1
|
Aihara K, Nakazawa Y, Takeda S, Hatsusaka N, Onouchi T, Hiramatsu N, Nagata M, Nagai N, Funakoshi-Tago M, Yamamoto N, Sasaki H. Aquaporins contribute to vacuoles formation in Nile grass type II diabetic rats. Med Mol Morphol 2023; 56:274-287. [PMID: 37493821 DOI: 10.1007/s00795-023-00365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023]
Abstract
Regulation of ion and water microcirculation within the lens is tightly controlled through aquaporin channels and connexin junctions. However, cataracts can occur when the lens becomes cloudy. Various factors can induce cataracts, including diabetes which is a well-known cause. The most common phenotype of diabetic cataracts is a cortical and/or posterior subcapsular opacity. In addition to the three main types and two subtypes of cataracts, a vacuole formation is frequently observed; however, their origin remains unclear. In this study, we focused on the aquaporins and connexins involved in diabetes-induced cataracts and vacuoles in Nile grass type II diabetes. The results showed that the expression of aquaporin 0 and aquaporin 5 increased, and that of connexin 43 decreased in diabetic rat lenses. Additionally, aquaporin 0 and 5 were strongly localized in peripheral of vacuoles, suggesting that aquaporins are involved in vacuoles formation. Transillumination photography revealed large vacuoles at the tip of the Y-suture in the anterior capsule of the diabetic lens, and several small vacuoles were observed in the posterior capsule. Within the vacuoles, cytoplasmic degradation and aggregation of fibrous material were observed. Our findings suggest that aquaporins are potential candidate proteins for preventing vacuole formation.
Collapse
Affiliation(s)
- Kana Aihara
- Faculty of Pharmacy, Keio University, 1-5-30, Shibako-en, Minato-ku, Tokyo, 105-8512, Japan
| | - Yosuke Nakazawa
- Faculty of Pharmacy, Keio University, 1-5-30, Shibako-en, Minato-ku, Tokyo, 105-8512, Japan.
| | - Shun Takeda
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku Uchinada-machi, Kahoku-gun, Kahoku, Ishikawa, 920-0293, Japan
| | - Natsuko Hatsusaka
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku Uchinada-machi, Kahoku-gun, Kahoku, Ishikawa, 920-0293, Japan
| | - Takanori Onouchi
- Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Noriko Hiramatsu
- Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Mayumi Nagata
- Department of Ophthalmology, Dokkyo Medical University, Shimotsugagun, Tochigi, 321-0293, Japan
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Megumi Funakoshi-Tago
- Faculty of Pharmacy, Keio University, 1-5-30, Shibako-en, Minato-ku, Tokyo, 105-8512, Japan
| | - Naoki Yamamoto
- Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku Uchinada-machi, Kahoku-gun, Kahoku, Ishikawa, 920-0293, Japan.
| |
Collapse
|
2
|
A missense allele of PEX5 is responsible for the defective import of PTS2 cargo proteins into peroxisomes. Hum Genet 2021; 140:649-666. [PMID: 33389129 DOI: 10.1007/s00439-020-02238-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/07/2020] [Indexed: 11/27/2022]
Abstract
Peroxisomes, single-membrane intracellular organelles, play an important role in various metabolic pathways. The translocation of proteins from the cytosol to peroxisomes depends on peroxisome import receptor proteins and defects in peroxisome transport result in a wide spectrum of peroxisomal disorders. Here, we report a large consanguineous family with autosomal recessive congenital cataracts and developmental defects. Genome-wide linkage analysis localized the critical interval to chromosome 12p with a maximum two-point LOD score of 4.2 (θ = 0). Next-generation exome sequencing identified a novel homozygous missense variant (c.653 T > C; p.F218S) in peroxisomal biogenesis factor 5 (PEX5), a peroxisome import receptor protein. This missense mutation was confirmed by bidirectional Sanger sequencing. It segregated with the disease phenotype in the family and was absent in ethnically matched control chromosomes. The lens-specific knockout mice of Pex5 recapitulated the cataractous phenotype. In vitro import assays revealed a normal capacity of the mutant PEX5 to enter the peroxisomal Docking/Translocation Module (DTM) in the presence of peroxisome targeting signal 1 (PTS1) cargo protein, be monoubiquitinated and exported back into the cytosol. Importantly, the mutant PEX5 protein was unable to form a stable trimeric complex with peroxisomal biogenesis factor 7 (PEX7) and a peroxisome targeting signal 2 (PTS2) cargo protein and, therefore, failed to promote the import of PTS2 cargo proteins into peroxisomes. In conclusion, we report a novel missense mutation in PEX5 responsible for the defective import of PTS2 cargo proteins into peroxisomes resulting in congenital cataracts and developmental defects.
Collapse
|
3
|
Li D, Xu C, Huang D, Guo R, Ji J, Liu W. Identification and functional analysis of a novel missense mutation in GJA8, p.Ala69Thr. BMC Ophthalmol 2020; 20:461. [PMID: 33218330 PMCID: PMC7678044 DOI: 10.1186/s12886-020-01725-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To explore the molecular genetic cause of a four-generation autosomal dominant congenital cataract family in China. METHODS Targeted region sequencing was performed to screen for the potential mutation, and Sanger sequencing was used to confirm the mutation. The homology model was constructed to identify the protein structural change, PolyPhen-2 and Provean were used to predict the mutation impact. Functional and cellular analysis of the wild and mutant GJA8 were performed in DF-1 cells by western blotting, dye uptake assay, immunofluorescence, Annexin V-FITC staining. RESULTS A novel heterozygous mutation (c.205G > A; p.Ala69Thr) was identified within GJA8, which cosegregated with congenital cataract phenotype in this family. Bioinformatics analysis showed the mutation was located in a highly conserved region, and the mutation was predicted to be pathogenic. Function analysis indicated that the mutation inhibited GJA8 hemichannel activity, reduced cell tolerance to oxidative stress, changed the protein distribution pattern and inhibited the cell growth. CONCLUSIONS We have identified a novel missense mutation in GJA8 (c.205G > A, p.Ala69Thr) in a four-generation Chinese family and our results will further broaden the gene mutation spectrum of GJA8.
Collapse
Affiliation(s)
- Dandan Li
- Department of Ophthalmology, Tianjin TEDA Hospital, 300457, Tianjin, China
| | - Chenjia Xu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Nankai District, Tianjin, 300384, China
| | - Dandan Huang
- Department of Ophthalmology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ruru Guo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Nankai District, Tianjin, 300384, China
| | - Jian Ji
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Nankai District, Tianjin, 300384, China
| | - Wei Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Nankai District, Tianjin, 300384, China.
| |
Collapse
|
4
|
Khan SY, Ali M, Riazuddin SA. Metabolome profiling of the developing murine lens. Exp Eye Res 2020; 202:108343. [PMID: 33159909 DOI: 10.1016/j.exer.2020.108343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 01/27/2023]
Abstract
Metabolomics is a study of the entire repertoire of metabolites in a cell at a particular time point. Here, we investigate the mouse lens at multiple embryonic and postnatal time points to establish the metabolome profile during early lens development. The lenses were isolated at six time points including embryonic day 15 (E15) and E18 and postnatal day 0 (P0), P3, P6, and P9. A total of four biological replicates of each time point, each consisting of 25 mg of lens tissue were preserved. Sample preparation was performed by protein precipitation followed by centrifugation to remove proteins and recover metabolites. The resulting extract was subjected to reverse phase/ultra-performance liquid chromatography-tandem mass spectrometry. Metabolome profiling identified a total of 353 metabolites in mouse lens, marked with an abundance of collagen, antioxidant, glycosaminoglycans, lipid, amino acid, and energy-related metabolites. A comparative metabolome analysis identified >200 metabolites exhibiting increased levels (p < 0.05) at latter time points relative to E15. Principal component analysis revealed distinct metabolomic signatures running from E15 to P9 while random forest analysis categorized lipid-, amino acid-, and nucleotide-related metabolites contributing significantly to the separation of the time points. To the best of our knowledge, this is the first report investigating the mouse lens metabolome at multiple embryonic and postnatal time points.
Collapse
Affiliation(s)
- Shahid Y Khan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Muhammad Ali
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
5
|
Richardson RB, Ainsbury EA, Prescott CR, Lovicu FJ. Etiology of posterior subcapsular cataracts based on a review of risk factors including aging, diabetes, and ionizing radiation. Int J Radiat Biol 2020; 96:1339-1361. [DOI: 10.1080/09553002.2020.1812759] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Richard B. Richardson
- Radiobiology and Health Branch, Canadian Nuclear Laboratories (CNL), Chalk River, Canada
- McGill University’s Medical Physics Unit, Cedars Cancer Centre, Montreal, Canada
| | - Elizabeth A. Ainsbury
- Public Health England’s Centre for Chemical, Radiological and Environmental Hazards, Oxford, UK
| | | | - Frank J. Lovicu
- School of Medical Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
6
|
Bagge LE. Not As Clear As It May Appear: Challenges Associated with Transparent Camouflage in the Ocean. Integr Comp Biol 2020; 59:1653-1663. [PMID: 31141119 DOI: 10.1093/icb/icz066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The "superpower" of invisibility is a reality and a necessity for many animals that live in featureless environments like the open ocean, where there is nowhere to hide. How do animals achieve invisibility? Many animals match their color patterns to their background, but this strategy is limited when the background scene is dynamic. Transparency allows organisms to match any background all the time. However, it is challenging for an organism to maintain transparency across its entire body volume. To be transparent, tissues must minimize light scattering, both at the surface and within. Until recently, it has been unclear how clear animals with complex bodies (such as many crustaceans with hard cuticles, thick muscles, and other internal organs) minimize such light scattering. This is especially challenging in an environment where light can come from many directions: reflections from downwelling sunlight and bioluminescent searchlights from predators. This review summarizes several recent discoveries of multiple unique adaptations for minimizing light scattering both on the exterior cuticle surface and throughout the body volume of transparent crustaceans, as well as the potential tradeoffs and challenges associated with transparent camouflage.
Collapse
Affiliation(s)
- Laura E Bagge
- Biology Department, Duke University, Durham, NC, USA
| |
Collapse
|
7
|
Yeh PT, Chen YJ, Lin NC, Yeh AI, Yang CH. The Ocular Protective Effects of Nano/Submicron Particles Prepared from Lycium barbarum Fruits Against Oxidative Stress in an Animal Model. J Ocul Pharmacol Ther 2020; 36:179-189. [PMID: 31951153 DOI: 10.1089/jop.2019.0048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose: To investigate the antioxidative properties of Lycium barbarum (LB) fruits in the eyes and to study whether LB fruits prepared with new nanotechnology have stronger antioxidative effects. Methods: Fourteen days post-supplementation with milled or blended LB fruits, intravitreal paraquat (PQ) was injected into Wistar rats to create oxidative stress. After an additional 14-day supplementation with LB fruits, the rats were sacrificed. An electroretinogram (ERG) was performed to evaluate retinal function before and after the PQ injection. Expression levels of antioxidative responders' mRNA in retina were detected by reverse transcription-polymerase chain reaction. Superoxide dismutase (SOD) and glutathione reductase activity in the aqueous humor (AqH) were analyzed by ELISA. Immunohistochemistry was conducted to evaluate the morphological changes of retina and the levels of oxidative biomarkers. The levels of cell apoptosis were assessed by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The reactive oxygen species (ROS) levels in AqH were measured by chemiluminescence methods. Results: The murine eyes supplemented with LB fruits exhibited several changes compared with the control group. The ERGs revealed significant improvement in retinal function. The mRNA expression levels of oxidative responders were downregulated in the retinas. The ROS was significantly reduced in the retinas, but the SOD meaningfully increased in the AqH. Immunohistochemistry staining and TUNEL assays showed decreased incidences of oxidative biomarkers and apoptosis in the retinas. Milled LB fruits exhibited better antioxidative effects than blended fruits. Conclusions: Milled LB fruits demonstrated superior protection against oxidative threats than blended fruits. Thus, these fruits could be an inexpensive supplement for many oxidative stress-related ocular diseases.
Collapse
Affiliation(s)
- Po-Ting Yeh
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yun-Ju Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Nien-Chen Lin
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - An-I Yeh
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Ophthalmology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
8
|
Ma Y, Liu F, Xu Y. Protective Effect of β-Glucogallin on Damaged Cataract Against Methylglyoxal Induced Oxidative Stress in Cultured Lens Epithelial Cells. Med Sci Monit 2019; 25:9310-9318. [PMID: 31811113 PMCID: PMC6916131 DOI: 10.12659/msm.917869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND ß-glucogallin (GG) is one of the major plant polyphenolic antioxidants that have been associated with positive effects on human health and are crucial in the developing defense mechanism against the risk of diseases. However, reports on the protective mechanism of GG in lens epithelial cells are limited. MATERIAL AND METHODS ARPE-19 cells (a human retinal epithelial cell line) were exposed to methylglyoxal (MG) with or without GG to illuminate the protective role of GG in counteracting the cataract signaling. RESULTS Cells predisposed to MG demonstrated an increase in oxidative stress with augmented (P<0.01) inflammatory cytokines such as cyclooxygenase (COX)-2, chemokine receptor CXCR4, interleukin (IL)-6, IL-8, monocyte chemoattractant protein-1 (MCP-1), and intercellular adhesion molecule 1 (ICAM-1) genes. In addition, the expression of aldose reductase (AR) was increased to 2-fold with accumulated sorbitol in MG exposed cells compared to control. On the other hand, cells exposed to MG evidenced a 3-fold increase in RAGE (receptor for advanced glycation end products) and a 2-fold increase in NF-kappaB (nuclear factor kappa-light-chain-enhancer of activated B cells) expression compared to control cells. Intriguingly, lens epithelial cells pre-treated with GG attenuated the reactive oxygen species levels with improved antioxidant enzymes. Simultaneously, the levels of AR and other inflammatory cytokines were observed in the levels closer to control cells in GG pre-treated cells. CONCLUSIONS Thus, the results of the present investigation show that GG may be a potential drug for the prevention of cataract development and progression.
Collapse
Affiliation(s)
- Ying Ma
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Fei Liu
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Yanli Xu
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| |
Collapse
|
9
|
Heydarian S, Jafari R, Dailami KN, Hashemi H, Jafarzadehpour E, Heirani M, Yekta A, Mahjoob M, Khabazkhoob M. Ocular abnormalities in beta thalassemia patients: prevalence, impact, and management strategies. Int Ophthalmol 2019; 40:511-527. [PMID: 31602527 DOI: 10.1007/s10792-019-01189-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Beta thalassemia (β-thalassemia) is a hereditary disease caused by defective globin synthesis and can be classified into three categories of minor (β-TMi), intermedia (β-TI), and major (β-TM) thalassemia. The aim of our study is to investigate the effects of β-thalassemia and its treatment methods on different parts of the eye and how early-diagnostic methods of ocular complications in this disorder would prevent further ocular complications in these patients by immediate treatment and diet change. METHODS We developed a search strategy using a combination of the words Beta thalassemia, Ocular abnormalities, Iron overload, chelation therapy to identify all articles from PubMed, Web of Science, Scopus, and Google Scholar up to December 2018. To find more articles and to ensure that databases were thoroughly searched, the reference lists of selected articles were also reviewed. RESULTS Complications such as retinopathy, crystalline lens opacification, color vision deficiency, nyctalopia, depressed visual field, reduced visual acuity, reduced contrast sensitivity, amplitude reduction in a-wave and b-wave in Electroretinography (ERG), and decrease in the Arden ratio in Electrooculography (EOG) have all been reported in β-thalassemia patients undergoing chelation therapy. CONCLUSION Ocular problems due to β-thalassemia may be a result of anemia, iron overload in the body tissue, side effects of iron chelators, and the complications of orbital bone marrow expansion.
Collapse
Affiliation(s)
- Samira Heydarian
- Department of Rehabilitation Sciences, School of Allied Medical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Jafari
- Department of Ophthalmology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Hassan Hashemi
- Noor Research Center for Ophthalmic Epidemiology, Noor Eye Hospital, Tehran, Iran
| | - Ebrahim Jafarzadehpour
- Department of Optometry, Rehabilitation Faculty, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Heirani
- Department of Optometry, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Abbasali Yekta
- Refractive Errors Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Monireh Mahjoob
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehdi Khabazkhoob
- Department of Psychiatric Nursing and Management, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Paradis H, Ahmad R, McDonald J, Boyce D, Gendron RL. Ocular tissue changes associated with anterior segment opacity in lumpfish (Cyclopterus lumpus L) eye. JOURNAL OF FISH DISEASES 2019; 42:1401-1408. [PMID: 31393016 DOI: 10.1111/jfd.13065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Lumpfish use their vision to hunt prey or, in the case of aquaculture, to see and eat pelleted diets. A common anterior ocular opacity abnormality designated in the literature as "cataract" described in both farmed and wild lumpfish has not yet been characterized in detail at the pathobiological level. We describe here lens tissue changes associated with cataract in cultured and domesticated lumpfish. Methodology included gross observations, ophthalmoscopy and histology. Young adult cultured animals approaching 400 days post-hatch presented a range of anterior segment opacities associated with lenticular abnormalities observable at a histological level. Wild aged domesticated animals also displayed cataracts characterized mainly by abnormalities of the lens observed by both ophthalmoscopy and histology. Dysplastic lesions of the lens in one aged domesticated lumpfish were accompanied with both retinal and optic nerve degeneration. These novel naturally occurring anatomical changes in lumpfish present both commonalities and unique features associated with cataract in young adult cultured animals versus aged domesticated broodstock animals.
Collapse
Affiliation(s)
- Helene Paradis
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, NL, St. John's, Canada
| | - Raahyma Ahmad
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, NL, St. John's, Canada
| | - James McDonald
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, NL, St. John's, Canada
| | - Danny Boyce
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Robert L Gendron
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, NL, St. John's, Canada
| |
Collapse
|
11
|
RETRACTED: Peptide-induced formation of protein aggregates and amyloid fibrils in human and guinea pig αA-crystallins under physiological conditions of temperature and pH. Exp Eye Res 2018; 179:193-205. [PMID: 30448341 DOI: 10.1016/j.exer.2018.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/17/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of the authors. The senior author contacted the journal in a forthright manner, in an effort to preserve the scientific integrity of the literature, after discovering a significant error in the results reported in the article. The authors were recently made aware of a paper by Kim et al. (Nature Commun. 2019) which shows a spirosome structure (the enzyme aldehyde-alcohol dehydrogenase) present in E. coli (Fig. 5a) that is very similar to the structure the authors thought formed when synthetic alpha A crystallin (66-80) peptide was incubated for 24 h with recombinant guinea pig alpha A insert crystallin (see Kumarasamy et al., Figs. 7C and F, and Fig. 9). Subsequent to publication of their report, the authors later found a number of images that showed what appeared to be the same structure present in samples of their presumably purified recombinant guinea pig alpha A insert crystallin which had been incubated without peptide for 24 h. Hence, the authors now conclude that the structures shown in Figs. 7C and F, and Fig. 9 of their article published in this journal are actually due to E. coli contaminant aldehyde-alcohol dehydrogenase. The authors deeply regret this error and any inconvenience it may have caused.
Collapse
|
12
|
Shi W, Riquelme MA, Gu S, Jiang JX. Connexin hemichannels mediate glutathione transport and protect lens fiber cells from oxidative stress. J Cell Sci 2018; 131:jcs212506. [PMID: 29487175 PMCID: PMC5897712 DOI: 10.1242/jcs.212506] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/07/2018] [Indexed: 01/04/2023] Open
Abstract
Elevated oxidized stress contributes to lens cataracts, and gap junctions play important roles in maintaining lens transparency. As well as forming gap junctions, connexin (Cx) proteins also form hemichannels. Here, we report a new mechanism whereby hemichannels mediate transport of reductant glutathione into lens fiber cells and protect cells against oxidative stress. We found that Cx50 (also known as GJA8) hemichannels opened in response to H2O2 in lens fiber cells but that transport through the channels was inhibited by two dominant-negative mutants in Cx50, Cx50P88S, which inhibits transport through both gap junctions and hemichannels, and Cx50H156N, which only inhibits transport through hemichannels and not gap junctions. Treatment with H2O2 increased the number of fiber cells undergoing apoptosis, and this increase was augmented with dominant-negative mutants that disrupted both hemichannels formed from Cx46 (also known as GJA3) and Cx50, while Cx50E48K, which only impairs gap junctions, did not have such an effect. Moreover, hemichannels mediate uptake of glutathione, and this uptake protected lens fiber cells against oxidative stress, while hemichannels with impaired transport had less protective benefit from glutathione. Taken together, these results show that oxidative stress activates connexin hemichannels in the lens fiber cells and that hemichannels likely protect lens cell against oxidative damage through transporting extracellular reductants.
Collapse
Affiliation(s)
- Wen Shi
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
13
|
Sreelakshmi V, Abraham A. Protective effects of Cassia tora leaves in experimental cataract by modulating intracellular communication, membrane co-transporters, energy metabolism and the ubiquitin-proteasome pathway. PHARMACEUTICAL BIOLOGY 2017; 55:1274-1282. [PMID: 28274170 PMCID: PMC6130452 DOI: 10.1080/13880209.2017.1299769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 11/18/2016] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
CONTEXT Cataract is the clouding of eye lens which causes impairment in vision and accounts for the leading factor of global blindness. Functional food-based prevention of cataract finds application in vision research because of its availability and easy access to all classes of the society. Cassia tora Linn. (Caesalpinaceae) is an edible plant mentioned in the traditional systems of medicine for whole body health, especially to the eyes. OBJECTIVE The present study evaluates the potential of ethyl acetate fraction of Cassia tora leaves (ECT) on experimental cataract. MATERIALS AND METHODS Cataract was induced by a single subcutaneous injection of sodium selenite (4 μg/g body weight) on 10th day. ECT was supplemented orally from 8th day up to 12th day at a concentration of 5 μg/g body weight and marker parameters were evaluated after 30 days. RESULTS The production of MPO and the activation of calpain were reduced 52.17% and 36.67% by ECT in lens tissue, respectively. It modulated the energy status by significantly increasing the activity of CCO 1 (55.56%) and ATP production (41.88%). ECT maintained the ionic balance in the lens by reducing the level of sodium (50%) and increasing the level of potassium (42.5%). It also reduced cell junction modifications and preserved a functional ubiquitin-proteasome pathway. DISCUSSION AND CONCLUSION The results reinforce the growing attention on wild plant food resources for preventive protection against cataract. The data suggest the value of Cassia tora leaves as a functional food for ameliorating cataract pathology.
Collapse
Affiliation(s)
- V. Sreelakshmi
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Annie Abraham
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
14
|
Zhang TO, Alperstein AM, Zanni MT. Amyloid β-Sheet Secondary Structure Identified in UV-Induced Cataracts of Porcine Lenses using 2D IR Spectroscopy. J Mol Biol 2017; 429:1705-1721. [PMID: 28454743 PMCID: PMC5493149 DOI: 10.1016/j.jmb.2017.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 04/08/2017] [Accepted: 04/24/2017] [Indexed: 02/04/2023]
Abstract
Cataracts are formed by the aggregation of crystallin proteins in the eye lens. Many in vitro studies have established that crystallin proteins precipitate into aggregates that contain amyloid fibers when denatured, but there is little evidence that ex vivo cataracts contain amyloid. In this study, we collect two-dimensional infrared (2D IR) spectra on tissue slices of porcine eye lenses. As shown in control experiments on in vitro αB- and γD-crystallin, 2D IR spectroscopy can identify the highly ordered β-sheets typical of amyloid secondary structure even if the fibers themselves are too short to be resolved with TEM. In ex vivo experiments of acid-treated tissues, characteristic 2D IR features are observed and fibers >50nm in length are resolved by transmission electron microscopy (TEM), consistent with amyloid fibers. In UV-irradiated lens tissues, fibers are not observed with TEM, but highly ordered β-sheets of amyloid secondary structure is identified from the 2D IR spectra. The characteristic 2D IR features of amyloid β-sheet secondary structure are created by as few as four or five strands and so identify amyloid secondary structure even if the aggregates themselves are too small to be resolved with TEM. We discuss these findings in the context of the chaperone system of the lens, which we hypothesize sequesters small aggregates, thereby preventing long fibers from forming. This study expands the scope of heterodyned 2D IR spectroscopy to tissues. The results provide a link between in vitro and ex vivo studies and support the hypothesis that cataracts are an amyloid disease.
Collapse
Affiliation(s)
- Tianqi O Zhang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| | - Ariel M Alperstein
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
15
|
Białas AJ, Sitarek P, Miłkowska-Dymanowska J, Piotrowski WJ, Górski P. The Role of Mitochondria and Oxidative/Antioxidative Imbalance in Pathobiology of Chronic Obstructive Pulmonary Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7808576. [PMID: 28105251 PMCID: PMC5220474 DOI: 10.1155/2016/7808576] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/23/2016] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common preventable and treatable disease, characterized by persistent airflow limitation that is usually progressive and associated with an enhanced chronic inflammatory response in the airways and the lung to noxious particles or gases. The major risk factor of COPD, which has been proven in many studies, is the exposure to cigarette smoke. However, it is 15-20% of all smokers who develop COPD. This is why we should recognize the pathobiology of COPD as involving a complex interaction between several factors, including genetic vulnerability. Oxidant-antioxidant imbalance is recognized as one of the significant factors in COPD pathogenesis. Numerous exogenous and endogenous sources of ROS are present in pathobiology of COPD. One of endogenous sources of ROS is mitochondria. Although leakage of electrons from electron transport chain and forming of ROS are the effect of physiological functioning of mitochondria, there are various intra- and extracellular factors which may increase this amount and significantly contribute to oxidative-antioxidative imbalance. With the coexistence with impaired antioxidant defence, all these issues lead to oxidative and carbonyl stress. Both of these states play a significant role in pathobiology of COPD and may account for development of major comorbidities of this disease.
Collapse
Affiliation(s)
- Adam Jerzy Białas
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Łódź, Poland
- Healthy Aging Research Centre (HARC), Medical University of Lodz, Łódź, Poland
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Łódź, Poland
| | - Joanna Miłkowska-Dymanowska
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Łódź, Poland
- Healthy Aging Research Centre (HARC), Medical University of Lodz, Łódź, Poland
| | - Wojciech Jerzy Piotrowski
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Łódź, Poland
- Healthy Aging Research Centre (HARC), Medical University of Lodz, Łódź, Poland
| | - Paweł Górski
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Łódź, Poland
- Healthy Aging Research Centre (HARC), Medical University of Lodz, Łódź, Poland
| |
Collapse
|
16
|
Hypertension potentiates cataractogenesis in rat eye through modulation of oxidative stress and electrolyte homeostasis. J Curr Ophthalmol 2016; 28:123-30. [PMID: 27579456 PMCID: PMC4992125 DOI: 10.1016/j.joco.2016.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/24/2023] Open
Abstract
Purpose To evaluate modes of cataractogenesis in the hypertensive state by using different hypertensive animal models, including fructose, cadmium chloride (CdCl2), Nω-nitro-l-arginine methyl ester (l-NAME), and two-kidney, one clip (2K1C) method. Methods Male Sprague–Dawley albino rats (150–180 g) were divided into different groups, each group containing six animals. Hypertension was induced in animals via six weeks administration of fructose (10% solution in drinking water), CdCl2 (0.5 mg/kg/day, i.p.), and l-NAME (20 mg/kg/day, p.o.) in their respective groups and NaCl (0.9% solution in drinking water) in the 2K1C group. The Ramipril-treated group (2 mg/kg/day, orally) served as a standard group for the 2K1C animal model. Blood pressure was measured biweekly using non-invasive blood pressure system. The biochemical parameters in serum and eye lenses were evaluated after six weeks of the experimental protocol. Results Hypertensive animal models showed significant induction of systolic and diastolic blood pressure and modulation of oxidative stress through depletion of antioxidants, including glutathione peroxidase, catalase, superoxide dismutase, glutathione, and elevation of malondialdehyde in serum and eye lenses. A significant elevation of ionic contents (Na+ and Ca2+) and reduction of total protein and Ca2+ ATPase activity in eye lenses were observed in all hypertensive animal models except l-NAME when compared with the normal group. The significant restoration of the antioxidants, Malondialdehyde (MDA) total protein, and ionic contents in the eye lenses concomitant with reduction of blood pressure were observed in the ramipril-treated group as compared to the 2K1C animal model. The results indicate that the fructose, CdCl2, and 2K1C models showed pronounced cataractogenic effects in the rat eye lenses. Conclusion Based on our findings, it can be concluded that systemic hypertension significantly increases the risk of cataract formation in the rat eyes via modulation of the antioxidant defense mechanism and electrolyte homeostasis.
Collapse
|
17
|
Lim JC, Umapathy A, Donaldson PJ. Tools to fight the cataract epidemic: A review of experimental animal models that mimic age related nuclear cataract. Exp Eye Res 2016; 145:432-443. [DOI: 10.1016/j.exer.2015.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/07/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022]
|
18
|
Lam D, Rao SK, Ratra V, Liu Y, Mitchell P, King J, Tassignon MJ, Jonas J, Pang CP, Chang DF. Cataract. Nat Rev Dis Primers 2015; 1:15014. [PMID: 27188414 DOI: 10.1038/nrdp.2015.14] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cataract is the leading cause of reversible blindness and visual impairment globally. Blindness from cataract is more common in populations with low socioeconomic status and in developing countries than in developed countries. The only treatment for cataract is surgery. Phacoemulsification is the gold standard for cataract surgery in the developed world, whereas manual small incision cataract surgery is used frequently in developing countries. In general, the outcomes of surgery are good and complications, such as endophthalmitis, often can be prevented or have good ouctomes if properly managed. Femtosecond laser-assisted cataract surgery, an advanced technology, can automate several steps; initial data show no superiority of this approach over current techniques, but the results of many large clinical trials are pending. The greatest challenge remains the growing 'backlog' of patients with cataract blindness in the developing world because of lack of access to affordable surgery. Efforts aimed at training additional cataract surgeons in these countries do not keep pace with the increasing demand associated with ageing population demographics. In the absence of strategie that can prevent or delay cataract formation, it is important to focus efforts and resources on developing models for efficient delivery of cataract surgical services in underserved regions. For an illustrated summary of this Primer, visit: http://go.nature.com/eQkKll.
Collapse
Affiliation(s)
- Dennis Lam
- State Key Laboratory of Ophthalmology, and Zhongshan Ophthalmic Center, Sun Yat-Sen University, 54 South Xianlie Road, Guangzhou 510060, China.,C-MER (Shenzhen), Dennis Lam Eye Hospital, Shenzhen, China
| | | | - Vineet Ratra
- C-MER (Shenzhen), Dennis Lam Eye Hospital, Shenzhen, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, and Zhongshan Ophthalmic Center, Sun Yat-Sen University, 54 South Xianlie Road, Guangzhou 510060, China
| | - Paul Mitchell
- Department of Ophthalmology, Centre for Vision Research, Westmead Hospital, University of Sydney, Sydney, Australia
| | - Jonathan King
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Jost Jonas
- Department of Ophthalmology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Chi P Pang
- Department of Ophthalmology &Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - David F Chang
- Department of Ophthalmology, University of California, San Francisco, California, USA
| |
Collapse
|
19
|
Chen L, Zong R, Zhou J, Ge L, Zhou T, Ma JX, Liu Z, Zhou Y. The oxidant role of 4-hydroxynonenal in corneal epithelium. Sci Rep 2015; 5:10630. [PMID: 26023743 PMCID: PMC4448499 DOI: 10.1038/srep10630] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/22/2015] [Indexed: 11/12/2022] Open
Abstract
4-Hydroxynonenal (4-HNE or HNE) is a main endogenous product of cellular lipid peroxidation in tissues and is reported to play pathogenic roles in eye diseases. Here we investigated the association between 4-HNE and oxidative stress in the corneal epithelium. 4-HNE suppressed the cell viability of human corneal epithelial cells (HCE) in a concentration dependent manner. 4-HNE significantly increased the level of 3-Nitrotyrosine (3-NT), a marker of oxidative stress, in HCE cells and corneal epithelium of rats by immunofluorescent staining and Western blot analysis. To its underlying mechanistic on ROS system, 4-HNE elevated the ROS generation enzyme NADPH oxidase 4 (NOX4) and induced the activation of NF-E2–related factor-2 (NRF2) and its downstream effectors: NAD(P)H dehydrogenase (quinone 1) (NQO1) and glutathione S-transferase P (GSTP). Furthermore, N-acetylcysteine (NAC), an antioxidant and ROS scavenger, antagonized the inhibitory and oxidant effects of 4-HNE on the corneal epithelial cells. In conclusion, 4-HNE plays an oxidant role in the corneal epithelium and this work provides a new strategy for the pathogenesis and treatment of corneal diseases.
Collapse
Affiliation(s)
- Longlong Chen
- Eye Institute and affiliated Xiamen Eye Center of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, 361005, PR China
| | - Rongrong Zong
- Eye Institute and affiliated Xiamen Eye Center of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, 361005, PR China
| | - Jing Zhou
- Eye Institute and affiliated Xiamen Eye Center of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, 361005, PR China
| | - Lianping Ge
- Eye Institute and affiliated Xiamen Eye Center of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, 361005, PR China
| | - Tong Zhou
- Eye Institute and affiliated Xiamen Eye Center of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, 361005, PR China
| | - Jian-xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Zuguo Liu
- Eye Institute and affiliated Xiamen Eye Center of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, 361005, PR China
| | - Yueping Zhou
- Eye Institute and affiliated Xiamen Eye Center of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, 361005, PR China
| |
Collapse
|
20
|
An Updated Meta-Analysis: Risk Conferred by Glutathione S-Transferases (GSTM1 and GSTT1) Polymorphisms to Age-Related Cataract. J Ophthalmol 2015; 2015:103950. [PMID: 25692031 PMCID: PMC4322823 DOI: 10.1155/2015/103950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/21/2014] [Indexed: 01/13/2023] Open
Abstract
Purpose. To study the effects of glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) polymorphisms on age-related cataract (ARC). Methods. After a systematic literature search, all relevant studies evaluating the association between GSTs polymorphisms and ARC were included. Results. Fifteen studies on GSTM1 and nine studies on GSTT1 were included in this meta-analysis. In the pooled analysis, a significant association between null genotype of GSTT1 and ARC was found (OR = 1.229, 95% CI = 1.057–1.429, and P = 0.007). In subgroup analysis, the association between cortical cataract (CC) and GSTM1 null genotype was statistically significant (OR = 0.713, 95% CI = 0.598–0.850, and P < 0.001). In addition, GSTM1 null genotype was significantly associated with ARC causing risk to individuals working indoors and not individuals working outdoors. The association between GSTT1 null genotype and risk of ARC was statistically significant in Asians (OR = 1.442, 95% CI = 1.137–1.830, and P = 0.003) but not in Caucasians. Conclusions. GSTM1 positive genotype is associated with increased risk of CC and loses the protective role in persons who work outdoors. Considering the ethnic variation, GSTT1 null genotype is found to be associated with increased risk of ARC in Asians but not in Caucasians.
Collapse
|
21
|
Belmont-Díaz JA, Calleja-Castañeda LF, Yoval-Sánchez B, Rodríguez-Zavala JS. Tamoxifen, an anticancer drug, is an activator of human aldehyde dehydrogenase 1A1. Proteins 2014; 83:105-16. [PMID: 25354921 DOI: 10.1002/prot.24709] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/05/2014] [Accepted: 10/18/2014] [Indexed: 12/24/2022]
Abstract
The modulation of aldehyde dehydrogenase (ALDH) activity has been suggested as a promising option for the prevention or treatment of many diseases. To date, only few activating compounds of ALDHs have been described. In this regard, N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide has been used to protect the heart against ischemia/reperfusion damage. In the search for new modulating ALDH molecules, the binding capability of different compounds to the active site of human aldehyde dehydrogenase class 1A1 (ALDH1A1) was analyzed by molecular docking, and their ability to modulate the activity of the enzyme was tested. Surprisingly, tamoxifen, an estrogen receptor antagonist used for breast cancer treatment, increased the activity and decreased the Km for NAD(+) by about twofold in ALDH1A1. No drug effect on human ALDH2 or ALDH3A1 was attained, showing that tamoxifen was specific for ALDH1A1. Protection against thermal denaturation and competition with daidzin suggested that tamoxifen binds to the aldehyde site of ALDH1A1, resembling the interaction of N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide with ALDH2. Further kinetic analysis indicated that tamoxifen activation may be related to an increase in the Kd for NADH, favoring a more rapid release of the coenzyme, which is the rate-limiting step of the reaction for this isozyme. Therefore, tamoxifen might improve the antioxidant response, which is compromised in some diseases.
Collapse
|
22
|
Yanshole VV, Snytnikova OA, Kiryutin AS, Yanshole LV, Sagdeev RZ, Tsentalovich YP. Metabolomics of the rat lens: a combined LC-MS and NMR study. Exp Eye Res 2014; 125:71-8. [PMID: 24910091 DOI: 10.1016/j.exer.2014.05.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 11/25/2022]
Abstract
This work is the first comprehensive report on the quantitative metabolomic composition of the rat lens. Quantitative metabolomic profiles of lenses were acquired with the combined use of high-frequency nuclear magnetic resonance (NMR) and high-performance liquid chromatography with high-resolution mass-spectrometric detection (LC-MS) methods. More than forty low molecular weight compounds found in the lens have been reliably identified and quantified. The most abundant metabolites in the 3-month-old Wistar rat lens are taurine, hypotaurine, lactate, phosphocholine and reduced glutathione. The analysis of age-related changes in the lens metabolomic composition shows a gradual decrease of the content of most metabolites. This decrease is the most pronounced between 1 and 3 months, which probably corresponds to the completion of the lens maturation in one-month-old rats and to the high rate of the young lens growth. The enhanced levels of tryptophan, tyrosine, carnitine, glycerophosphate, GSH and GSSG were found in lenses of senescence-accelerated OXYS rats; for some metabolites, this effect may probably be attributed to the compensatory response to oxidative stress.
Collapse
Affiliation(s)
- Vadim V Yanshole
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Olga A Snytnikova
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia
| | - Alexey S Kiryutin
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia
| | - Lyudmila V Yanshole
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia
| | - Renad Z Sagdeev
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia
| | - Yuri P Tsentalovich
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.
| |
Collapse
|
23
|
Chandra A, Raza ST, Abbas S, Singh L, Rizvi S, Ahmed F, Eba A, Mahdi F. Polymorphism of GST and FTO Genes in Risk Prediction of Cataract among a North Indian Population. Ophthalmic Genet 2014; 37:19-24. [PMID: 24754249 DOI: 10.3109/13816810.2014.907921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The present study was carried out to investigate the association of GST and FTO gene polymorphisms with cataract cases and controls. MATERIALS AND METHODS The study included 131 cases and 126 controls. GST and FTO gene polymorphisms were evaluated by PCR-RFLP. RESULTS The frequency of the GSTM1-positive and GSTT1-positive in cataract cases were 62.13% and 86.40% while in the controls it was 46.39% and 95.87% with odds ratios of 1.9 (95% CI, 1.08-3.32; p value 0.025) and 0.27 (95% CI, 0.09-0.86; p value, 0.019) respectively. There was a statistically significant association between the GSTM1 null genotype and the risk of cataract development with an odds ratio of 0.43 (95% CI, 0.24-0.76; p value, 0.003). Significant differences were obtained in the frequencies of FTO AA and TT genotype (p = 0.023 and 0.023) between cases and controls. CONCLUSION The present study suggested that GSTM1, GSTT1 and FTO gene polymorphisms are associated with increased risk for cataract in North Indian populations. Due to the limited sample size, the finding on GST and FTO gene polymorphisms need further investigation.
Collapse
Affiliation(s)
| | | | | | - Luxmi Singh
- b Opthalmology, Era's Lucknow Medical College and Hospital , Lucknow , India
| | | | | | - Ale Eba
- a Departments of Biochemistry and
| | | |
Collapse
|
24
|
Magnetic resonance imaging (MRI) study of the water content and transport in rat lenses. Exp Eye Res 2013; 113:162-71. [DOI: 10.1016/j.exer.2013.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 06/07/2013] [Indexed: 11/20/2022]
|
25
|
Wignes JA, Goldman JW, Weihl CC, Bartley MG, Andley UP. p62 expression and autophagy in αB-crystallin R120G mutant knock-in mouse model of hereditary cataract. Exp Eye Res 2013; 115:263-73. [PMID: 23872361 DOI: 10.1016/j.exer.2013.06.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/21/2013] [Accepted: 06/25/2013] [Indexed: 01/07/2023]
Abstract
The formation of cataracts is associated with the accumulation of protein aggregates in the ocular lens, suggesting that defective protein degradation plays a role in cataract pathogenesis. Accumulation of the p62 protein has recently been identified as a marker for impaired autophagy in a variety of tissues; however, little information exists on its expression in the ocular lens and in cataracts. In the present study we examined the expression of p62 in the mouse lens and compared its expression in wild-type lenses with that in lenses from knock-in mice with an arginine to glycine mutation in αB-crystallin (αB-R120G) that is known to cause human hereditary cataract. Immunohistochemical, immunoblotting, and transmission electron microscopic analyses of wild type and αB-R120G mutant mice were performed. To assess the effect of increased protein aggregation on autophagy, immunohistochemical staining was performed with an anti-p62 antibody, revealing the presence of p62-positive punctate staining in a band of denucleated cortical fiber cells. The number and size of p62 puncta were significantly greater in αB-R120G homozygous mutant lenses than in wild type and heterozygous mutant lenses. p62 staining was also abundant in lens epithelial cells and was concentrated around the nuclear membrane. Double-membraned structures similar to autophagosomes containing cellular cytoplasmic content were detected in lens epithelial cells by transmission electron microscopy. The autophagosomes in lens epithelial cells from αB-R120G homozygous mutant mice were larger than those in wild type mice. Double-membraned structures that are probably autophagosomes were also detected in cortical fiber cells and were more abundant in the αB-R120G homozygous mutant lens than the wild type lens. This study demonstrates p62 distribution as speckles in the lens fiber cells, altered levels of p62 expression, and the presence of autophagosomes in the ocular lens of αB-R120G mutant mice. We propose that autophagy is inhibited in the αB-R120G mutant lenses because of a defect in protein degradation after autophagosome formation. Further work is necessary to determine the relationship between αB-crystallin function, autophagy, and cataract formation.
Collapse
Affiliation(s)
- Jonathan A Wignes
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
26
|
Sakul A, Cumaoğlu A, Aydin E, Ari N, Dilsiz N, Karasu C. Age- and diabetes-induced regulation of oxidative protein modification in rat brain and peripheral tissues: consequences of treatment with antioxidant pyridoindole. Exp Gerontol 2013; 48:476-84. [PMID: 23470276 DOI: 10.1016/j.exger.2013.02.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 01/12/2023]
Abstract
The increased glyco- and lipo-oxidation events are considered one of the major factors in the accumulation of non-functional damaged proteins, and the antioxidants may inhibit extensive protein modification and nitrosylated protein levels, enhancing the oxidative damage at the cellular levels in aging and diabetes. Because of its central role in the pathogenesis of age-dependent and diabetes-mediated functional decline, we compared the levels of oxidatively modified protein markers, namely AGEs (Advanced Glycation End-protein adducts), 4-HNE (4-hydroxy-nonenal-histidine) and 3-NT (3-nitrotyrosine), in different tissues of young and old rats. Separately, these three oxidative stress parameters were explored in old rats subjected to experimentally induced diabetes and following a long-term treatment with a novel synthetic pyridoindole antioxidant derived from stobadine-SMe1EC2 (2-ethoxycarbonyl-8-methoxy-2,3,4,4a,5,9b-hexahydro-1H-pyrido[4,3-b]indolinium dichloride). Diabetes induced by streptozotocin injection in rats aged 13-15 months, and SMe1EC2 treatment was applied during 4months to aged diabetic rats. AGEs and 4-HNE levels were significantly elevated in brain, ventricle and kidney, but not in lens and liver of aged rats when compared with young rats. Diabetes propagated ageing-induced increase in AGEs and 4-HNE in brain, ventricle and kidney, and raised significantly lens and liver AGEs and 4-HNE levels in aged rats. In aged diabetic rats, SMe1EC2 protected only the kidney against increase in AGEs, and inhibited significantly 4-HNE levels in brain, kidney, liver and lens that were observed more pronounced in lens. 3-NT was significantly increased in brain of aged rats and in kidney, lens and ventricle of aged diabetic rats, while SMe1EC2 has no protective effect on 3-NT increase. Results demonstrate that (1) the responsiveness of different tissue proteins to glyco-lipo-oxidative and nitrosative stress in the course of normal aging was miscellaneous. (2) Diabetes is a major factor contributing to accelerated aging. (3) SMe1EC2 selectively inhibited the generation of oxidatively modified proteins, only in a limited number of tissues.
Collapse
Affiliation(s)
- Arzu Sakul
- Cellular Stress Response & Signal Transduction Research Laboratory, Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
27
|
Sattarova EA, Sinitsyna OI, Vasyunina EA, Duzhak AB, Kolosova NG, Zharkov DO, Nevinsky GA. Age-dependent guanine oxidation in DNA of different brain regions of Wistar rats and prematurely aging OXYS rats. Biochim Biophys Acta Gen Subj 2013; 1830:3542-52. [PMID: 23403132 DOI: 10.1016/j.bbagen.2013.01.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 01/17/2013] [Accepted: 01/21/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Oxidative damage to the cell, including the formation of 8-oxoG, has been regarded as a significant factor in carcinogenesis and aging. An inbred prematurely aging rat strain (OXYS) is characterized by high sensitivity to oxidative stress, lipid peroxidation, protein oxidation, DNA rearrangements, and pathological conditions paralleling several human degenerative diseases including learning and memory deterioration. METHODS We have used monoclonal antibodies against a common pre-mutagenic base lesion 8-oxoguanine (8-oxoG) and 8-oxoguanine DNA glycosylase (OGG1) in combination with indirect immunofluorescence microscopy and image analysis to follow the relative amounts and distribution of 8-oxoG and OGG1 in various cells of different brain regions from OXYS and control Wistar rats. RESULTS It was shown that 8-oxoG increased with age in mature neurons, nestin- and glial fibrillary acidic protein (GFAP)-positive cells of hippocampus and frontal cortex in both strains of rats, with OXYS rats always displaying statistically significantly higher levels of oxidative DNA damage than Wistar rats. The relative content of 8-oxoG and OGG1 in nestin- and GFAP-positive cells was higher than in mature neurons in both Wistar and OXYS rats. However, there was no significant interstrain difference in the content of OGG1 for all types of cells and brain regions analyzed, and no difference in the relative content of 8-oxoG between different brain regions. CONCLUSIONS Oxidation of guanine may play an important role in the development of age-associated decrease in memory and learning capability of OXYS rats. GENERAL SIGNIFICANCE The findings are important for validation of the OXYS rat strain as a model of mammalian aging.
Collapse
Affiliation(s)
- Evgeniya A Sattarova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | | | | | | | | | | | | |
Collapse
|
28
|
Bhargavan B, Chhunchha B, Fatma N, Kubo E, Kumar A, Singh DP. Epigenetic repression of LEDGF during UVB exposure by recruitment of SUV39H1 and HDAC1 to the Sp1-responsive elements within LEDGF promoter CpG island. Epigenetics 2013; 8:268-80. [PMID: 23386123 DOI: 10.4161/epi.23861] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Expression level of lens epithelial derived growth factor (LEDGF) is vital for LEDGF-mediated cell survival and cytoprotection against proapoptotic stimuli. We previously demonstrated that LEDGF is transcriptionally regulated by Sp1-responsive elements within a CpG island in the LEDGF promoter. Herein, we report on the existence of epigenetic signaling involved in the repression of LEDGF transcription in lens epithelial cells (LECs) facing UVB. UVB exposure led to histone H3 dimethylation and deacetylation at its CpG island, where a histone deacetylase/histone methylase (HDAC1/SUV39H1) complex was recruited. Exposure of LECs to UVB stress altered LEDGF protein and mRNA expression as well as promoter activity, while failing to methylate the CpG island. These events were correlated with increased reactive oxygen species (ROS) and increased cell death. LEDGF promoter activity and expression remained unaltered after 5-Aza treatment, but were relieved with tricostatin A, an inhibitor of HDACs. Expression analysis disclosed that UVB radiation altered the global expression levels of acetylated histone proteins, diminished total histone acetyltransferase (HAT) activity and increased HDAC activity and HDAC1 expression. In silico analysis of LEDGF proximal promoter and ChIP analyses disclosed HDAC1/SUV39H1 complex anchored to the -170/-10 nt promoter regions at Sp1-responsive elements and also attenuated Sp1 binding, resulting in HDAC1- and SUV39H1-dependent deacetylation and dimethylation of H3 at K9. Acetylation of H3K9 was essential for LEDGF active transcription, while enrichment of H3K9me2 at Sp1-responsive elements within CpGs (-170/-10) by UVB radiation repressed LEDGF transcription. Our study may contribute to understanding diseases associated with LEDGF aberrant expression due to specific epigenetic modifications, including blinding disorders.
Collapse
Affiliation(s)
- Biju Bhargavan
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | |
Collapse
|
29
|
Michael R, Rosandić J, Montenegro GA, Lobato E, Tresserra F, Barraquer RI, Vrensen GFJM. Absence of beta-amyloid in cortical cataracts of donors with and without Alzheimer's disease. Exp Eye Res 2012; 106:5-13. [PMID: 23142516 DOI: 10.1016/j.exer.2012.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Revised: 10/19/2012] [Accepted: 10/25/2012] [Indexed: 11/16/2022]
Abstract
Eye lenses from human donors with and without Alzheimer's disease (AD) were studied to evaluate the presence of amyloid in cortical cataract. We obtained 39 lenses from 21 postmortem donors with AD and 15 lenses from age-matched controls provided by the Banco de Ojos para Tratamientos de la Ceguera (Barcelona, Spain). For 17 donors, AD was clinically diagnosed by general physicians and for 4 donors the AD diagnosis was neuropathologically confirmed. Of the 21 donors with AD, 6 had pronounced bilateral cortical lens opacities and 15 only minor or no cortical opacities. As controls, 7 donors with pronounced cortical opacities and 8 donors with almost transparent lenses were selected. All lenses were photographed in a dark field stereomicroscope. Histological sections were analyzed using a standard and a more sensitive Congo red protocol, thioflavin staining and beta-amyloid immunohistochemistry. Brain tissue from two donors, one with cerebral amyloid angiopathy and another with advanced AD-related changes and one cornea with lattice dystrophy were used as positive controls for the staining techniques. Thioflavin, standard and modified Congo red staining were positive in the control brain tissues and in the dystrophic cornea. Beta-amyloid immunohistochemistry was positive in the brain tissues but not in the cornea sample. Lenses from control and AD donors were, without exception, negative after Congo red, thioflavin, and beta-amyloid immunohistochemical staining. The results of the positive control tissues correspond well with known observations in AD, amyloid angiopathy and corneas with lattice dystrophy. The absence of staining in AD and control lenses with the techniques employed lead us to conclude that there is no beta-amyloid in lenses from donors with AD or in control cortical cataracts. The inconsistency with previous studies of Goldstein et al. (2003) and Moncaster et al. (2010), both of which demonstrated positive Congo red, thioflavin, and beta-amyloid immunohistochemical staining in AD and Down syndrome lenses, is discussed.
Collapse
Affiliation(s)
- Ralph Michael
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, Laforja 88, 08021 Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
There has been the unsubstantiated clinical impression that laser refractive surgery accelerates cataract development along with solid experimental data about the cataractogenic effects of excimer laser treatment. We present the first documented case of significant cataract formation in a young myope after repeat excimer laser ablation necessitating phacoemulsification with a posterior chamber implant. Proposed explanations include focusing of the ablation wave on the posterior capsule (acoustic wave lens epithelial damage), photooxidative stress of the lens (ultraviolet and inflammatory oxidative stress), and corticosteroid-induced cataract (lens toxicity).
Collapse
Affiliation(s)
- Ahmad M Mansour
- Department of Ophthalmology, American University of Beirut, Beirut, Lebanon
| | | |
Collapse
|
31
|
Pennesi ME, Neuringer M, Courtney RJ. Animal models of age related macular degeneration. Mol Aspects Med 2012; 33:487-509. [PMID: 22705444 DOI: 10.1016/j.mam.2012.06.003] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations.
Collapse
Affiliation(s)
- Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
32
|
Cui X, Zhang J, Du R, Wang L, Archacki S, Zhang Y, Yuan M, Ke T, Li H, Li D, Li C, Li DWC, Tang Z, Yin Z, Liu M. HSF4 is involved in DNA damage repair through regulation of Rad51. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1308-15. [PMID: 22587838 DOI: 10.1016/j.bbadis.2012.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/26/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
Abstract
Heat shock factor protein 4 (HSF4) is expressed exclusively in the ocular lens and plays a critical role in the lens formation and differentiation. Mutations in the HSF4 gene lead to congenital and senile cataract. However, the molecular mechanisms causing this disease have not been well characterized. DNA damage in lens is a crucial risk factor in senile cataract formation, and its timely repair is essential for maintaining the lens' transparency. Our study firstly found evidence that HSF4 contributes to the repair of DNA strand breaks. Yet, this does not occur with cataract causative mutations in HSF4. We verify that DNA damage repair is mediated by the binding of HSF4 to a heat shock element in the Rad51 promoter, a gene which assists in the homologous recombination (HR) repair of DNA strand breaks. HSF4 up-regulates Rad51 expression while mutations in HSF4 fail, and DNA does not get repaired. Camptothecin, which interrupts the regulation of Rad51 by HSF4, also affects DNA damage repair. Additionally, with HSF4 knockdown in the lens of Zebrafish, DNA damage was observed and the protein level of Rad51 was significantly lower. Our study presents the first evidence demonstrating that HSF4 plays a role in DNA damage repair and may contribute a better understanding of congenital cataract formation.
Collapse
Affiliation(s)
- Xiukun Cui
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Moreau KL, King JA. Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol Med 2012; 18:273-82. [PMID: 22520268 DOI: 10.1016/j.molmed.2012.03.005] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/01/2012] [Accepted: 03/14/2012] [Indexed: 11/16/2022]
Abstract
The transparency of the eye lens depends on maintaining the native tertiary structures and solubility of the lens crystallin proteins over a lifetime. Cataract, the leading cause of blindness worldwide, is caused by protein aggregation within the protected lens environment. With age, covalent protein damage accumulates through pathways thought to include UV radiation, oxidation, deamidation, and truncations. Experiments suggest that the resulting protein destabilization leads to partially unfolded, aggregation-prone intermediates and the formation of insoluble, light-scattering protein aggregates. These aggregates either include or overwhelm the protein chaperone content of the lens. Here, we review the causes of cataract and nonsurgical methods being investigated to inhibit or delay cataract development, including natural product-based therapies, modulators of oxidation, and protein aggregation inhibitors.
Collapse
Affiliation(s)
- Kate L Moreau
- Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, 68-330, Cambridge, MA 02139, USA
| | | |
Collapse
|
34
|
Abstract
PURPOSE To evaluate the effect of selenium supplementation on the progress of naphthalene cataract. MATERIALS AND METHODS Sprague-Dawley rats were randomly divided into five groups as follows: normal control, naphthalene control and selenium-supplemented groups (Selenium I, II and III, which were orally administrated with selenium at doses of 0.0104 mg/kg, 0.0208 mg/kg and 0.0416 mg/kg, respectively). All the intervention groups were orally administered with 10% naphthalene solution for 5 weeks. The lens density of each group was determined by photography. Moreover, glutathione peroxidase (GPx) activity in the lens, erythrocyte and plasma was investigated. In addition, lens glutathione (GSH), malondialdehyde (MDA) and hydroxyl radical levels were evaluated. Selenium level in aqueous humor was determined using atomic absorption spectrometry. RESULTS The maximum, mean and minimum densities of lens opacities were lower in Selenium group II and III than those in naphthalene group. The maximum density of the lens increased more slowly in Selenium group I than that in naphthalene controls. In selenium-supplemented groups, blood and lens GPx activities as well as aqueous humor selenium level increased significantly. Selenium supplementation also significantly ameliorated the decrease in GSH level and increase in MDA and hydroxyl radical levels in the lens of naphthalene-treated rats. CONCLUSIONS Selenium supplementation could slow the development of naphthalene cataract possibly by attenuating the oxidative stress in the lens.
Collapse
Affiliation(s)
- Xiangjia Zhu
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | | |
Collapse
|
35
|
Markovets AM, Fursova AZ, Kolosova NG. Therapeutic action of the mitochondria-targeted antioxidant SkQ1 on retinopathy in OXYS rats linked with improvement of VEGF and PEDF gene expression. PLoS One 2011; 6:e21682. [PMID: 21750722 PMCID: PMC3130050 DOI: 10.1371/journal.pone.0021682] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/05/2011] [Indexed: 12/23/2022] Open
Abstract
The incidence of age-related macular degeneration (AMD), the main cause of blindness in older patients in the developed countries, is increasing with the ageing population. At present there is no effective treatment for the prevailing geographic atrophy, dry AMD, whereas antiangiogenic therapies successful used in managing the wet form of AMD. Recently we showed that mitochondria-targeted antioxidant plastoquinonyl-decyl-triphenylphosphonium (SkQ1) is able to prevent the development and moreover caused regression of pre-existing signs of the retinopathy in OXYS rats, an animal model of AMD. Here we examine the effects of SkQ1 on expression of key regulators of angiogenesis vascular endothelial growth factor A (VEGF) and its antagonist pigment epithelium-derived factor (PEDF) genes in the retina of OXYS rats as evidenced by real-time PCR and an ELISA test for VEGF using Wistar rats as control. Ophthalmoscopic examinations confirmed that SkQ1 supplementation (from 1.5 to 3 months of age, 250 nmol/kg) prevented development while eye drops SkQ1 (250 nM, from 9 to 12 months) caused some reduction of retinopathy signs in OXYS rats and did not reveal any negative effects on the control Wistar rat's retina. Prevention of premature retinopathy by SkQ1 was connected with an increase of VEGF mRNA and protein in OXYS rat's retina up to the levels corresponding to the Wistar rats, and did not involve changes in PEDF expression. In contrast the treatment with SkQ1 drops caused a decrease of VEGF mRNA and protein levels and an increase in the PEDF mRNA level in the middle-aged OXYS rats, but in Wistar rats the changes of gene expression were the opposite. Conclusions: The beneficial effects of SkQ1 on retinopathy connected with normalization of expression of VEGF and PEDF in the retina of OXYS rats and depended on age of the animals and the stage of retinopathy.
Collapse
Affiliation(s)
- Anton M. Markovets
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Anzhella Z. Fursova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Natalia G. Kolosova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
- * E-mail:
| |
Collapse
|
36
|
Randazzo J, Zhang P, Makita J, Blessing K, Kador PF. Orally active multi-functional antioxidants delay cataract formation in streptozotocin (type 1) diabetic and gamma-irradiated rats. PLoS One 2011; 6:e18980. [PMID: 21541328 PMCID: PMC3082543 DOI: 10.1371/journal.pone.0018980] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 03/21/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Age-related cataract is a worldwide health care problem whose progression has been linked to oxidative stress and the accumulation of redox-active metals. Since there is no specific animal model for human age-related cataract, multiple animal models must be used to evaluate potential therapies that may delay and/or prevent cataract formation. METHODS/PRINCIPAL FINDINGS Proof of concept studies were conducted to evaluate 4-(5-hydroxypyrimidin-2-yl)-N,N-dimethyl-3,5-dioxopiperazine-1-sulfonamide (compound 4) and 4-(5-hydroxy-4,6-dimethoxypyrimidin-2-yl)-N,N-dimethyl-3,5-dioxopiperazine-1-sulfonamide (compound 8), multi-functional antioxidants that can independently chelate redox metals and quench free radicals, on their ability to delay the progression of diabetic "sugar" cataracts and gamma radiation-induced cataracts. Prior to 15 Gy of whole head irradiation, select groups of Long Evans rats received either diet containing compound 4 or 8, or a single i.p. injection of panthethine, a radioprotective agent. Compared to untreated, irradiated rats, treatment with pantethine, 4 and 8 delayed initial lens changes by 4, 47, and 38 days, respectively, and the average formation of posterior subcapsular opacities by 23, 53 and 58 days, respectively. In the second study, select groups of diabetic Sprague Dawley rats were administered chow containing compounds 4, 8 or the aldose reductase inhibitor AL1576. As anticipated, treatment with AL1576 prevented cataract by inhibiting sorbitol formation in the lens. However, compared to untreated rats, compounds 4 and 8 delayed vacuole formation by 20 days and 12 days, respectively, and cortical cataract formation by 8 and 3 days, respectively, without reducing lenticular sorbitol. Using in vitro lens culture in 30 mM xylose to model diabetic "sugar" cataract formation, western blots confirmed that multi-functional antioxidants reduced endoplasmic reticulum stress. CONCLUSIONS/SIGNIFICANCE Multi-functional antioxidants delayed cataract formation in two diverse rat models. These studies provide a proof of concept that a general cataract treatment focused on reducing oxidative stress instead of a specific mechanism of cataractogenesis can be developed.
Collapse
Affiliation(s)
- James Randazzo
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Peng Zhang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jun Makita
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Karen Blessing
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Peter F. Kador
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
37
|
Kubo E, Hasanova N, Tanaka Y, Fatma N, Takamura Y, Singh DP, Akagi Y. Protein expression profiling of lens epithelial cells from Prdx6-depleted mice and their vulnerability to UV radiation exposure. Am J Physiol Cell Physiol 2009; 298:C342-54. [PMID: 19889963 DOI: 10.1152/ajpcell.00336.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Oxidative stress is one of the causative factors in progression and etiology of age-related cataract. Peroxiredoxin 6 (Prdx6), a savior for cells from internal or external environmental stresses, plays a role in cellular signaling by detoxifying reactive oxygen species (ROS) and thereby controlling gene regulation. Using targeted inactivation of the Prdx6 gene, we show that Prdx6-deficient lens epithelial cells (LECs) are more vulnerable to UV-triggered cell death, a major cause of skin disorders including cataractogenesis, and these cells display abnormal protein profiles. PRDX6-depleted LECs showed phenotypic changes and formed lentoid body, a characteristic of terminal cell differentiation and epithelial-mesenchymal transition. Prdx6(-/-) LECs exposed to UV-B showed higher ROS expression and were prone to apoptosis compared with wild-type LECs, underscoring a protective role for Prdx6. Comparative proteomic analysis using fluorescence-based difference gel electrophoresis along with mass spectrometry and database searching revealed a total of 13 proteins that were differentially expressed in Prdx6(-/-) cells. Six proteins were upregulated, whereas expression of seven proteins was decreased compared with Prdx6(+/+) LECs. Among the cytoskeleton-associated proteins that were highly expressed in Prdx6-deficient LECs was tropomyosin (Tm)2beta. Protein blot and real-time PCR validated dramatic increase of Tm2beta and Tm1alpha expression in these cells. Importantly, Prdx6(+/+) LECs showed a similar pattern of Tm2beta protein expression after transforming growth factor (TGF)-beta or H(2)O(2) treatment. An extrinsic supply of PRDX6 could restore Tm2beta expression, demonstrating that PRDX6 may attenuate adverse signaling in cells and thereby maintain cellular homeostasis. Exploring redox-proteomics (Prdx6(-/-)) and characterization and identification of abnormally expressed proteins and their attenuation by PRDX6 delivery should provide a basis for development of novel therapeutic interventions to postpone ROS-mediated abnormal signaling deleterious to cells or tissues.
Collapse
Affiliation(s)
- Eri Kubo
- Department of Ophthalmology, Faculty of Medical Science, University of Fukui, 23-3 Shimoaiduki, Matsuoka, Eiheiji, Yoshida-gun, Fukui 910-1193, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Moreau KL, King J. Hydrophobic core mutations associated with cataract development in mice destabilize human gammaD-crystallin. J Biol Chem 2009; 284:33285-95. [PMID: 19758984 PMCID: PMC2785171 DOI: 10.1074/jbc.m109.031344] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The human eye lens is composed of fiber cells packed with crystallins up to 450 mg/ml. Human γD-crystallin (HγD-Crys) is a monomeric, two-domain protein of the lens central nucleus. Both domains of this long lived protein have double Greek key β-sheet folds with well packed hydrophobic cores. Three mutations resulting in amino acid substitutions in the γ-crystallin buried cores (two in the N-terminal domain (N-td) and one in the C-terminal domain (C-td)) cause early onset cataract in mice, presumably an aggregated state of the mutant crystallins. It has not been possible to identify the aggregating precursor within lens tissues. To compare in vivo cataract-forming phenotypes with in vitro unfolding and aggregation of γ-crystallins, mouse mutant substitutions were introduced into HγD-Crys. The mutant proteins L5S, V75D, and I90F were expressed and purified from Escherichia coli. WT HγD-Crys unfolds in vitro through a three-state pathway, exhibiting an intermediate with the N-td unfolded and the C-td native-like. L5S and V75D in the N-td also displayed three-state unfolding transitions, with the first transition, unfolding of the N-td, shifted to significantly lower denaturant concentrations. I90F destabilized the C-td, shifting the overall unfolding transition to lower denaturant concentrations. During thermal denaturation, the mutant proteins exhibited lowered thermal stability compared with WT. Kinetic unfolding experiments showed that the N-tds of L5S and V75D unfolded faster than WT. I90F was globally destabilized and unfolded more rapidly. These results support models of cataract formation in which generation of partially unfolded species are precursors to the aggregated cataractous states responsible for light scattering.
Collapse
Affiliation(s)
- Kate L Moreau
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
39
|
Güven M, Unal M, Sarici A, Ozaydin A, Batar B, Devranoğlu K. Glutathione-S-transferase M1 and T1 Genetic Polymorphisms and the Risk of Cataract Development: A Study in the Turkish Population. Curr Eye Res 2009; 32:447-54. [PMID: 17514530 DOI: 10.1080/02713680701338108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this study, we aimed to determine the effects of genetic polymorphisms of glutathione-S-transferase M1 (GSTM1) and glutathione-S-transferase T1 (GSTT1) on risk of developing different subtypes of age-related cataract in the Turkish population. Using a multiplex polymerase chain reaction (PCR), GSTM1 and GSTT1 gene polymorphisms were analyzed in 195 patients with age-related cataract (75 patients with cortical, 53 with nuclear, 37 with posterior subcapsular, and 30 with mixed type) and in 136 patients of an otherwise healthy control group of similar age. GSTM1 null genotype had a significant association with the development of cataract in female subjects (p < 0.0029; OR, 2.98; 95% CI, 1.41-6.34). This relationship in female subjects was only in nuclear and mixed types cataract cases (p < 0.002; OR, 4.58; 95% CI, 1.67-12.78 and p < 0.03, respectively). There was also a statistically significant association between the combination of GSTM1-null and GSTT1-positive genotypes and the risk of cataract development in female subjects (p = 0.01; OR = 2.87; 95% CI = 1.25-6.69). Stratification by the subtypes revealed that this association was only in nuclear type cataract (p = 0.001; OR, 3.92; 95% CI, 1.34-11.71). GSTM1-null genotype or combination of the GSTM1-null and GSTT1-positive genotypes in females may be associated with increased risk of cataract development in the Turkish population.
Collapse
Affiliation(s)
- Mehmet Güven
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, University of Istanbul, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
40
|
Berthoud VM, Beyer EC. Oxidative stress, lens gap junctions, and cataracts. Antioxid Redox Signal 2009; 11:339-53. [PMID: 18831679 PMCID: PMC2763361 DOI: 10.1089/ars.2008.2119] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/12/2008] [Accepted: 07/12/2008] [Indexed: 12/20/2022]
Abstract
The eye lens is constantly subjected to oxidative stress from radiation and other sources. The lens has several mechanisms to protect its components from oxidative stress and to maintain its redox state, including enzymatic pathways and high concentrations of ascorbate and reduced glutathione. With aging, accumulation of oxidized lens components and decreased efficiency of repair mechanisms can contribute to the development of lens opacities or cataracts. Maintenance of transparency and homeostasis of the avascular lens depend on an extensive network of gap junctions. Communication through gap junction channels allows intercellular passage of molecules (up to 1 kDa) including antioxidants. Lens gap junctions and their constituent proteins, connexins (Cx43, Cx46, and Cx50), are also subject to the effects of oxidative stress. These observations suggest that oxidative stress-induced damage to connexins (and consequent altered intercellular communication) may contribute to cataract formation.
Collapse
Affiliation(s)
- Viviana M Berthoud
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
41
|
Liu XC, Wang P, Yan H. A rabbit model to study biochemical damage to the lens after vitrectomy: effects of N-acetylcysteine. Exp Eye Res 2009; 88:1165-70. [PMID: 19450459 DOI: 10.1016/j.exer.2009.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 01/03/2009] [Accepted: 01/06/2009] [Indexed: 11/19/2022]
Abstract
The purpose of the present study was to determine whether the biochemical effects of vitrectomy can be studied in rabbits and to assess the possible protective effects of N-acetylcysteine on the lens following vitrectomy. Twenty-four New Zealand rabbits (2.3-2.4 kg) were divided into three groups of eight each. Left eyes underwent vitrectomy surgery. Unoperated right eyes served as controls. Equal numbers of treated eyes were not injected, injected with 20 mM N-acetylcysteine, or 100 mM N-acetylcysteine immediately after vitrectomy. Lens transparency was monitored by slit-lamp biomicroscopy pre- and post-vitrectomy. A series of biochemical measurements were performed on lenses five months after vitrectomy. No significant differences in lens transparency or structure were observed in the three groups of lenses. However, vitrectomy was associated with significantly decreased activity of Na(+)-K(+)-ATPase and catalase. Compared with the group not treated with N-acetylcysteine, catalase activity was increased significantly in the group treated with 20 mM N-acetylcysteine. The level of glutathione and the activities of Na(+)-K(+)-ATPase and glutathione reductase were also higher in the two N-acetylcysteine-treated groups than in the untreated group, although these differences did not reach statistical significance. For all measured parameters, the effect of 20 mM N-acetylcysteine appeared to be better than 100 mM N-acetylcysteine, although these differences were not statistically significant. From these results, we gather that vitrectomy is associated with long-term decreases in enzyme activity in the lens. Injection of N-acetylcysteine into the vitreous cavity protects against some of these changes. Antioxidants like N-acetylcysteine may slow or prevent post-vitrectomy cataracts.
Collapse
|
42
|
Rumyantseva YV, Fursova AZ, Fedoseeva LA, Kolosova NG. Changes in physicochemical parameters and α-crystallin expression in the lens during cataract development in OXYS rats. BIOCHEMISTRY (MOSCOW) 2008; 73:1176-82. [DOI: 10.1134/s0006297908110023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Costello MJ, Johnsen S, Metlapally S, Gilliland KO, Ramamurthy B, Krishna PV, Balasubramanian D. Ultrastructural analysis of damage to nuclear fiber cell membranes in advanced age-related cataracts from India. Exp Eye Res 2008; 87:147-58. [PMID: 18617164 DOI: 10.1016/j.exer.2008.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 04/24/2008] [Accepted: 05/18/2008] [Indexed: 11/25/2022]
Abstract
The primary goal was to characterize the structural alterations that occur at the fiber cell interfaces in nuclei of fully opaque cataracts removed by extracapsular cataract surgery in India. The dark yellow to brunescent nuclei, ages 38-78 years, were probably representative of advanced age-related nuclear cataracts. Thick tissue slices were fixed, en bloc stained and embedded for transmission electron microscopy. Stained thin sections contained well-preserved membranes and junctions, although the complex cellular topology often made it necessary to tilt the grid extensively to visualize the membranes. Damage to the fiber cell membranes was noted in all regions of the nucleus. The most important damage occurred within undulating membrane junctions where the loss of membrane segments was common. These membrane breaks were not sites of fusion as membrane edges were detected and cytoplasm appeared to be in contact with extracellular space, which was enlarged in many regions. Dense deposits of protein-like material were frequently observed within the extracellular space and appeared to be similar to protein in the adjacent cytoplasm. The deposits were often 20-50 nm thick, variable in length and located on specific sites on plasma membranes and between clusters of cells or cell processes. In addition, low density regions were seen within the extracellular space, especially within highly undulating membranes where spaces about 100 nm in diameter were observed. The membrane damage was more extensive and extracellular spaces were larger than in aged transparent donor lenses. Because high and low density regions contribute equally to the fluctuations in refractive index, the changes in density due to the observed damage near membranes are likely to produce significant light scattering based on theoretical analysis. The dimensions of the fluctuations in the range 20-100 nm imply that the scattering is probably similar to that of small particles that would increase high-angle scattering visible in the slit lamp. Such damage to membranes would be expected to contribute to the total opacification of the nucleus as the cataract matures. The main sources of the fluctuations appear to be the degradation of membranes and adjacent cytoplasmic proteins, as well as the redistribution of proteins and fragments.
Collapse
Affiliation(s)
- M J Costello
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Oxidative and particularly photo-oxidative processes are critical factors many ocular conditions but are often poorly recognized by those investigating ocular disease. The author discusses oxidative stress in inflammatory processes of the conjunctiva, cornea, and uvea; in cataract formation in the lens; in retinal degeneration; and in optic nerve pathologic conditions, inflammatory in optic neuritis and degenerative in glaucoma.
Collapse
Affiliation(s)
- David L Williams
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, England, UK; St. John's College, Cambridge CB2 1TP, England, UK.
| |
Collapse
|
45
|
Lloret A, Calzone R, Dunster C, Manini P, d'Ischia M, Degan P, Kelly FJ, Pallardó FV, Zatterale A, Pagano G. Different patterns of in vivo pro-oxidant states in a set of cancer- or aging-related genetic diseases. Free Radic Biol Med 2008; 44:495-503. [PMID: 18053816 DOI: 10.1016/j.freeradbiomed.2007.10.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Revised: 09/14/2007] [Accepted: 10/24/2007] [Indexed: 11/19/2022]
Abstract
A comparative evaluation is reported of pro-oxidant states in 82 patients with ataxia telangectasia (AT), Bloom syndrome (BS), Down syndrome (DS), Fanconi anemia (FA), Werner syndrome (WS), and xeroderma pigmentosum (XP) vs 98 control donors. These disorders display cancer proneness, and/or early aging, and/or other clinical features. The measured analytes were: (a) leukocyte and urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), (b) blood glutathione (GSSG and GSH), (c) plasma glyoxal (Glx) and methylglyoxal (MGlx), and (d) some plasma antioxidants [uric acid (UA) and ascorbic acid (AA)]. Leukocyte 8-OHdG levels ranked as follows: WS>BS approximately FA approximately XP>DS approximately AT approximately controls. Urinary 8-OHdG levels were significantly increased in a total of 22 patients with BS, FA, or XP vs 47 controls. The GSSG:GSH ratio was significantly increased in patients with WS and in young (< or =15 years) patients with DS or with FA and decreased in older patients with DS or FA and in AT, BS, and XP patients. The plasma levels of Glx and/or MGlx were significantly increased in patients with WS, FA, and DS. The UA and AA levels were significantly increased in WS and DS patients, but not in AT, FA, BS, nor XP patients. Rationale for chemoprevention trials is discussed.
Collapse
Affiliation(s)
- Ana Lloret
- Department of Physiology, University of Valencia, Avenida Blasco Ibañez 15, E-46010 Valencia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Saito M, Ueo M, Kametaka S, Saigo O, Uchida S, Hosaka H, Sakamoto K, Nakahara T, Mori A, Ishii K. Attenuation of Cataract Progression by A-3922, a Dihydrobenzofuran Derivative, in Streptozotocin-Induced Diabetic Rats. Biol Pharm Bull 2008; 31:1959-63. [DOI: 10.1248/bpb.31.1959] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Maki Saito
- Department of Molecular Pharmacology, School of Pharmaceutical Sciences, Kitasato University
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Iwate Medical University
| | - Mayumi Ueo
- Department of Molecular Pharmacology, School of Pharmaceutical Sciences, Kitasato University
| | - Sokichi Kametaka
- Department of Molecular Pharmacology, School of Pharmaceutical Sciences, Kitasato University
| | - Orie Saigo
- Department of Molecular Pharmacology, School of Pharmaceutical Sciences, Kitasato University
| | - Seiichi Uchida
- Department of Biological Research, Division 2, Odawara Research Center, Nippon Soda Co., Ltd
| | - Hideo Hosaka
- Department of Biological Research, Division 2, Odawara Research Center, Nippon Soda Co., Ltd
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, School of Pharmaceutical Sciences, Kitasato University
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, School of Pharmaceutical Sciences, Kitasato University
| | - Asami Mori
- Department of Molecular Pharmacology, School of Pharmaceutical Sciences, Kitasato University
| | - Kunio Ishii
- Department of Molecular Pharmacology, School of Pharmaceutical Sciences, Kitasato University
| |
Collapse
|
47
|
Metlapally S, Costello MJ, Gilliland KO, Ramamurthy B, Krishna PV, Balasubramanian D, Johnsen S. Analysis of nuclear fiber cell cytoplasmic texture in advanced cataractous lenses from Indian subjects using Debye-Bueche theory. Exp Eye Res 2007; 86:434-44. [PMID: 18191834 DOI: 10.1016/j.exer.2007.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 11/20/2007] [Accepted: 11/28/2007] [Indexed: 12/13/2022]
Abstract
Alterations in ultrastructural features of the lens fiber cells lead to scattering and opacity typical of cataracts. The organelle-free cytoplasm of the lens nuclear fiber cell is one such component that contains vital information about the packing and organization of crystallins critical to lens transparency. The current work has extended analysis of the cytoplasmic texture to transparent and advanced cataractous lenses from India and related the extent of texturing to the nuclear scattering observed using the Debye-Bueche theory for inhomogeneous materials. Advanced age-related nuclear cataracts (age-range 38-75 years) and transparent lenses (age-range 48-78 years) were obtained following extracapsular cataract removal or from the eye bank, at the L.V. Prasad Eye Institute. Lens nuclei were Vibratome-sectioned, fixed and prepared for transmission electron microscopy using established techniques. Electron micrographs of the unstained thin sections of the cytoplasm were acquired at 6500x and percent scattering for wavelengths 400-700 nm was calculated using the Debye-Bueche theory. Electron micrographs from comparable areas in an oxidative-damage sensitive (OXYS) rat model and normal rat lenses preserved from an earlier study were used, as they have extremely textured and smooth cytoplasms, respectively. The Debye-Bueche theoretical approach produces plots that vary smoothly with wavelength and are sensitive to spatial fluctuations in density. The central lens fiber cells from advanced cataractous lenses from India and the OXYS rat, representing opaque lens nuclei, produced the greatest texture and scattering. The transparent human lenses from India had a smoother texture and less predicted scattering, similar to early cataracts from previous studies. The normal rat lens had a homogeneous cytoplasm and little scattering. The data indicate that this method allowed easy comparison of small variations in cytoplasmic texture and robustly detected differences between transparent and advanced cataractous human lenses. This may relate directly to the proportion of opacification contributed by the packing of crystallins. The percent scattering calculated using this method may thus be used to generate a range of curves with which to compare and quantify the relative contribution of the packing of crystallins to the loss of transparency and scattering observed.
Collapse
Affiliation(s)
- S Metlapally
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, NC 27599-7090, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Athanasiadis I, Konstantinidis A, Kyprianou I, Robinson R, Moschou V, Kouzi-Koliakos K. Rapidly progressing bilateral cataracts in a patient with beta thalassemia and pellagra. J Cataract Refract Surg 2007; 33:1659-61. [PMID: 17720090 DOI: 10.1016/j.jcrs.2007.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2006] [Accepted: 05/04/2007] [Indexed: 11/29/2022]
Abstract
Soon after the diagnosis of pellagra in a 20-year-old patient with beta thalassemia, bilateral intumescent cataracts rapidly developed. We believe the patient's crystalline lenses were at an increased oxidative state due to iron overload from the thalassemia. Depletion of the lens epithelial cells of an important antioxidative agent (glutathione) as a result of niacin (vitamin B3) deficiency due to pellagra reduced the antioxidative capacity of the lenses. The oxidative damage led to rapid development of cataracts.
Collapse
Affiliation(s)
- Ioannis Athanasiadis
- Ophthalmology Department, Walsgrave Hospital, Coventry and Warwickshire University Hospitals NHS Trust, Coventry, United Kingdom.
| | | | | | | | | | | |
Collapse
|
49
|
Negre-Salvayre A, Coatrieux C, Ingueneau C, Salvayre R. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br J Pharmacol 2007; 153:6-20. [PMID: 17643134 PMCID: PMC2199390 DOI: 10.1038/sj.bjp.0707395] [Citation(s) in RCA: 614] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Reactive carbonyl compounds (RCCs) formed during lipid peroxidation and sugar glycoxidation, namely Advanced lipid peroxidation end products (ALEs) and Advanced Glycation end products (AGEs), accumulate with ageing and oxidative stress-related diseases, such as atherosclerosis, diabetes or neurodegenerative diseases. RCCs induce the 'carbonyl stress' characterized by the formation of adducts and cross-links on proteins, which progressively leads to impaired protein function and damages in all tissues, and pathological consequences including cell dysfunction, inflammatory response and apoptosis. The prevention of carbonyl stress involves the use of free radical scavengers and antioxidants that prevent the generation of lipid peroxidation products, but are inefficient on pre-formed RCCs. Conversely, carbonyl scavengers prevent carbonyl stress by inhibiting the formation of protein cross-links. While a large variety of AGE inhibitors has been developed, only few carbonyl scavengers have been tested on ALE-mediated effects. This review summarizes the signalling properties of ALEs and ALE-precursors, their role in the pathogenesis of oxidative stress-associated diseases, and the different agents efficient in neutralizing ALEs effects in vitro and in vivo. The generation of drugs sharing both antioxidant and carbonyl scavenger properties represents a new therapeutic challenge in the treatment of carbonyl stress-associated diseases.
Collapse
Affiliation(s)
- A Negre-Salvayre
- INSERM U858, IFR-31 and Biochemistry Department, CHU Rangueil, University Toulouse-3, Toulouse, France.
| | | | | | | |
Collapse
|
50
|
Schaal S, Beiran I, Rozner H, Rubinstein I, Chevion M, Miller B, Dovrat A. Desferrioxamine and zinc-desferrioxamine reduce lens oxidative damage. Exp Eye Res 2007; 84:561-8. [PMID: 17239855 DOI: 10.1016/j.exer.2006.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 11/09/2006] [Accepted: 11/20/2006] [Indexed: 11/18/2022]
Abstract
Our purpose was to investigate the quality and morphology of cultured bovine lenses after exposure to hyperbaric oxygen (HBO) in the presence or absence of desferrioxamine (DFO) or zinc-desferrioxamine (Zn-DFO). Intact bovine lenses were cultured and exposed to HBO of 100% oxygen at 2.5 ATA for 120 min. One hundred and fifty lenses were included in the present study. Lenses were divided into study groups of 25 lenses each: (1a) HBO-exposed lenses; (1b) control lenses extracted from the contralateral eyes of group 1a and exposed to normal room air. (2a) HBO-exposed lenses treated with DFO; (2b) control lenses extracted from the contralateral eyes of group 2a exposed to normal room air in the presence of DFO (3a) HBO-exposed lenses treated with Zn-DFO; (3b) control lenses extracted from the contralateral eyes of group 3a, exposed to normal room air in the presence of Zn-DFO. Lens optical quality and structural changes were assessed. Oxygen toxicity to lenses was demonstrated by decreased light transmission, increase in focal length variability and a decrease in morphological integrity. Light intensity measurements showed a distinct pattern in control lenses. A different pattern was noticed for hyperbaric oxygen-exposed lenses. Focal length variability values were stable in control lenses and increased significantly in oxygen-exposed lenses. Structural damage to lenses was demonstrated by the appearance of bubbles between lens' fibers possibly demonstrating failure of lens tissue to cope with oxygen load. All measured parameters showed that both Zn-DFO and DFO attenuated the oxidative damage. The effect of DFO was small whereas Zn-DFO demonstrated a significantly stronger effect. Treatment of hyperbaric oxygen-exposed lenses with DFO only marginally reduced the oxidative damage. Treatment with Zn-DFO was superior in reducing the oxidative damage to lenses. These results indicate a possible role for Zn-DFO in the prevention of cataracts.
Collapse
Affiliation(s)
- Shlomit Schaal
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | | | |
Collapse
|