 15:915-941. [PMID: 33316141 PMCID: PMC8024736 DOI: 10.1002/1878-0261.12881] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/16/2020] [Accepted: 12/11/2020] [Indexed: 01/12/2023] Open
Abstract
CDKN1B haploinsufficiency promotes the development of several human cancers. The gene encodes p27Kip1, a protein playing pivotal roles in the control of growth, differentiation, cytoskeleton dynamics, and cytokinesis. CDKN1B haploinsufficiency has been associated with chromosomal or gene aberrations. However, very few data exist on the mechanisms by which CDKN1B missense mutations facilitate carcinogenesis. Here, we report a functional study on a cancer‐associated germinal p27Kip1 variant, namely glycine9‐>arginine‐p27Kip1 (G9R‐p27Kip1) identified in a parathyroid adenoma. We unexpectedly found that G9R‐p27Kip1 lacks the major tumor suppressor activities of p27Kip1 including its antiproliferative and pro‐apoptotic functions. In addition, G9R‐p27Kip1 transfection in cell lines induces the formation of more numerous and larger spheres when compared to wild‐type p27Kip1‐transfected cells. We demonstrated that the mutation creates a consensus sequence for basophilic kinases causing a massive phosphorylation of G9R‐p27Kip1 on S12, a residue normally never found modified in p27Kip1. The novel S12 phosphorylation appears responsible for the loss of function of G9R‐p27Kip1 since S12AG9R‐p27Kip1 recovers most of the p27Kip1 tumor suppressor activities. In addition, the expression of the phosphomimetic S12D‐p27Kip1 recapitulates G9R‐p27Kip1 properties. Mechanistically, S12 phosphorylation enhances the nuclear localization of the mutant protein and also reduces its cyclin‐dependent kinase (CDK)2/CDK1 inhibition activity. To our knowledge, this is the first reported case of quantitative phosphorylation of a p27Kip1 variant on a physiologically unmodified residue associated with the loss of several tumor suppressor activities. In addition, our findings demonstrate that haploinsufficiency might be due to unpredictable post‐translational modifications due to generation of novel consensus sequences by cancer‐associated missense mutations.
Collapse
Affiliation(s)
- Debora Bencivenga
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Emanuela Stampone
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Arianna Aulitto
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annunziata Tramontano
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Clementina Barone
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Aide Negri
- Department of Medicine and Surgery, University of Parma, Italy
| | - Domenico Roberti
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Silverio Perrotta
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
39
|
Tonry C, Finn S, Armstrong J, Pennington SR. Clinical proteomics for prostate cancer: understanding prostate cancer pathology and protein biomarkers for improved disease management. Clin Proteomics 2020; 17:41. [PMID: 33292167 PMCID: PMC7678104 DOI: 10.1186/s12014-020-09305-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Following the introduction of routine Prostate Specific Antigen (PSA) screening in the early 1990's, Prostate Cancer (PCa) is often detected at an early stage. There are also a growing number of treatment options available and so the associated mortality rate is generally low. However, PCa is an extremely complex and heterogenous disease and many patients suffer disease recurrence following initial therapy. Disease recurrence commonly results in metastasis and metastatic PCa has an average survival rate of just 3-5 years. A significant problem in the clinical management of PCa is being able to differentiate between patients who will respond to standard therapies and those who may benefit from more aggressive intervention at an earlier stage. It is also acknowledged that for many men the disease is not life threatenting. Hence, there is a growing desire to identify patients who can be spared the significant side effects associated with PCa treatment until such time (if ever) their disease progresses to the point where treatment is required. To these important clinical needs, current biomarkers and clinical methods for patient stratification and personlised treatment are insufficient. This review provides a comprehensive overview of the complexities of PCa pathology and disease management. In this context it is possible to review current biomarkers and proteomic technologies that will support development of biomarker-driven decision tools to meet current important clinical needs. With such an in-depth understanding of disease pathology, the development of novel clinical biomarkers can proceed in an efficient and effective manner, such that they have a better chance of improving patient outcomes.
Collapse
Affiliation(s)
- Claire Tonry
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Stephen Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Ireland
| | | | | |
Collapse
|
40
|
Dalal S, Petersen J, Jhala D. Liquid Biopsies in a Veteran Patient Population With Advanced Prostate and Lung Non-Small Cell Carcinomas: A New Paradigm and Unique Challenge in Personalized Medicine. Fed Pract 2020; 38:8-14. [PMID: 33574643 DOI: 10.12788/fp.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Introduction Liquid biopsy in solid tumors is a major milestone in the field of precision oncology by analyzing circulating tumor cells in peripheral blood and genomic alterations. DNA damage repair gene (DDR) mutations have been reported in 25 to 40% of prostatic cancers and > 50% of non-small cell lung cancers (NSCLC). Tp53 mutation has been found to be associated with a poor prognosis and increased germline mutations. We herein present a quality assurance study for the utility of liquid biopsies with frequency of DDR, Tp53, and androgen receptor (AR) mutations and the clinical impact in advanced lung and prostate cancers in the veteran patient population; these quality assurance observations are the study endpoints. Methods We reviewed documentation from advanced cancer biomarker tests on liquid biopsies performed at the Corporal Michael J. Crescenz Veteran Affairs Medical Center in Philadelphia, Pennsylvania, from May 2019 to April 15, 2020. Results Mutations were detected in 29 of 31 (93.5%) liquid biopsies, hence, 29 liquid biopsies had sufficient ctDNA for analysis. Notable mutations were found in 23 cases (79.3%), irrespective of the cancer type showed. Of 21 prostate cancers biopsies 4 (19.0%) biomarker test directed the targeted therapy to driver mutations of the AR gene. Gene mutations from the DDR gene family were detected in 8 of 23 (34.7%) advanced prostate and lung cancer liquid biopsies, and in 6 of 21 (28.5%) prostate cancer cases indicating poor outcome and possible resistance to the current therapy. Irrespective of the cancer type, 15 of 23 (65.2%) patients harbored Tp53 mutations, which is much more frequent than is documented in the literature. Of 31 patients, 15 (48.4%) were Vietnam era veterans with the potential of Agent Orange exposure and, 20 of 31 (64.5%) had a smoking history. Seven (46.6%) of the Vietnam era veterans with potential exposure to Agent Orange were positive for Tp53 mutations irrespective of the cancer type. Conclusion The minimally invasive liquid biopsy shows a great promise as a diagnostic and prognostic tool in the personalized clinical management of advanced prostate and NSCLC in veteran patient population with unique demographic characteristics. Difference in frequency of the genetic mutations (DDR, TP53, AR) in this cohort provides valuable information for disease progression, lack of response, mechanism of resistance to the implemented therapy and clinical decision making. Precision oncology can be further tailored for this cohort by focusing on DNA repair genes and Tp53 mutations in future for personalized targeted therapy.
Collapse
Affiliation(s)
- Sharvari Dalal
- and are Staff Pathologists and is Chief, Pathology and Laboratory Medicine, all at Corporal Michael J. Crescenz Veteran Affairs Medical Center in Philadelphia, Pennsylvania. Sharvari Dalal is Adjunct Assistant Professor of Clinical Pathology and Laboratory Medicine, Jeffrey Petersen is Assistant Professor of Clinical Pathology and Laboratory Medicine, and Darshana Jhala is Professor of Clinical Pathology and Laboratory Medicine, all at the University of Pennsylvania Perelman School of Medicine
| | - Jeffrey Petersen
- and are Staff Pathologists and is Chief, Pathology and Laboratory Medicine, all at Corporal Michael J. Crescenz Veteran Affairs Medical Center in Philadelphia, Pennsylvania. Sharvari Dalal is Adjunct Assistant Professor of Clinical Pathology and Laboratory Medicine, Jeffrey Petersen is Assistant Professor of Clinical Pathology and Laboratory Medicine, and Darshana Jhala is Professor of Clinical Pathology and Laboratory Medicine, all at the University of Pennsylvania Perelman School of Medicine
| | - Darshana Jhala
- and are Staff Pathologists and is Chief, Pathology and Laboratory Medicine, all at Corporal Michael J. Crescenz Veteran Affairs Medical Center in Philadelphia, Pennsylvania. Sharvari Dalal is Adjunct Assistant Professor of Clinical Pathology and Laboratory Medicine, Jeffrey Petersen is Assistant Professor of Clinical Pathology and Laboratory Medicine, and Darshana Jhala is Professor of Clinical Pathology and Laboratory Medicine, all at the University of Pennsylvania Perelman School of Medicine
| |
Collapse
|
41
|
Cheaito K, Bahmad HF, Jalloul H, Hadadeh O, Msheik H, El-Hajj A, Mukherji D, Al-Sayegh M, Abou-Kheir W. Epidermal Growth Factor Is Essential for the Maintenance of Novel Prostate Epithelial Cells Isolated From Patient-Derived Organoids. Front Cell Dev Biol 2020; 8:571677. [PMID: 33195205 PMCID: PMC7658326 DOI: 10.3389/fcell.2020.571677] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related mortality and morbidity among males worldwide. Deciphering the biological mechanisms and molecular pathways involved in PCa pathogenesis and progression has been hindered by numerous technical limitations mainly attributed to the limited number of cell lines available, which do not recapitulate the diverse phenotypes of clinical disease. Indeed, PCa has proven problematic to establish as cell lines in culture due to its heterogeneity which remains a challenge, despite the various in vitro and in vivo model systems available. Growth factors have been shown to play a central role in the complex regulation of cell proliferation among hormone sensitive tumors, such as PCa. Here, we report the isolation and characterization of novel patient-derived prostate epithelial (which we named as AUB-PrC) cells from organoids culture system. We also assessed the role of epidermal growth factor (EGF) in culturing those cells. We profiled the AUB-PrC cells isolated from unaffected and tumor patient samples via depicting their molecular and epithelial lineage features through immunofluorescence staining and quantitative real-time PCR (qRT-PCR), as well as through functional assays and transcriptomic profiling through RNA sequencing. In addition, by optimizing a previously established prostate organoids culture system, we were able to grow human prostate epithelial cells using growth medium and EGF only. With these data collected, we were able to gain insight at the molecular architecture of novel human AUB-PrC cells, which might pave the way for deciphering the mechanisms that lead to PCa development and progression, and ultimately improving prognostic abilities and treatments.
Collapse
Affiliation(s)
- Katia Cheaito
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hiba Jalloul
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ola Hadadeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hiba Msheik
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Albert El-Hajj
- Division of Urology, Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Deborah Mukherji
- Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
42
|
Liu W, Zheng SL, Na R, Wei L, Sun J, Gallagher J, Wei J, Resurreccion WK, Ernst S, Sfanos KS, Isaacs WB, Xu J. Distinct Genomic Alterations in Prostate Tumors Derived from African American Men. Mol Cancer Res 2020; 18:1815-1824. [PMID: 33115829 DOI: 10.1158/1541-7786.mcr-20-0648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022]
Abstract
We aim to understand, from acquired genetic alterations in tumors, why African American (AA) men are more likely to develop aggressive prostate cancer. By analyzing somatic mutations in 39 genes using deeper next-generation sequencing with an average depth of 2,522 reads for tumor DNA and genome-wide DNA copy-number alterations (CNA) in prostate cancer in a total of 171 AA/black men and comparing with those in 860 European American (EA)/white men, we here present several novel findings. First, >35% of AA men harbor damaging mutations in APC, ATM, BRCA2, KDM6A, KMT2C, KMT2D, MED12, ZFHX3, and ZMYM3, each with >1% of mutated copies. Second, among genes with >10% of mutated copies in tumor cells, ZMYM3 is the most frequently mutated gene in AA prostate cancer. In a patient's tumor with >96% frameshift mutations of ZMYM3, we find allelic imbalances in 10 chromosomes, including losses of five and gains of another four chromosomes, suggesting its role in maintaining genomic integrity. Third, when compared to prostate cancer in EA/white men, a higher frequency of CNAs of MYC, THADA, NEIL3, LRP1B, BUB1B, MAP3K7, BNIP3L and RB1, and a lower frequency of deletions of RYBP, TP53, and TMPRSS2-ERG are observed in AA/black men. Finally, for the above genes with higher frequency of CNAs in AA than in EA, deletion of MAP3K7, BNIP3L, NEIL3 or RB1, or gain of MYC significantly associates with both higher Gleason grade and advanced pathologic stage in AA/black men. Deletion of THADA associates with advanced pathologic stage only. IMPLICATIONS: A higher frequency of damaging mutation in ZMYM3 causing genomic instability along with higher frequency of altered genomic regions including deletions of MAP3K7, BNIP3L, RB1, and NEIL3, and gain of MYC appear to be distinct somatically acquired genetic alterations that may contribute to more aggressive prostate cancer in AA/black men.
Collapse
Affiliation(s)
- Wennuan Liu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois.,Departments of Surgery, NorthShore University HealthSystem, Evanston, Illinois
| | - S Lilly Zheng
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois.,Departments of Surgery, NorthShore University HealthSystem, Evanston, Illinois
| | - Rong Na
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Lin Wei
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Jishan Sun
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois.,Departments of Surgery, NorthShore University HealthSystem, Evanston, Illinois
| | - Johnie Gallagher
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Jun Wei
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - W Kyle Resurreccion
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Sarah Ernst
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Urology and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - William B Isaacs
- Department of Urology and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois. .,Departments of Surgery, NorthShore University HealthSystem, Evanston, Illinois
| |
Collapse
|
43
|
Tian S, Lei Z, Gong Z, Sun Z, Xu D, Piao M. Clinical implication of prognostic and predictive biomarkers for castration-resistant prostate cancer: a systematic review. Cancer Cell Int 2020; 20:409. [PMID: 32863768 PMCID: PMC7448351 DOI: 10.1186/s12935-020-01508-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
Background Diagnosis of metastatic castrate resistant prostate cancer (mCRPC) with current biomarkers is difficult and often results in unnecessary invasive procedures as well as over-diagnosis and over-treatment. There are a number of prognostic biomarkers for CRPC, but there are no validated predictive biomarkers to guide in clinical decision-making. Specific biomarkers are needed that enable to understand the natural history and complex biology of this heterogeneous malignancy, identify early response to treatment outcomes and to identify the population of men most likely to benefit from the treatment. In this systematic review, we discuss the existing literature for the role of biomarkers in CRPC and how they aid in the prognosis, treatment selection and survival outcomes. Methods We performed a literature search on PubMed and EMBASE databases from January 2015 through February 2020 in accordance to Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines. Articles were assessed to identify relevant observational studies and randomized controlled trials regarding biomarkers which aid in identifying progression to mCRPC as well as predictive biomarkers which help in treatment selection. Results We identified 3640 number of hits of which 58 articles were found to be relevant. Here we addressed biomarkers in the context of prognosis, prediction and patient selection of therapy. These biomarkers were found to be effective as prognostic or predictive factors under variety of conditions. The higher levels for all these biomarkers were associated with shorter median OS and sometimes PFS. Lower amounts of biomarkers in serum or urine were associated with prolonged survival outcomes, longer time to CRPC development or CRPC progression and longer median follow-up irrespective of any therapy. Conclusion We observed that the biomarkers included in our study predicted clinically relevant survival outcomes and treatment exposure. Though the current biomarkers are prognostic when measured prior to initiating treatment, not all are validated as predictive markers in post treatment setting. A greater understanding of biomarkers in CRPC is need of the hour for development of more personalized approach to maximize benefit and minimize harm in men with CRPC.
Collapse
Affiliation(s)
- Shengri Tian
- Department of Urology, Yanbian University Hospital, Yanji, Jilin China
| | - Zhen Lei
- Department of Urology, Yanbian University Hospital, Yanji, Jilin China
| | - Zuo Gong
- Department of Urology, Yanbian University Hospital, Yanji, Jilin China
| | - Zhonghai Sun
- Department of Urology, Yanbian University Hospital, Yanji, Jilin China
| | - Dongyuan Xu
- Department of Urology, Yanbian University Hospital, Yanji, Jilin China
| | - Minhu Piao
- Department of Urology, Yanbian University Hospital, Yanji, Jilin China
| |
Collapse
|
44
|
Chen Y, Sadasivan SM, She R, Datta I, Taneja K, Chitale D, Gupta N, Davis MB, Newman LA, Rogers CG, Paris PL, Li J, Rybicki BA, Levin AM. Breast and prostate cancers harbor common somatic copy number alterations that consistently differ by race and are associated with survival. BMC Med Genomics 2020; 13:116. [PMID: 32819446 PMCID: PMC7441621 DOI: 10.1186/s12920-020-00765-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 08/10/2020] [Indexed: 11/26/2022] Open
Abstract
Background Pan-cancer studies of somatic copy number alterations (SCNAs) have demonstrated common SCNA patterns across cancer types, but despite demonstrable differences in aggressiveness of some cancers by race, pan-cancer SCNA variation by race has not been explored. This study investigated a) racial differences in SCNAs in both breast and prostate cancer, b) the degree to which they are shared across cancers, and c) the impact of these shared, race-differentiated SCNAs on cancer survival. Methods Utilizing data from The Cancer Genome Atlas (TCGA), SCNAs were identified using GISTIC 2.0, and in each tumor type, differences in SCNA magnitude between African Americans (AA) and European Americans (EA) were tested using linear regression. Unsupervised hierarchical clustering of the copy number of genes residing in race-differentiated SCNAs shared between tumor types was used to identify SCNA-defined patient groups, and Cox proportional hazards regression was used to test for association between those groups and overall/progression-free survival (PFS). Results We identified SCNAs that differed by race in breast (n = 58 SCNAs; permutation p < 10− 4) and prostate tumors (n = 78 SCNAs; permutation p = 0.006). Six race-differentiated SCNAs common to breast and prostate found at chromosomes 5q11.2-q14.1, 5q15-q21.1, 8q21.11-q21.13, 8q21.3-q24.3, 11q22.3, and 13q12.3-q21.3 had consistent differences by race across both tumor types, and all six were of higher magnitude in AAs, with the chromosome 8q regions being the only amplifications. Higher magnitude copy number differences in AAs were also identified at two of these race-differentiated SCNAs in two additional hormonally-driven tumor types: endometrial (8q21.3-q24.3 and 13q12.3-q21.3) and ovarian (13q12.3-q21.3) cancers. Race differentiated SCNA-defined patient groups were significantly associated with survival differences in both cancer types, and these groups also differentiated within triple negative breast cancers based on PFS. While the frequency of the SCNA-defined patient groups differed by race, their effects on survival did not. Conclusions This study identified race-differentiated SCNAs shared by two related cancers. The association of SCNA-defined patient groups with survival demonstrates the clinical significance of combinations of these race-differentiated genomic aberrations, and the higher frequency of these alterations in AA relative to EA patients may explain racial disparities in risk of aggressive breast and prostate cancer.
Collapse
Affiliation(s)
- Yalei Chen
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA.,Center for Bioinformatics, Henry Ford Health System, Detroit, MI, USA
| | - Sudha M Sadasivan
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Ruicong She
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA.,Center for Bioinformatics, Henry Ford Health System, Detroit, MI, USA
| | - Indrani Datta
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA.,Center for Bioinformatics, Henry Ford Health System, Detroit, MI, USA
| | - Kanika Taneja
- Department of Pathology, Henry Ford Health System, Detroit, MI, USA
| | - Dhananjay Chitale
- Department of Pathology, Henry Ford Health System, Detroit, MI, USA.,Center for the Study of Breast Cancer Subtypes, Breast Oncology Program, Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Nilesh Gupta
- Department of Pathology, Henry Ford Health System, Detroit, MI, USA
| | - Melissa B Davis
- Center for the Study of Breast Cancer Subtypes, Breast Oncology Program, Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Lisa A Newman
- Center for the Study of Breast Cancer Subtypes, Breast Oncology Program, Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Craig G Rogers
- Vattikuti Urologic Institute, Henry Ford Health System, Detroit, MI, USA
| | - Pamela L Paris
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Jia Li
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA.,Center for Bioinformatics, Henry Ford Health System, Detroit, MI, USA
| | - Benjamin A Rybicki
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Albert M Levin
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA. .,Center for Bioinformatics, Henry Ford Health System, Detroit, MI, USA.
| |
Collapse
|
45
|
Pharmacologically targetable vulnerability in prostate cancer carrying RB1-SUCLA2 deletion. Oncogene 2020; 39:5690-5707. [PMID: 32694611 DOI: 10.1038/s41388-020-1381-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
RB1 gene is often homozygously deleted or mutated in prostate adenocarcinomas following acquirement of castration resistance and/or metastatic ability. We found that SUCLA2 gene is frequently involved in the deletion of the RB1 gene region in advanced prostate cancer. SUCLA2 constitutes the β-subunit of succinate CoA ligase heterodimer that reversibly converts succinyl CoA into succinate. We sought the possibility that deletion of SUCLA2 gives rise to a metabolic vulnerability that could be targeted therapeutically. We found a significant metabolic shift in SUCLA2-deleted prostate cancer cells, including lower mitochondrial respiratory activity. By screening a number of libraries for compounds that induce cell death selectively in SUCLA2-deficient prostate cancer cells, we identified thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone) and PMA (phorbol-12-myristate-13-acetate) from a natural compound library. These findings indicate that the metabolic vulnerability in SUCLA2-deficient prostate cancer cells is pharmacologically targetable.
Collapse
|
46
|
Kmak JA, Agarwal N, He Y, Heilmann AM, Miller VA, Ross JS, Pal SK, Ali SM, Kilari D. Exceptional Response to Everolimus in a Patient with Metastatic Castrate-Resistant Prostate Cancer Harboring a PTEN Inactivating Mutation. Case Rep Oncol 2020; 13:456-461. [PMID: 32399016 PMCID: PMC7204854 DOI: 10.1159/000506625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 11/19/2022] Open
Abstract
Prostate cancer is among the most common types of cancer in men. Early detection and proper medical intervention is crucial to ensuring successful treatment. Here we describe a patient clinically presenting with castrate-resistant prostate carcinoma. Comprehensive genomic profiling identified a PTEN inactivating mutation in the patient's tumor. After being heavily pretreated, the patient showed stable disease on everolimus, a PI3K-Akt-mTOR pathway inhibitor.
Collapse
Affiliation(s)
- Jamie A Kmak
- Foundation Medicine, Cambridge, Massachusetts, USA
| | | | - Yuting He
- Foundation Medicine, Cambridge, Massachusetts, USA
| | | | | | - Jeffrey S Ross
- Foundation Medicine, Cambridge, Massachusetts, USA.,Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Sumanta Kumar Pal
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Siraj M Ali
- Foundation Medicine, Cambridge, Massachusetts, USA
| | - Deepak Kilari
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
47
|
Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nat Rev Urol 2020; 16:302-317. [PMID: 30962568 DOI: 10.1038/s41585-019-0178-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The accurate identification and stratified treatment of clinically significant early-stage prostate cancer have been ongoing concerns since the outcomes of large international prostate cancer screening trials were reported. The controversy surrounding clinical and cost benefits of prostate cancer screening has highlighted the lack of strategies for discriminating high-risk disease (that requires early treatment) from low-risk disease (that could be managed using watchful waiting or active surveillance). Advances in molecular subtyping and multiomics nanotechnology-based prostate cancer risk delineation can enable refinement of prostate cancer molecular taxonomy into clinically meaningful and treatable subtypes. Furthermore, the presence of intertumoural and intratumoural heterogeneity in prostate cancer warrants the development of novel nanodiagnostic technologies to identify clinically significant prostate cancer in a rapid, cost-effective and accurate manner. Circulating and urinary next-generation prostate cancer biomarkers for disease molecular subtyping and the newest complementary nanodiagnostic platforms for enhanced biomarker detection are promising tools for precision prostate cancer management. However, challenges in merging both aspects and clinical translation still need to be overcome.
Collapse
|
48
|
Badal S, Aiken W, Morrison B, Valentine H, Bryan S, Gachi A, Ragin C. Disparities in prostate cancer incidence and mortality rates: Solvable or not? Prostate 2020; 80:3-16. [PMID: 31702061 PMCID: PMC8378246 DOI: 10.1002/pros.23923] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022]
Abstract
Prostate cancer (PCa) is recognized as a disease possessing not only great variation in its geographic and racial distribution but also tremendous variation in its potential to cause morbidity and death and it, therefore, ought not to be considered a homogenous disease entity. Morbidity and death from PCa are disproportionately higher in men of African ancestry (MAA) who are generally observed to have more aggressive disease and worse outcomes following treatment compared to men of European ancestry (MEA). The higher rates of PCa among MAA relative to MEA appear to be multifactorial and related to inherent differences in biological aggressiveness; a continued lack of awareness of the disease and methods of prevention; a lower prevalence of screen-detected PCa; comparatively lower access to quality healthcare as well as systemic and institutionalized disparities in the administration of optimal care to MAA in developed countries such as the United States of America where high-quality care is available. Even when access to quality healthcare is assured in equal access settings, it appears that MAA still have worse outcomes after PCa treatment stage-for-stage and grade-for-grade compared to MEA, suggesting that, inherent racial, ethnic and biological differences are paramount in predicting poor outcomes. This review has explored the different contributing factors to the current disparities in PCa incidence and mortality rates with emphasis on the incongruence in how research has been conducted in understanding the disease towards developing therapies.
Collapse
Affiliation(s)
- Simone Badal
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - William Aiken
- Department of Surgery, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Belinda Morrison
- Department of Surgery, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Henkel Valentine
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Sophia Bryan
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Andrew Gachi
- Department of pathology, Aga Khan University Hospital, 3 Avenue, Parklands, Nairobi, Kenya
| | - Camille Ragin
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- African Caribbean Cancer Consortium
| |
Collapse
|
49
|
A mouse model of prostate cancer bone metastasis in a syngeneic immunocompetent host. Oncotarget 2019; 10:6845-6854. [PMID: 31839878 PMCID: PMC6901336 DOI: 10.18632/oncotarget.27317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 10/26/2019] [Indexed: 01/07/2023] Open
Abstract
We report the establishment of B6CaP, an allograft tumor line from a Hi-Myc transgenic mouse that had been backcrossed onto C57BL/6J background. This tumor line grows subcutaneously in wildtype C57BL/6J immunocompetent mice, expresses AR, and has a luminal cytokeratin profile. When digested into single cells and injected via intracardiac injection, B6CaP produces metastatic widespread metastases including frequent bone lesions. Metastatic lesions occur most often in the femur, spine, and skull, and have a mixed osteolytic/osteoblastic phenotype. B6CaP allografts are androgen dependent, and regress after castration. However, castration resistant tumors regrow after 4-6 months and can be maintained as androgen-independent clones. This is the first example of a prostate-derived tumor line that shows frequent metastasis to bone and grows in an immunocompetent host, making this model useful for studying mechanisms of bone metastasis and tumor immune response.
Collapse
|
50
|
Pejčić T, Tosti T, Džamić Z, Gašić U, Vuksanović A, Dolićanin Z, Tešić Ž. The Polyphenols as Potential Agents in Prevention and Therapy of Prostate Diseases. Molecules 2019; 24:molecules24213982. [PMID: 31689909 PMCID: PMC6864651 DOI: 10.3390/molecules24213982] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/28/2023] Open
Abstract
In recent years, the progress of science and medicine greatly has influenced human life span and health. However, lifestyle habits, like physical activity, smoking cessation, moderate alcohol consumption, diet, and maintaining a normal body weight represent measures that greatly reduce the risk of various diseases. The type of diet is very important for disease development. Numerous epidemiological clinical data confirm that longevity is linked to predominantly plant-based diets and it is related to a long life; whereas the western diet, rich in red meat and fats, increases the risk of oxidative stress and thus the risk of developing various diseases and pre-aging. This review is focused on the bioavailability of polyphenols and the use of polyphenols for the prevention of prostate diseases. Special focus in this paper is placed on the isoflavonoids and flavan-3-ols, subgroups of polyphenols, and their protective effects against the development of prostate diseases.
Collapse
Affiliation(s)
- Tomislav Pejčić
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11158 Belgrade, Serbia.
| | - Zoran Džamić
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Uroš Gašić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Aleksandar Vuksanović
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Zana Dolićanin
- Department for Biomedical Sciences, State University at Novi Pazar, 36300 Novi Pazar, Serbia.
| | - Živoslav Tešić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11158 Belgrade, Serbia.
| |
Collapse
|